§5. Векторы и матрицы

5.1. Модули над коммутативными кольцами. Аддитивная абелева группа 1 V называется модулем над коммутативным кольцом K или K-модулем, если задана операция умножения

$$K \times V \to V$$
, $(x, v) \mapsto x \cdot v = xv$,

с теми же свойствами, что известное из курса геометрии умножение векторов на числа²:

$$\forall x, y \in K \quad \forall v \in V \quad x(yv) = (xy)v \tag{5-1}$$

$$\forall x, y \in K \quad \forall v \in V \quad (x+y)v = xv + yv \tag{5-2}$$

$$\forall x \in K \quad \forall u, w \in V \quad x(u+w) = xu + xw. \tag{5-3}$$

Если в кольце К есть единица и выполняется дополнительное свойство

$$\forall v \in V \quad 1v = v \,, \tag{5-4}$$

то модуль V называется унитальным.

Упражнение 5.1. Выведите из свойств (5-1) – (5-3), что в любом K-модуле V для всех $v \in V$ и $x \in K$ выполняются равенства $0 \cdot v = 0$ и $x \cdot 0 = 0$, а в унитальном модуле над коммутативным кольцом с единицей — равенство³ $(-1) \cdot v = -v$.

Всюду далее мы предполагаем, что K является коммутативным кольцом с единицей и по умолчанию считаем все модули унитальными. Унитальные модули над полями — это в точности векторные пространства. По этой причине мы часто будем называть элементы K-модулей векторами, элементы кольца K — скалярами, а операцию $K \times V \to V$ — умножением векторов на скаляры. Часто бывает удобно записывать произведение вектора $v \in V$ на скаляр $x \in K$ не как xv, а как vx. Мы по определению считаем эти две записи эквивалентными обозначениями

$$vx \stackrel{\text{def}}{=} xv$$

для одного и того же вектора из V.

Упражнение 5.2. Убедитесь, что «правые» версии равенств (5-1) – (5-4) тоже выполняются:

$$(vy)x = v(yx)$$
, $v(x + y) = vx + vy$, $(u + w)x = ux + wx$, $v = v + vy$.

Аддитивная абелева подгруппа $U\subseteq V$ в K-модуле V называется K-подмодулем, если она образует K-модуль относительно имеющейся в V операции умножения векторов на скаляры. Для этого необходимо и достаточно, чтобы $xu\in U$ для всех $x\in K$ и $u\in U$. Подмодули $U\subsetneq V$ называются cofcmbehhhhmu. Собственный подмодуль 0, состоящий из одного нуля, называется mpuвиальным.

¹См. n° 1.1.2 на стр. 22.

 $^{^2}$ См. лекцию http://gorod.bogomolov-lab.ru/ps/stud/geom_ru/2122/lec_01.pdf. При этом в роли «векторов» выступают элементы модуля V, а в роли «чисел» — элементы кольца K.

 $^{^3}$ Слева стоит произведение вектора $v \in V$ на скаляр −1 ∈ K, а справа — противоположный к v вектор $-v \in V$.

Пример 5.1 (кольцо как модуль над собой)

Каждое коммутативное кольцо K является модулем над самим собой: сложение векторов и их умножение на скаляры суть сложение и умножение в K. Если в K имеется единица, K-модуль K является унитальным. K-подмодули $I \subset K$ — это в точности идеалы кольца K. В частности, коммутативное кольцо K с единицей является полем если и только если в K-модуле K нет нетривиальных собственных подмодулей.

Пример 5.2 (координатный модуль K^r)

Декартово произведение r экземпляров кольца K обозначается $K^r = K \times ... \times K$ и состоит из строк $a = (a_1, ..., a_r)$, в которых $a_i \in K$. Сложение таких строк и их умножение их на скаляры $x \in K$ происходит покоординатно: для $a = (a_1, ..., a_r)$, $b = (b_1, ..., b_r)$ и $x \in K$ мы полагаем

$$a+b\stackrel{\mathrm{def}}{=}(a_1+b_1,\ldots,a_r+b_r)\quad \text{if}\quad xa\stackrel{\mathrm{def}}{=}(xa_1,\ldots,xa_r)\,.$$

Пример 5.3 (модуль матриц $\mathrm{Mat}_{m \times n}(K)$)

