MUKAI LATTICES: KNOWN STRUCTURES AND OPEN QUESTIONS

by Alexey Gorodentsev

Laboratory of Algebraic Geometry, Faculty of Mathematics, HSE ひ
Mathematical Physics Group, ITEP (Moscow)

Plan

（1）Basic definitions
（2）Algebraic Geometric Source
（3）Working example：projective spaces
（4）Braid group action and mutations
（5）Picard－Lefschetz aspects（after V．Golyshev）
（6）Diophantine aspects

Mukai lattice is a free \mathbb{Z}-module of finite rank $M \cong \mathbb{Z}^{n}$ equipped with (maybe neither symmetric nor anti-symmetric) unimodular bilinear form

$$
M \times M \rightarrow \mathbb{Z}, \quad v, w \mapsto\langle v, w\rangle
$$

Unimodularity means that the polar mapping $M \rightarrow M^{*} \stackrel{\text { def }}{=} \operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Z})$

$$
v \mapsto(u \mapsto\langle u, v\rangle)
$$

is an isomorphism of abelian groups.
A basis $e_{1}, e_{2}, \ldots, e_{n}$ of M over \mathbb{Z} is called exceptional (or semiorthogonal) if its Gram matrix $\chi_{i j}=\left\langle e_{i}, e_{j}\right\rangle$ is upper uni-triangular, i.e.

$$
\begin{array}{ll}
\left\langle e_{i}, e_{j}\right\rangle=0 & \text { for all } i<j \\
\left\langle e_{i}, e_{i}\right\rangle=1 & \text { for all } i
\end{array}
$$

Of course, a Mukai lattice M not necessary admits an exceptional basis and not any $v \in M$ with $\langle v, v\rangle=1$ is included in an exceptional basis.

Euler's form on Grothendieck's group

The Grothendieck group $K_{0}(X)$ of an algebraic variety X is equipped with the Euler form $\quad \chi(E, F)=\sum_{v}(-1)^{v} \operatorname{dim}^{E^{2}}{ }^{\nu}(E, F)$.
For smooth X and locally free E, F it can be computed by Riemann - Roch:

$$
\chi(E, F)=\chi\left(E^{*} \otimes F\right)=\int_{X} \operatorname{ch}\left(E^{*} \otimes F\right) \cdot \operatorname{td}\left(T_{X}\right)
$$

If $K_{0}(X)$ is a lattice of finite rank, it is a Mukai lattice. If $\mathscr{D}^{b}(X)$ admits an exceptional basis (i.e. a collection of objects $E_{1}, E_{2}, \ldots, E_{m}$ such that

$$
\operatorname{Hom}_{\mathscr{D}^{b}(X)}\left(E_{i}, E_{j}\right)= \begin{cases}\mathbb{C} & \text { for } i=j \\ 0 & \text { for } i>j\end{cases}
$$

and any object of $\mathscr{D}^{b}(X)$ can be achieved by taking cones of morphisms starting from finite direct sums of E_{i}^{\prime} 's), then the classes $e_{i}=\left[E_{i}\right]$ in $K_{0}(X)$ form an exceptional basis of the Mukai lattice $K_{0}(X)$.

Example: $K_{0}\left(\mathbb{P}_{n}\right)$

Mukai lattice $M=K_{0}\left(\mathbb{P}_{n}\right)$ can be canonically identified with the module of integer valued polynomials of degree $\leqslant n$ with rational coefficients:

$$
M \leadsto\{h \in \mathbb{Q}[t] \mid h(\mathbb{Z}) \subset \mathbb{Z} \& \operatorname{deg} h \leqslant n\} .
$$

