Задачи для подготовки к контрольной № 2

ПК2♦1. Разложите в сумму простейших дробей над полем ℚ рациональные функции:

a)
$$\frac{x^3 - x^2 + 6x + 4}{x^4 + 2x^3 - 11x^2 - 12x + 36}$$
 6) $\frac{x^3 - 9x^2 - 6x + 6}{x^4 - 12x^3 + 54x^2 - 108x + 81}$. $\frac{1}{x^4 + 2x^3 - 11x^2 - 12x + 36}$ 6) $\frac{x^3 - 9x^2 - 6x + 6}{x^4 - 12x^3 + 54x^2 - 108x + 81}$.

ПК2<2. Найдите коэффициент при x^k у следующих рядов из $\mathbb{Q}[\![x]\!]$:

ПК2\diamond3. Явно выразите a_k через k для следующих последовательностей:

а)
$$a_0=8,\ a_1=81,\ a_2=529,\ a_k=9a_{k-1}-24a_{k-2}+20a_{k-3}$$
 при $k\geqslant 3$

б)
$$a_0 = -9$$
, $a_1 = 55$, $a_2 = -289$, $a_k = -7a_{k-1} - 11a_{k-2} - 5a_{k-3}$ при $k \geqslant 3$

в)
$$a_0 = 2$$
, $a_1 = -19$, $a_2 = 105$, $a_k = -7a_{k-1} - 11a_{k-2} - 5a_{k-3}$ при $k \geqslant 3$.

$$\frac{1}{2(1+x)^{\frac{1}{2}}} - \frac{1}{1} - \frac{1}{1} = \frac{1}{1} =$$

ответ: в (а) $u_k = -7$, $u_k = -1$, $u_$

ПК2\diamond4. Для всех $0 \le k \le 3$ вычислите коэффициенты при x^k у степенных рядов

a)
$$\ln(-3x^2 + 3x + 1) / \sqrt[3]{-x^2 - 4x + 1}$$
 6) $\sin(4x^2 - 4x) / \sqrt{4x^2 + 2x + 1}$.

OTBET:
$$-4x + 8x^2 + \frac{26x^2}{3} + O(x^4)$$
.

THETT: B (a)
$$\ln(-3x^2 + 3x) = 3x - \frac{5x^2}{2} + \frac{5x^4}{2} + \frac{5x^2}{2} + \frac{5x^4}{2} + \frac{5x^4}{$$

ПК2
$$\diamond$$
5. Запишите в виде несократимых дробей p/q с $p,q \in \mathbb{Z}[x]$ степенные ряды а) $\sum_{n\geqslant 0} (-5n^3-28n^2-53n-34)\cdot x^n$ б) $\sum_{n\geqslant 0} (5n^3+35n^2+71n+44)\cdot x^n$.

OTBET: B (3) $-\frac{4}{1-x^2} - \frac{4}{(1-x)^2} + \frac{4}{(1-x)^4} - \frac{30}{(1-x)^4} = \frac{4x^3 - 16x^2 + 16x - 34}{x^4 - 4x^3 + 6x^2 - 4x + 1}$, koəppninehtil para inperctabinanotca kak -4 - 4(n+1) + 2(n+1)(n+2) - 5(n+1)(n+2) - 5(n+2)(n+2) - 5(n+2)

ПК2\diamond6. Выясните, приводимы ли в $\mathbb{Z}[x]$ многочлены

a)
$$x^4 - 5x^2 + 4x - 5$$
 6) $x^4 - x^2 + 6x - 9$ B) $x^4 + 5x^2 + 5x + 5$,

и если да, то разложите их на неприводимые множители.

в (в) неприводим по Эйзенштейну, над \mathbb{F}_3 раскладывается как $(x+1)^2 (x^2+x-1)$. в (6) приводим: $(x^2 + x - 3)(x^2 - x + 3)$, над \mathbb{F}_3 раскладывается как $x^2(x - 1)(x + 1)$; ОТВЕТ: В (а) неприводим, т. к. неприводим над \mathbb{F}_3 (не делится на $x^2 + 1$, $x^2 + x - 1$ и $x^2 - x - 1$);