Таблицы из m строк и n столбцов, заполненные элементами кольца K, называются $m \times n$ матрициами c элементами из K. Множество всех таких матриц обозначается $\mathrm{Mat}_{m \times n}(K)$. Элемент матрицы A, расположенный в i-й строке и j-м столбце, обозначается a_{ij} . Запись $A=(a_{ij})$ означает, что матрица A состоит из таких элементов a_{ij} . Например, матрица $A \in \mathrm{Mat}_{3 \times 4}(\mathbb{Z})$ с элементами $a_{ij}=i-j$ имеет вид

$$\begin{pmatrix} 0 & -1 & -2 & -3 \\ 1 & 0 & -1 & -2 \\ 2 & 1 & 0 & -1 \end{pmatrix}.$$

Так же как и координатные строки, $m \times n$ матрицы $\mathrm{Mat}_{m \times n}(K)$ образуют K-модуль относительно поэлементного сложения и умножения на скаляры: сумма $S = (s_{ij})$ матриц $A = (a_{ij})$ и $B = (b_{ij})$ имеет $s_{ij} = a_{ij} + b_{ij}$, а произведение P = xA матрицы A на число $x \in K$ имеет $p_{ij} = xa_{ij}$.

Пример 5.4 (абелевы группы как \mathbb{Z} -модули)

Каждая аддитивно записываемая абелева группа A может рассматриваться как унитальный \mathbb{Z} -модуль, в котором сложение векторов есть сложение в A, а умножение векторов на числа $\pm n$, где $n \in \mathbb{N}$, задаётся правилом $(\pm n) \cdot a \stackrel{\text{def}}{=} \pm (a + \ldots + a)$, где в скобках стоит n слагаемых, равных a.

Упражнение 5.3. Удостоверьтесь, что эти операции удовлетворяют аксиомам (5-1) – (5-4).

5.1.1. Гомоморфизмы модулей. Отображение $\varphi: M \to N$ между K-модулями M и N называется K-линейным или гомоморфизмом K-модулей, если оно перестановочно со сложением векторов и умножением векторов на скаляры, т. е. для всех $x \in K$ и $u, w \in M$

$$\varphi(u+w) = \varphi(u) + \varphi(w)$$
 и $\varphi(xu) = x\varphi(u)$. (5-5)

Упражнение 5.4. Убедитесь, что композиция К-линейных отображений тоже К-линейна.

Гомоморфизмы K-модулей образуют K-модуль относительно операций сложения значений и умножения их на скаляры: отображения $\varphi + \psi$ и $x\varphi$, где $x \in K$, переводят каждый вектор $w \in M$, соответственно, в $\varphi(w) + \psi(w)$ и в $x\varphi(w) = \varphi(xw)$.

Упражнение 5.5. Убедитесь, что для любого $x \in K$ и K-линейных отображений $\varphi, \psi: M \to N$ отображения $\varphi + \psi$ и $x\varphi$ тоже K-линейны.

¹См. предл. 4.1 на стр. 67.

Модуль K-линейных отображений $M \to N$ называется M в M и обозначается M ном M или M ном M называется M назыв

Так как K-линейные отображения $\varphi: M \to N$ являются гомоморфизмами абелевых групп, все они обладают перечисленными в \mathbf{n}° 1.5 на стр. 30 свойствами таких гомоморфизмов. В частности, $\varphi(0) = 0$ и $\varphi(-w) = -\varphi(w)$ для всех $w \in M$, а каждый непустой слой φ является аддитивным сдвигом ядра $\ker \varphi = \varphi^{-1}(0) = \{u \in M \mid \varphi(u) = 0\}$, т. е. $\varphi^{-1}(\varphi(w)) = w + \ker \varphi$ для всех $w \in M$. В частности, инъективность φ равносильна тому, что $\ker \varphi = 0$ состоит из одного нуля.

Упражнение 5.6. Убедитесь, что ядро и образ K-линейного гомоморфизма $\varphi: M \to N$ являются подмодулями в M и в N соответственно.

Биективные гомоморфизмы модулей называются *изоморфизмами*. K-линейное отображение $\varphi: M \to N$ является изоморфизмом если и только если $\ker \varphi = 0$ и $\operatorname{im} \varphi = N$. Например, выписывание элементов матрицы в строку в произвольном порядке задаёт изоморфизм между модулем матриц $\operatorname{Mat}_{m \times n}(K)$ из прим. 5.3 и координатным K-модулем K^{mn} из прим. 5.2.