The isomorphism takes a class $[E] \in K_{0}\left(\mathbb{P}_{n}\right)$ to the Hilbert polynomial

$$
h_{E}(k)=\langle\mathcal{O}(-k), E\rangle=\chi(E(k))
$$

and sends the basis formed by the structure sheaves of projective subspaces

$$
\mathcal{O}_{\mathbb{P}_{n}}, \mathcal{O}_{\mathbb{P}_{n-l}}, \ldots, \mathcal{O}_{\mathbb{P}_{l}}, \mathcal{O}_{\mathbb{P}_{0}}
$$

to the basis formed by binomial coefficients $\gamma_{0}=h_{\mathscr{Q}_{\mathbb{P}_{0}}} \equiv 1$ and

$$
\gamma_{k}(t)=h_{\mathcal{O}_{\mathbb{P}_{k}}}(t)=\frac{1}{k!}(t+1)(t+2) \cdots(t+k), \quad l \leqslant k \leqslant n .
$$

If we put $D=d / d t$, then the twisting $T: E \mapsto E(1)=E \otimes \mathcal{O}(1)$ goes to shift:

$$
T=e^{D}: h_{E}(t) \longmapsto h_{E}(t+1) .
$$

The restriction onto a hyperplane: $1-T^{-1}:\left.E \mapsto E\right|_{\mathbb{P}_{n-1}}$ goes to

$$
\nabla=1-e^{-D}: h_{E}(t) \longmapsto h_{E}(t)-h_{E}(t-1)
$$

To write Riemann - Roch, it is convenient to present Hilbert polynomials as

$$
h_{F}=F(D) \gamma_{n},
$$

where $F(D) \in \mathbb{Q}[[D]]$ is a power series in $D=d / d t$. In this terms

$$
\begin{gathered}
h_{F^{*}}=F(-D) \gamma_{n} \\
h_{E \otimes F}=E(D) \cdot F(D) \gamma_{n} \\
\langle E, F\rangle=E(-D) F(D) \gamma_{n}(0) .
\end{gathered}
$$

By the Beilinson theorem, any $(n+1)$ consequent invertible sheaves $\mathcal{O}(i)$, say

$$
\mathcal{O}, \mathcal{O}(1), \mathcal{O}(2), \ldots, \mathcal{O}(n)
$$

form an exceptional basis of $\mathscr{D}^{b}\left(\mathbb{P}_{n}\right)$.
Their classes $\gamma_{n}(t+i)$ form an exceptional basis of Mukai lattice $M=K_{0}\left(\mathbb{P}_{n}\right)$ with upper uni-triangular Gram matrix whose i 's diagonal is filled by $\binom{n+i}{i}$.
For $n=2,3$ this Matrix looks like

$$
\left(\begin{array}{lll}
1 & 3 & 0 \\
0 & 1 & 3 \\
0 & 0 & 1
\end{array}\right), \quad\left(\begin{array}{cccc}
1 & 4 & 15 & 20 \\
0 & 1 & 4 & 15 \\
0 & 0 & 1 & 4 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Braid group action and mutations

The braid group B_{n} of n threads acts on the set of exceptional bases of rank n Mukai lattice M. Inverse generators g_{i}, g_{i}^{-1}, which braid i-th and $(i+1)$-th threads, replace a pair of consequent vectors e_{i}, e_{i+l} of each exceptional basis by pairs

$$
e_{i+1}-\left\langle e_{i}, e_{i+1}\right\rangle \cdot e_{i}, e_{i} \quad \text { and } \quad e_{i+1}, e_{i}-\left\langle e_{i}, e_{i+1}\right\rangle \cdot e_{i+1}
$$

and preserve all the other basic vectors. The generating relations of B_{n}

$$
g_{i} g_{i+1} g_{i}=g_{i+1} g_{i} g_{i+1} \text { for all i and } g_{i} g_{j}=g_{j} g_{i} \text { for }|i-j|>1
$$

are verified by straightforward computation.
More generally, for any $f \in M$ and $e \in M$ such that $\langle e, e\rangle=l$ we call

$$
L_{e} f \stackrel{\text { def }}{=} f-\langle e, f\rangle e \quad \text { и } \quad R_{e} f \stackrel{\text { def }}{=} f-\langle f, e\rangle e
$$

respectively left mutation and right mutation of f by means of e.

