О строении групп

- **A13\diamond1.** Пусть произведение любых двух левых смежных классов некоторой подгруппы H также является левым смежным классом подгруппы H. Верно ли, что H нормальна?
- **A13<2.** Пусть две нормальные подгруппы пересекаются по единице. Покажите, что их элементы коммутируют друг с другом.
- A13 «3. Во всякой ли группе чётного порядка есть элемент порядка 2?
- **A13\diamond4.** Пусть любая подгруппа конечной группы G нормальна. Верно ли, что G абелева?
- **A13<>5.** Какие классы сопряжённости в S_n распадаются на несколько классов сопряжённости в A_n ? Перечислите классы сопряжённых элементов с указанием числа элементов в каждом классе для групп **a)** A_3 **б)** A_4 **в)** A_6 .
- **A13\diamond6.** Покажите, что группа A_n проста при $n \geqslant 5$.
- **A13<7** (простота группы SO_3). Рассмотрим группу $SO_3(\mathbb{R})$ всех вращений евклидова векторного пространства \mathbb{R}^3 и для каждой пары $v \in \mathbb{R}^3$, $\varphi \in \mathbb{R}$ обозначим через $R_{v,\varphi} \in SO_3(\mathbb{R})$ поворот вокруг оси, направленной вдоль вектора v, на угол φ по ЧС, если смотреть в направлении v. Покажите, что $FR_{v,\varphi}F^{-1}=R_{Fv,\varphi}$ для всех $F\in SO_3$, и выведите отсюда, что группа SO_3 проста.
- **А13<a>8** (полупрямые произведения). Пусть группа H действует на группе N посредством гомоморфизма групп $\psi: H \to \operatorname{Aut} N, h \mapsto \psi_h: N \cong N$. Зададим на декартовом произведении $N \times H$ операцию композиции правилом $(x_1, h_1) \cdot (x_2, h_2) = (x_1 \psi_{h_1}(x_2), h_1 h_2)$. Проверьте, что:
 - а) оно задаёт на $N \times H$ структуру группы (она называется полупрямым произведением групп N и H по действию ψ и обозначается $N \rtimes_{\psi} H$)
 - **б)** элементы вида (x,e) с $x \in N$ образуют в группе $G = N \rtimes_{\psi} H$ нормальную подгруппу N', изоморфную N, и фактор $G/N' \simeq H$, а элементы вида (e,h) с $h \in H$ образуют подгруппу H', такую что N'H' = G и $N' \cap H' = \{e\}$.
 - в) Пусть действие $\varphi: H \to \operatorname{Aut} N$, $h \mapsto \varphi_h: N \simeq N$ и автоморфизмы $\beta: N \simeq N$, $\alpha: H \simeq H$ таковы, что $\varphi_h = \beta \circ \psi_{\alpha(h)} \circ \beta^{-1}$ для всех $h \in H$. Покажите, что $N \rtimes_{\varphi} H \simeq N \rtimes_{\psi} H$.
- **A13 9.** Приведите пример двух неизоморфных групп G_1 и G_2 и их нормальных подгрупп $H_1 \lhd G_1$ и $H_2 \lhd G_2$, таких что $G_1/H_1 \simeq G_2/H_2$.
- **A13<**10. Докажите, что любая подгруппа, индекс которой равен наименьшему простому числу, делящему порядок группы нормальна (в частности, любая подгруппа индекса 2 нормальна, в группе нечётного порядка любая подгруппа индекса 3 нормальна и т. д.).
- **A13•11.** Опишите все группы порядка pq, где p, q такие простые, что: **a)** p = q **6)** p > q = 2 **B)** НОД(p-1,q) = 1 **г)** p = 11, q = 5.
- **A13♦12.** Перечислите все группы порядка ≤ 15 с точностью до изоморфизма.
- **А13•13.** Пусть $\varphi: G_1 \twoheadrightarrow G_2$ сюрьективный гомоморфизм групп. Покажите, что полный прообраз $N_1 = \varphi^{-1}(N_2)$ любой нормальной подгруппы $N_2 \lhd G_2$ является нормальной подгруппой в G_1 и $G_1/N_1 \simeq G_2/N_2$.
- **А13 14.** Пусть H любая, а N нормальная подгруппы некой группы. Покажите, что $H \cap N \lhd H$, HN = HN является подгруппой, $N \lhd HN$ и $HN/N \simeq H/(H \cap N)$.
- **А13•15** (лемма о бабочке). Пусть четыре подгруппы A, B, C, D некой группы таковы, что $A \triangleleft B$ и $C \triangleleft D$. Покажите, что $(B \cap D)C/(A \cap D)C \simeq (B \cap D)/(A \cap D)(B \cap C) \simeq A(B \cap D)/A(B \cap C)$.
- **A13<**16. Приведите пример группы с двумя композиционными рядами, факторы которых нетривиально переставлены друг относительно друга.
- **A13<17.** Приведите пример двух неизоморфных групп с одинаковыми композиционными факторами Жордана Гёльдера.