Пример 5.5 (дифференцирование)

Кольцо многочленов K[x] с коэффициентами в коммутативном кольце K можно рассматривать и как K-модуль. Оператор дифференцирования $D=\frac{d}{dx}:K[x]\to K[x], f(x)\mapsto f'(x)$, является гомоморфизмом K-модулей, поскольку перестановочен со сложением многочленов и умножением многочленов на константы, но не является гомоморфизмом колец, так как не перестановочен с умножением многочленов друг на друга.

Предостережение 5.1. Именуемое в школе «линейной функцией» отображение $\varphi: K \to K$, задаваемое правилом $\varphi(x) = ax + b$, где $a, b \in K$ фиксированы, является K-линейным в смысле предыдущего определения только при b = 0. Если же $b \neq 0$, то φ не перестановочно ни со сложением, ни с умножением на числа.

5.1.2. Прямые произведения и прямые суммы. Из любого семейства K-модулей M_{ν} , занумерованных элементами ν произвольного множества \mathcal{N} , можно образовать прямое произведение $\prod_{\nu \in \mathcal{N}} M_{\nu}$, состоящее из всевозможных семейств $v = (v_{\nu})_{\nu \in \mathcal{N}}$ векторов $v_{\nu} \in M_{\nu}$, занумерованных элементами $\nu \in \mathcal{N}$, как в n° 1.6 на стр. 34. Такие семейства можно поэлементно складывать и умножать на скаляры точно также, как мы это делали в n° 1.6 в прямых произведениях абелевых групп и коммутативных колец. А именно, сумма v + w семейств $v = (v_{\nu})_{\nu \in \mathcal{N}}$ и $w = (w_{\nu})_{\nu \in \mathcal{N}}$ имеет ν -тым членом элемент $v_{\nu} + w_{\nu}$, а на ν -тым членом произведения $v_{\nu} + v_{\nu} + v_{\nu}$ из на $v_{\nu} + v_{\nu} + v_{\nu} + v_{\nu} + v_{\nu} + v_{\nu}$ называется $v_{\nu} + v_{\nu} + v_$

Пример 5.6 (многочлены и степенные ряды)

Обозначим через Kt^n множество одночленов вида at^n , где $a \in K$, а t — переменная. Каждое множество Kt^n является K-модулем, изоморфным модулю K. Прямая сумма $\bigoplus_{n\geqslant 0} Kt^n$ изоморфна модулю многочленов K[t], а прямое произведение $\prod_{n\geqslant 0} Kt^n$ — модулю формальных степенных рядов K[t].

Пример 5.7 (модуль функций со значениями в модуле)

Отображения $Z \to M$ из любого множества Z в произвольный K-модуль M можно складывать и умножать на числа из K по тем же правилам, что выше: для $\varphi, \psi: Z \to M$ и $x \in K$ отображения $\varphi + \psi$ и $x \varphi$ переводят $z \in Z$ в $\varphi(z) + \psi(z)$ и $x \varphi(z)$ соответственно. Эти операции задают на множестве M^Z всех отображений $Z \to M$ структуру K-модуля, изоморфного прямому произведению $\prod_{z \in Z} M_z$ одинаковых копий $M_z = M$ модуля M, занумерованных элементами $z \in Z$. Этот изоморфизм сопоставляет отображению $\varphi: Z \to M$ семейство его значений $(\varphi(z))_{z \in Z} \in \prod_{z \in X} M_z$. Если Z является K-модулем, то K-линейные отображения $Z \to M$ составляют подмодуль $\operatorname{Hom}_K(Z,N) \subset M^Z$.

Предложение 5.1

Для любого семейства K-модулей M_{μ} , занумерованных элементами μ произвольного множества \mathcal{M} , и любого K-модуля N имеется изоморфизмом K-модулей

$$\prod_{\mu \in \mathcal{M}} \operatorname{Hom}_{K}(M_{\mu}, N) \cong \operatorname{Hom}_{K}\left(\bigoplus_{\mu \in \mathcal{M}} M_{\mu}, N\right), \tag{5-6}$$

который переводит семейство K-линейных гомоморфизмов $\varphi_{\mu}:M_{\mu}\to N$ в гомоморфизм

$$\bigoplus \varphi_{\mu}: \bigoplus_{\mu \in \mathcal{M}} M_{\mu} \to N, \tag{5-7}$$

отображающий каждое семейство векторов $(w_\mu)_{\mu\in\mathcal{M}}$ с конечным числом ненулевых членов в сумму $\sum_{\mu\in\mathcal{M}} \varphi_\mu(w_\mu)$ с конечным числом ненулевых слагаемых.