The Serre Operator

The Serre Operator is a linear mapping $\varkappa: M \rightarrow M$ defined by prescription

$$
\langle u, w\rangle=\langle w, \varkappa u\rangle \quad \forall u, w \in M .
$$

In any basis of M the Gram matrix χ and the matrix of \varkappa are related as

$$
\varkappa=\chi^{-1} \chi^{t} .
$$

The action of \varkappa on the elements of an exceptional basis $e_{1}, e_{2}, \ldots, e_{n}$ is the composition of $n-l$ consequent left mutations along an infinite sequence of vectors $\left(e_{k}\right)_{k \in \mathbb{Z}}$ defined by recursive formulae

$$
\begin{aligned}
& e_{i-n}=\varkappa\left(e_{i}\right)=L_{e_{i-n+1}} \circ \ldots \circ L_{e_{i-2}} \circ L_{e_{i-1}} e_{i} \\
& e_{i+n}=\varkappa^{-1}\left(e_{i}\right)=R_{e_{i+n-1}} \circ \ldots \circ R_{e_{i+2}} \circ R_{e_{i+1}} e_{i}
\end{aligned}
$$

Such infinite sequence is called a helix.

Example

The simplest helix in $M=K_{0}\left(\mathbb{P}_{n}\right)$ consists of invertible sheaves $\mathcal{O}(i), i \in \mathbb{Z}$. The consequent right mutations of \mathcal{O} along $\mathcal{O}(1), \ldots, \mathcal{O}(n)$ are

$$
R_{\mathscr{O}(k)} \circ \ldots \circ R_{\mathscr{O}(2)} \circ R_{\mathscr{O}(1)} \mathcal{O}=\Lambda^{k} \mathscr{T}(k)
$$

(k 'th exterior power of the tangent sheaf \mathscr{T} to \mathbb{P}_{n}). Indeed, k 'th exterior power of the (twisted) Euler exact triple $\quad 0 \rightarrow \mathcal{O} \rightarrow V \otimes \mathcal{O}(1) \rightarrow \mathscr{T}(1) \rightarrow 0 \quad$ looks like

$$
0 \rightarrow \Lambda^{k-1} \mathscr{T}(k-1) \rightarrow \Lambda^{k} V \otimes \mathcal{O}(k) \rightarrow \Lambda^{k} \mathscr{T}(k) \rightarrow 0
$$

Since $\quad \Lambda^{k} V=\operatorname{Hom}\left(\mathcal{O}, \Lambda^{k} \mathscr{T}\right)=\operatorname{Hom}\left(\Lambda^{k-1} \mathscr{T}, \mathscr{O}(1)\right)^{*}$, we get in $K_{0}\left(\mathbb{P}_{n}\right)$:

$$
\begin{gathered}
\operatorname{dim} \Lambda^{k} V=\left\langle[\mathscr{O}(k)],\left[\Lambda^{k} \mathscr{T}(k)\right]\right\rangle=\left\langle\left[\Lambda^{k-1} \mathscr{T}(k-1)\right],[\mathscr{O}(k)]\right\rangle \\
{\left[\Lambda^{k} \mathscr{T}(k)\right]=\left\langle\left[\Lambda^{k-1} \mathscr{T}(k-l)\right],[\mathscr{O}(k)]\right\rangle \cdot[\mathscr{O}(k)]-\left[\Lambda^{k-1} \mathscr{T}(k-1)\right] .}
\end{gathered}
$$

Remark

If the anticanonical divisor $-K_{X} \subset X$ is ample, then the adjunction exact triple

$$
\left.0 \rightarrow E \otimes \omega_{X} \rightarrow E \rightarrow E\right|_{-K_{X}} \rightarrow 0
$$

shows that the operator

$$
\text { Id }-\left(\cdot \otimes \omega_{X}\right):[E] \mapsto[E]-\left[E \otimes \omega_{X}\right]
$$

coincides with the restriction onto the anticanonical divisor $-K_{X}$:

$$
\left.E \mapsto E\right|_{-K_{X}},
$$

which is nilpontent. Thus, on a smooth Fano variety X the Serre operator on the Mukai lattice $M=K_{0}(X)$, which takes

$$
[E] \mapsto(-1)^{\operatorname{dim} X}\left[E \otimes \omega_{X}\right]
$$

is quasi-unipotent with eigenvalues ± 1.