Доказательство. Отображение (5-6) очевидно является K-линейным гомоморфизмом. Обратное к (5-6) отображение переводит каждый K-линейный гомоморфизм $\psi:\bigoplus_{\mu\in\mathcal{M}}M_{\mu}\to N$ в семейство гомоморфизмов $\varphi_{\mu}:M_{\mu}\to N$, где для каждого $\nu\in\mathcal{M}$ гомоморфизм $\varphi_{\nu}=\psi\iota_{\nu}$ является композицией ψ с вложением $\iota_{\nu}:M_{\nu}\hookrightarrow\bigoplus_{\mu\in\mathcal{M}}M_{\mu}$, которое отправляет каждый вектор $u\in M_{\nu}$ в семейство $(w_{\mu})_{\mu\in\mathcal{M}}$ с единственным ненулевым элементом $w_{\nu}=u$.

Пример 5.8 (продолжение прим. 5.6 на стр. 83)

В прим. 5.6 мы видели, что модуль многочленов $K[t] \simeq \bigoplus_{n\geqslant 0} Kt^n$ можно воспринимать как прямую сумму модулей $Kt^n \simeq K$. Применительно к этому случаю предл. 5.1 утверждает, что каждое K-линейное отображение $\varphi: K[t] \to K$ однозначно задаётся последовательностью K-линейных отображений $\varphi_n = \varphi|_{Kt^n}: Kt^n \to K$ — ограничений отображения φ на подмодули $Kt^n \subset K[t]$. Каждое из отображений φ_n в свою очередь однозначно задаётся своим значением на базисном мономе t^n , т. е. числом $f_n = \varphi_n(t^n) \in K$. Последовательность чисел f_n может быть любой, и отвечающее такой последовательности K-линейное отображение $\varphi: K[t] \to K$ переводит многочлен $a(t) = a_0 + a_1t + \ldots + a_mt^m$ в число $\varphi(a) = f_0a_0 + f_1a_1 + \ldots + f_ma_m$. Мы заключаем, что модуль $\operatorname{Hom}_K(K[t],K)$ изоморфен прямому произведению счётного множества копий модуля K, т. е. модулю формальных степенных рядов K[x]. Изоморфизм сопоставляет последовательности (f_n) её производящую функцию $F(x) = \sum_{n\geqslant 0} f_n x^n \in K[x]$. Например, для любого $\alpha \in K$ гомоморфизм вычисления $\operatorname{ev}_\alpha: K[t] \to K$, $f \mapsto f(\alpha)$, переводящий многочлены в их значения в точке $\alpha \in K$ и действующий на базисные мономы по правилу $t^n \mapsto \alpha^n$, имеет $f_n = \alpha^n$ и задаётся рядом $\sum_{n\geqslant 0} \alpha^n x^n = (1-\alpha x)^{-1} \in K[x]$.

Упражнение 5.7. В условиях предл. 5.1 постройте изоморфизм К-модулей

$$\bigoplus_{\mu \in \mathcal{M}} \operatorname{Hom}_{K}(N, M_{\mu}) \cong \operatorname{Hom}_{K}\left(N, \bigoplus_{\mu \in \mathcal{M}} M_{\mu}\right). \tag{5-8}$$

5.1.3. Пересечения и суммы подмодулей. В произвольном K-модуле M пересечение любого множества подмодулей также является подмодулем в M. Пересечение всех подмодулей, содержащих заданное множество векторов $A \subset M$, называется K-линейной оболочкой множества A или K-подмодулем, порождённым множеством A, и обозначается $\operatorname{span}(A)$ или $\operatorname{span}_K(A)$, если надо указать, из какого кольца берутся константы. Линейная оболочка является наименьшим по включению K-подмодулем в M, содержащим A, и может быть иначе описана как множество всех конечных линейных комбинаций $x_1a_1+\ldots+x_na_n$ векторов $a_i\in A$ с коэффициентами $x_i\in K$, ибо все такие линейные комбинации образуют подмодуль в M и содержатся во всех подмодулях, содержащих A. В противоположность пересечениям, объединения подмодулей почти никогда не являются подмодулями.

Упражнение 5.8. Покажите, что объединение двух подгрупп в абелевой группе является подгруппой если и только если одна из подгрупп содержится в другой.

K-линейная оболочка объединения произвольного множества подмодулей $U_{\nu} \subset M$ называется суммой этих подмодулей и обозначается $\sum_{\nu} U_{\nu} \stackrel{\mathrm{def}}{=} \mathrm{span} \bigcup_{\nu} U_{\nu}$. Таким образом, сумма подмодулей представляет собою множество всевозможных конечных сумм векторов, принадлежащих этим подмодулям. Например,

$$\begin{split} &U_1+U_2=\{u_1+u_2\mid u_1\in U_1\,,\;u_2\in U_2\}\\ &U_1+U_2+U_3=\{u_1+u_2+u_3\mid u_1\in U_1\,,\;u_2\in U_2\,,\;u_3\in U_3\} \end{split}$$

и т. д. Если подмодули $U_1,\dots,U_m\subset M$ таковы, что гомоморфизм сложения

$$U_1 \oplus \ldots \oplus U_n \to U_1 + \ldots + U_n \subset M, \quad (u_1, \ldots, u_n) \mapsto u_1 + \ldots + u_n, \tag{5-9}$$

является биекцией между $U_1\oplus\ldots\oplus U_n$ и $U_1+\ldots+U_n$, то сумму $U_1+\ldots+U_n$ называют npsmoй и обозначают $U_1\oplus\ldots\oplus U_n$, как в $\mathbf n^\circ$ 5.1.2 выше. Биективность отображения (5-9) эквивалентна тому, что каждый вектор $w\in U_1+\ldots+U_n$ имеет единственное разложение $w=u_1+\ldots+u_n$, в котором $u_i\in U_i$ при каждом i.

Предложение 5.2

Сумма подмодулей $U_1,\ldots,U_n\subset V$ является прямой если и только если каждый из подмодулей имеет нулевое пересечение с суммой всех остальных. В частности, сумма U+W двух подмодулей прямая тогда и только тогда, когда $U\cap W=0$.

Доказательство. Обозначим через W_i сумму всех подмодулей U_{ν} за исключением i-того. Если пересечение $U_i \cap W_i$ содержит ненулевой вектор $u_i = u_1 + \ldots + u_{i-1} + u_{i+1} + \ldots + u_n$, где $u_i \in U_i$ при всех i, то у этого вектора имеется два различных представления i

$$0 + \dots + 0 + u_i + 0 + \dots + 0 = u_1 + \dots + u_{i-1} + 0 + u_{i+1} + \dots + u_n$$
.

Поэтому такая сумма не прямая. Наоборот, если $U_i \cap W_i = 0$ при всех i, то переписывая равенство $u_1 + \ldots + u_n = w_1 + \ldots + w_n$, где $u_{\nu}, w_{\nu} \in U_{\nu}$ при всех ν , в виде $u_i - w_i = \sum_{\nu \neq i} (w_{\nu} - u_{\nu})$, заключаем, что этот вектор лежит в $U_i \cap W_i = 0$. Поэтому $u_i = w_i$ для каждого $i = 1, \ldots, n$.

Следствие 5.1

Для того чтобы модуль M распадался в прямую сумму собственных подмодулей $L, N \subset M$ необходимо и достаточно, чтобы L + N = M и $L \cap N = 0$.

 $^{^{1} \}mbox{B}$ левом отлично от нуля только $\emph{i}\text{-e}$ слагаемое, а в правом оно нулевое.

5.1.4. Фактор модули. Для любых K-модуля M подмодуля $N\subseteq M$ можно образовать ϕ актормодуль M/N, состоящий из классов $[m]_N=m \pmod N=m+N=\{m'\in M\mid m'-m\in N\}$, которые являются аддитивными сдвигами подмодуля N на всевозможные элементы $m\in M$ или, что тоже самое, классами эквивалентности по отношению $m\equiv m' \pmod N$ сравнимости по модулю N, означающему, что $m'-m\in N$. Сложение классов и их умножение на элементы кольца определяются обычными формулами $[m_1]_N+[m_2]_N\stackrel{\mathrm{def}}{=} [m_1+m_2]_N$ и $x\cdot [m]_N\stackrel{\mathrm{def}}{=} [xm]_N$.