Degression: non-symmetric bilinear forms over \mathbb{C}

Let $W=\mathbb{C} \otimes M$. Then the prescription

$$
\chi \mapsto \chi(\chi) \stackrel{\text { def }}{=} \chi^{-1} \chi^{t}
$$

defines $\mathrm{GL}(W)$ equivariant mapping of the non-degenerated bilinear forms on W to the linear automorphisms of W.
Moreover, two bilinear forms are $\mathrm{GL}(W)$-equivalent iff the corresponding Serre operators are conjugated.
The Jordan normal forms for the Serre operators of non-degenerated bilinear forms can be explicitly described. This leads to the following classification of non-degenerated bilinear forms on W.
We say that W is decomposable if $W=V_{1} \oplus V_{2}$, where $V_{1} \neq 0, V_{2} \neq 0$ and

$$
\left\langle V_{1}, V_{2}\right\rangle=\left\langle V_{2}, V_{1}\right\rangle=0
$$

Then W is a bi-orthogonal direct sum of indecomposable spaces.

Indecomposable spaces with non-degenerated bilinear forms (over \mathbb{C}) are:

- $2 k$-dimensional space $W_{k}(\lambda)$ with the Gram matrix $\left(\begin{array}{cc}0 & I \\ I_{\lambda} & 0\end{array}\right)$ constructed from $k \times k$ blocks

$$
I=\left(\begin{array}{lll}
0 & & 1 \\
& \therefore & \\
1 & & 0
\end{array}\right) \quad \text { and } \quad I_{\lambda}=\left(\begin{array}{llll}
0 & & & \lambda \\
& & \lambda & 1 \\
& \therefore & \therefore & \\
\lambda & 1 & & 0
\end{array}\right) \text {, }
$$

operator \varkappa has two Jordan chains of length k with eigenvalues λ, λ^{-1}

- n-dimensional space U_{n} with the Gram matrix

$$
\times\left(\begin{array}{ccccc}
& & & & 1 \\
& 0 & & -1 & 1 \\
& 1 & -1 & \\
& \therefore & 1 & 0 &
\end{array}\right),
$$

operator \varkappa has one Jordan chain of length n with eigenvalue $(-1)^{n-1}$.

Conjecture 1

Assume that M is a Mukai lattice of type U_{n} that admits an exceptional basis. Then the group spanned by mutations of exceptional bases and the isometric automorphisms of M acts transitively on set of exceptional bases of M.

This conjecture was verified for $K_{0}\left(\mathbb{P}_{2}\right)$ by Drezet and Le Potier in 1980's and for $K_{0}\left(\mathbb{P}_{3}\right)$ by Nogin in 1990's. Nogin's arguments also allow to verify more strong

Conjecture 2

For each $k=1,2, \ldots, \mathrm{rk} M$ the group from the conjecture 1 acts transitively on the set of all exceptional collections of length k extendible to exceptional bases of M

Local systems

Let $U=\mathbb{C P}_{1} \backslash\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ and $\gamma_{0}, \gamma_{l}, \ldots, \gamma_{n} \in \pi_{l}(U)$ be some fixed basic loops about the points x_{ν} drawn from a fixed base point $p \in U$.
Rank r local system on U is a locally trivial complex rank r vector bundle \mathscr{L} on U equipped with a flat $\mathrm{GL}_{r}(\mathbb{C})$-connection or, equivalently, an isomorphism class of a representation

$$
\varphi: \pi_{l}(U) \rightarrow \mathrm{GL}_{r}(\mathbb{C})
$$

provided by the holonomy of the connection. The latter is given by a collection of $n+1$ linear operators $\varphi_{i}=\varphi\left(\gamma_{\nu}\right) \in \mathrm{GL}_{r}(\mathbb{C})$ satisfying

$$
\varphi_{0} \circ \varphi_{1} \circ \cdots \circ \varphi\left(\gamma_{n}\right)=1
$$

and considered up to simultaneous conjugation by the same matrix.