Упражнение 5.9. Проверьте, что отношение сравнимости по модулю N является эквивалентностью, а операции корректно определены и удовлетворяют аксиомам (5-1)-(5-4).

В частности, факторкольцо K/I кольца K по идеалу $I \subset K$ является фактором K-модуля K по его K-подмодулю I, ср. с прим. 5.1 выше.

Пример 5.9 (разложение гомоморфизма)

Любой гомоморфизм K-модулей $\varphi: M \to N$ является композицией сюрьективного гомоморфизма факторизации $\pi_{\varphi}: M \twoheadrightarrow M/\ker \varphi, w \mapsto [w]_{\ker \varphi}$ и отображения

$$\iota_{\varphi}: M/\ker \varphi \hookrightarrow N, \quad [w]_{\ker \varphi} \mapsto \varphi(w),$$

которое корректно определено и инъективно, так как равенство $\varphi(u) = \varphi(w)$ означает, что $u-w \in \ker \varphi$. Отображение ι_{φ} K-линейно, поскольку

$$\iota_{\varphi}(x[u]+y[w])=\iota_{\varphi}([xu+yw])=\varphi(xu+yw)=x\varphi(u)+y\varphi(w)=x\iota_{\varphi}([u])+y\iota_{\varphi}([w])\,.$$

Тем самым, ι_{ω} : $M/\ker\varphi \cong \operatorname{im}\varphi$ является изоморфизмом K-модулей.

Упражнение 5.10. Пусть модуль M является прямой суммой своих подмодулей $L,N\subset M.$ По-кажите, что $M/N\simeq L$ и $M/L\simeq N.$

Пример 5.10 (дополнительные подмодули и разложимость)

Подмодули $L,N\subset M$ называются дополнительными, если $M=L\oplus N$. Согласно сл. 5.1 на стр. 85 для этого необходимо и достаточно, чтобы $L\cap N=0$ и L+N=M. В такой ситуации модуль M называется разложимым, а про подмодули L,N говорят, что они отщепляются от M прямыми слагаемыми. Модуль M, не представимый в виде прямой суммы своих собственных подмодулей называется неразложимым. Например, \mathbb{Z} -модуль \mathbb{Z} неразложим, хотя и имеет собственные \mathbb{Z} -подмодули. В самом деле, каждый собственный подмодуль $I\subset \mathbb{Z}$ представляет собою главный идеал I=(d). Согласно упр. 5.10, разложение $\mathbb{Z}=(d)\oplus N$ означает наличие в \mathbb{Z} подмодуля $N\subset \mathbb{Z}$, изоморфного \mathbb{Z} -модулю $\mathbb{Z}/(d)$, все элементы которого аннулируются умножением на число $d\in \mathbb{Z}$, тогда как в \mathbb{Z} -модуле \mathbb{Z} умножение на число d действует инъективно.

Упражнение 5.11. Рассмотрим \mathbb{Z} -подмодуль $N\subset\mathbb{Z}^2$, порождённый векторами (2,1) и (1,2). Покажите, что $N\simeq\mathbb{Z}^2$, $M/N\simeq\mathbb{Z}/(3)$, и не существует такого \mathbb{Z} -подмодуля $L\subset\mathbb{Z}^2$, что $\mathbb{Z}^2=L\oplus N$.

Пример 5.11 (фактор модуля по идеалу кольца)

Для произвольных K-модуля M и идеала $I\subset K$ обозначим через

$$IM \stackrel{\text{def}}{=} \{x_1 a_1 + \ldots + x_n a_n \in M \mid x_i \in I, \ a_i \in M, \ n \in \mathbb{N}\}$$

K-подмодуль, образованный всевозможными линейными комбинациями элементов модуля M с коэффициентами из идеала I.