Rigid local systems

Representation $\varphi: \pi_{I}(U) \rightarrow \mathrm{GL}_{r}(\mathbb{C})$ is called rigid, if for any other representation $\varphi^{\prime}: \pi_{l}(U) \rightarrow G L_{r}(\mathbb{C})$ an existence of a collection $g_{v} \in \mathrm{GL}_{r}(\mathbb{C})$ such that

$$
\forall v \quad \varphi^{\prime}\left(\gamma_{v}\right)=g_{\nu} \varphi\left(\gamma_{v}\right) g_{v}^{-1}
$$

implies an existence of some $g \in \mathrm{GL}_{r}(\mathbb{C})$ such that

$$
\forall \gamma \in \pi_{l}(U) \quad \varphi^{\prime}(\gamma)=g \varphi(\gamma) g^{-1} .
$$

Rigid representation φ is called Katz local system if all operators $\varphi\left(\gamma_{\nu}\right)$ are quasi-unipotent, i.e. $\varphi=\zeta+\eta$, where η is nilpotent and ζ is semisimple with $\zeta^{m}=1$ for some $m \in \mathbb{N}$.
Pull-back $\mathscr{L}^{\prime}=p^{*} \mathscr{L}$ of a Katz local system \mathscr{L} along a non-ramified covering $p: U^{\prime} \rightarrow U$ is called quasi Katz local system. N. Katz has shown that such the systems are characterized as those realised by means of the Gauss - Manin connection in the middle homologies of pencils of algebraic varieties.

Claim

For each pair of coprime complex monic polynomials of the form

$$
\begin{aligned}
p(t) & =1+p_{1} t+\cdots+p_{r} t^{r} \\
q(t) & =1+q_{1} t+\cdots+q_{r} t^{r}
\end{aligned}
$$

there exists a unique irreducible rigid local system φ of rank $r=\operatorname{deg} p=\operatorname{deg} q$ over $U=\mathbb{P}_{1}\{0,1, \infty\}$ whose local monodromies $T=\varphi\left(\gamma_{0}\right), S=\varphi\left(\gamma_{I}\right)$ satisfy the conditions

- S is a quasi-reflection, i.e. $\mathrm{rk}(1-S)=1$
- eigenvector of S with eigenvalue -1 is cyclic for T, i.e.

$$
\operatorname{im}(1-S), T(\operatorname{im}(1-S)), \ldots, T^{r-1}(\operatorname{im}(1-S))
$$

span \mathbb{C}^{r}

- $\operatorname{det}(1-t T)=q(t)$
- $\operatorname{det}(1-t S T)=p(t)$

Quasi Katz local systems from helices

The Serre operator of Mukai lattice M of type U_{n+1} has the form

$$
x=(-1)^{n} \mathrm{Id}+\eta,
$$

where $\eta^{n+1}=0$ but $\operatorname{im} \eta^{n}=w_{0} \neq 0$. We put

$$
\varepsilon=(-1)^{n+1}
$$

and consider on $W=M \otimes \mathbb{C}$ a (skew) symmetric form

$$
(v, w)_{\varepsilon}=\langle v, w\rangle+\varepsilon\langle w, v\rangle=\varepsilon\langle v, \eta w\rangle
$$

It has 1-dimensional kernel $\mathbb{C} \cdot w_{0}$. We put

$$
V=W / \mathbb{C} \cdot w_{0}
$$

and write $(*, *)$ for the non-degenerated form on V induced by $(*, *)_{\varepsilon}$. Given $e \in W$ with $(e, e)=l$, we write $\sigma_{e}(v) \stackrel{\text { def }}{=} v-(e, v) \cdot e\left(\bmod w_{0}\right)$.

It follows from the previous
\checkmark daim that each exceptional basis $e_{0}, e_{1}, \ldots, e_{n} \in$ M produces a local system $\sigma: \pi_{l}(U) \rightarrow \mathrm{GL}(V)$ with fibre V on $U=\mathbb{P}_{l}$, $\left\{x_{0}, x_{1}, \ldots, x_{n}, \infty\right\}$, where

$$
x_{k}=\exp \frac{2 \pi i k}{n+1}, \quad 0 \leqslant k \leqslant n
$$

by prescriptions

$$
\begin{aligned}
\sigma\left(\gamma_{k}\right) & =\sigma_{e_{k}}: v \mapsto v-\left(e_{v}, v\right) \cdot e_{v} \quad \text { for } 0 \leqslant k \leqslant n \\
\sigma\left(\gamma_{\infty}\right) & =\left(\sigma\left(\gamma_{0}\right) \circ \sigma\left(\gamma_{1}\right) \circ \cdots \circ \sigma\left(\gamma_{n}\right)\right)^{-1} .
\end{aligned}
$$

In 2000's V. Golyshev has shown that the local system provided by this way from the basis

$$
\mathcal{O}, \mathcal{O}(1), \ldots, \mathcal{O}(n) \in K_{0}\left(\mathbb{P}_{n}\right)
$$

is quasi Katz.

Rank 3 Mukai lattice of type U_{3}

J.N.F. of the Serre operator \varkappa on rank 3 Mukai lattice M is

$$
\text { either }\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right) \text { or }\left(\begin{array}{ccc}
-1 & 1 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right) \text { or }\left(\begin{array}{ccc}
\lambda & 0 & 0 \\
0 & \lambda^{-1} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

that correspond to the types $U_{3}, U_{2} \oplus U_{1}$, and $U_{1} \oplus W_{2}(\lambda)$ with $\lambda \neq \pm 1$ distinguished by $\operatorname{tr}(\kappa)=3,-1,1+\lambda+\lambda^{-1}$.
If M admits an exceptional basis with Gram matrix

$$
\chi=\left(\begin{array}{lll}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right)
$$

then $\operatorname{tr}(\kappa)=\operatorname{tr}\left(\chi^{-1} \chi^{t}\right)=3-a^{2}-b^{2}-c^{2}+a b c$. Thus, M has type U_{3} iff $\{a, b, c\}$ satisfy tripled Markov equation $a^{2}+b^{2}+c^{2}=a b c$.

Markov's forms

Let $q(x, y) \in \mathbb{Z}[x, y]$ be homogeneous quadratic form of positive discriminant $-\operatorname{det} q>0$. Write

$$
\mu(q)=\min _{(x, y) \in \mathbb{Z}^{2}((0,0)}|q(x, y)| \cdot|\operatorname{det}(q)|^{-1 / 2}
$$

for its homogeneous minimum over non-zero elements of $\mathbb{Z}^{2} \subset \mathbb{R}^{2}$.
In 1890's A. Markov has shown that there is precisely one orbit $\mathrm{SL}_{2}(\mathbb{Z}) \cdot q_{1}$ such that $\mu_{l}=\mu\left(q_{I}\right)=\max \mu(q)$. Outside this orbit there is precisely one orbit $\mathrm{SL}_{2}(\mathbb{Z}) \cdot q_{2}$ such that $\mu_{2}=\mu\left(q_{2}\right)=\max _{q_{\rtimes} q_{1}} \mu(q)$ (and $\mu_{2}<\mu_{1}$) e.t.c.
The decreasing sequence of the maximal homogeneous minima μ_{1}, μ_{2}, \ldots is called the Markov spectrum and the corresponding forms q_{i} (up to the action of $\mathrm{SL}_{2}(\mathbb{Z})$) are called the Markov forms.

Markov's equation

Up to permutations and simultaneous change of signs of any two entries, all solutions $\{a, b, c\}$ of the tripled Markov equation $a^{2}+b^{2}+c^{2}=a b c$ are produced from $\{3,3,3\}$ by mutations that change one of a, b, c via Vieta:

$$
a \mapsto b c-a ; \quad b \mapsto a c-b ; \quad c \mapsto a b-c
$$

when two other remain fixed. If we change an exceptional basis e_{0}, e_{1}, e_{2} by
$\left\langle e_{0}, e_{1}\right\rangle \cdot e_{0}-e_{1}, e_{0}, e_{2} ; \quad e_{0},\left\langle e_{1}, e_{2}\right\rangle \cdot e_{1}-e_{2}, e_{1} ; \quad e_{0}, e_{2},\left\langle e_{1}, e_{2}\right\rangle \cdot e_{2}-e_{1}$
respectively, the Gram matrix $\left(\begin{array}{ccc}1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1\end{array}\right)$ turns to

$$
\left(\begin{array}{ccc}
1 & a & a b-c \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right), \quad\left(\begin{array}{ccc}
1 & a c-b & a \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right), \quad\left(\begin{array}{ccc}
1 & b & b c-a \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right)
$$

Thus, each exceptional basis of rank 3 Mukai lattice of type U_{3} is achieved from a basis with the Gram matrix

$$
\left(\begin{array}{lll}
1 & 3 & 3 \tag{r}\\
0 & 1 & 3 \\
0 & 0 & 1
\end{array}\right)
$$

by mutations and changing signs of basic vectors.
Since $(\underset{\sim}{r})$ coincides with the Gram matrix of the exceptional basis $\mathcal{O}, \mathscr{T}(-1), \mathcal{O}(1)$ in $K_{0}\left(\mathbb{P}_{2}\right)$, we conclude that $M=K_{0}\left(\mathbb{P}_{2}\right)$ is a unique (up to isometry) rank 3 Mukai lattice of type U_{3} that has an exceptional basis.
Vectors $e \in M$ that can be included in some exceptional basis stay in bijection with the Markov forms. Namely, quadratic form $q(v)=\langle v, v\rangle$ on $e^{\perp} \subset M$ written in global coordinates $x=\operatorname{rk}(\mathrm{v}), y=c_{1}(v)$ on $K_{0}\left(\mathbb{P}_{2}\right)$ is a Markov form and all the Markov forms are obtained in this way.
Under this identification the $\mathrm{SL}_{2}(\mathbb{Z})$ action on the Markov forms turns to one spanned by the dualization $v \mapsto v^{*}$ and twisting $v \mapsto T v$.

Davenport forms

The same situation is expected for totally real homogeneous cubic forms $q(x, y, z) \in \mathbb{Q}[x, y, z]$. If

$$
q(x, y, z)=\prod_{i=1}^{3}\left(\alpha_{i} x+\beta_{i} y+\gamma_{i} z\right) \quad \text { in } \quad \mathbb{R}[x, y, z],
$$

then Davenport has shown in 1940-th that the homogeneous minimum

$$
\mu(q)=\min _{\mathbb{Z}^{3}, 0} q(x, y, z) \cdot \operatorname{det}^{-l}\left(\begin{array}{lll}
\alpha_{1} & \beta_{1} & \gamma_{1} \\
\alpha_{2} & \beta_{2} & \gamma_{2} \\
\alpha_{3} & \beta_{3} & \gamma_{3}
\end{array}\right)
$$

achieves its maximum $\mu=1 / 7$ along exactly one $\mathrm{SL}_{3}(\mathbb{Z})$-orbit and outside this orbit the next maximal $\mu=1 / 9$ is achieved along exactly one $\mathrm{SL}_{3}(\mathbb{Z})$ orbit as well.
Nothing more is known after Davenport.

The first two forms of expected Davenports chain are the norms of cubic extensions of \mathbb{Q} spanned by trigonometric irrationalities whose minimal polynomials are

$$
\begin{array}{ll}
t^{3}+t^{2}-2 t-1 & \text { with } \mu=1 / 7 \\
t^{3}-3 t-1 & \text { with } \mu=1 / 9
\end{array}
$$

Open questions

Are these cubic polynomials connected with the Hilbert polynomials of the exceptional sheaves on \mathbb{P}_{3} ?
Is the Davenport chain governed by the Mukai lattice $K_{0}\left(\mathbb{P}_{3}\right)$ like it was for Markov's chain?

THANKS FOR YOUR ATTENTION!