Упражнение 5.12. Проверьте, что IM действительно является K-подмодулем в M. Абелева факторгруппа M / IM , элементы которой — это классы

$$[w]_{IM} = w + IM = \{v \in M \mid v - w \in IM\},\$$

является модулем над факторкольцом K/I. Умножение векторов на скаляры задаётся правилом

$$[x]_I \cdot [w]_{IM} = [xw]_{[IM]}$$
.

Упражнение 5.13. Убедитесь, что оно корректно.

Если $M=N_1\oplus\ldots\oplus N_m$ раскладывается с прямую сумму своих подмодулей $N_i\subset M$, то возникает аналогичное разложение $IM=IN_1\oplus\ldots\oplus IN_m$ в сумму подмодулей $IN_i=N_i\cap IM$.

Упражнение 5.14. Убедитесь в этом.

Мы заключаем, что в этом случае $M/IM = (N_1/IN_1) \oplus ... \oplus (N_m/IN_m)$. В частности,

$$K^n/IK^n = (K/I)^n$$
. (5-10)

для любого идеала $I \subset K$.

Предложение 5.3

Для любых K-модулей M, N и подмодуля $L\subset M$ гомоморфизмы $\varphi:M\to N$, переводящие L в нуль, образуют подмодуль $\mathrm{Ann}_N(L)\stackrel{\mathrm{def}}{=}\{\varphi:M\to N\mid \varphi(L)=0\}\subset \mathrm{Hom}(M,N)$. Каждый гомоморфизм $\varphi\in\mathrm{Ann}_N(L)$ корректно задаёт K-линейное отображение $\varphi_L:M/L\to M$, $[v]_L\mapsto f(v)$. При этом отображение $\mathrm{Ann}_N(L)\to \mathrm{Hom}_K(M/L,N)$, $\varphi\mapsto \varphi_L$, является изоморфизмом K-модулей, и обратный к нему изоморфизм $\mathrm{Hom}_K(M/L,N)\to \mathrm{Ann}_N(L)$, $\psi\mapsto \psi\pi_L$, переводит гомоморфизм $\psi:M/L\to N$ в его композицию с эпиморфизмом факторизации $\pi_L:M\to M/L$.

Доказательство. Если $\varphi_1, \varphi_2: M \to N$ аннулируют L, то линейная комбинация $x_1\varphi_1 + y_1\varphi_2$ тоже аннулирует L. Поэтому $\operatorname{Ann}_N(L)$ является K-подмодулем в $\operatorname{Hom}_K(M,N)$. Если $\varphi \in \operatorname{Ann}_N(L)$, отображение $\varphi_L: [v]_L \mapsto \varphi(v)$ корректно определено, так как для любого вектора $w = v + \ell$ с $\ell \in L$ имеем $\varphi_L(w) = \varphi(v) + \varphi(\ell) = \varphi(v) = \varphi_L(v)$. Очевидно, что отображение φ_L , во-первых, само K-линейно, а во вторых, K-линейно зависит от φ . Поэтому отображение

$$\operatorname{Ann}_{N}(L) \to \operatorname{Hom}_{K}(M/L, N), \quad \varphi \mapsto \varphi_{L},$$

является гомоморфизмом K-модулей. Поскольку для любого гомоморфизма $\psi: M/L \to M$ выполняется равенство $(\psi\pi_L)_L = \psi$, а для любого гомоморфизма $\varphi \in \mathrm{Ann}_N(L)$ — равенство $\varphi_L\pi_L = \varphi$, отображения $\varphi \mapsto \varphi_L$ и $\psi \mapsto \psi\pi_L$ обратны друг другу и тем самым биективны. \square

5.1.5. Образующие и соотношения. Говорят, что вектор v из K-модуля M линейно выражается над K через векторы w_1,\ldots,w_m , если $v=x_1w_1+\ldots+x_mw_m$ для некоторых $x_1,\ldots,x_m\in K$. Правая часть этой формулы называется линейной комбинацией векторов $w_i\in V$ с коэффициентами $x_i\in K$. Линейная комбинация, в которой все коэффициенты $x_i=0$, называется $x_i=0$, называется $x_i=0$, называется линейно зависимым, если некоторая нетривиальная конечная линейная комбинация векторов из $x_i=0$ обращается в нуль, $x_i=0$, $x_i=0$,

Мы говорим, что множество $Z\subset M$ порождает модуль M, если любой вектор $v\in M$ является линейной комбинацией конечного числа векторов из Z, т. е. $v=x_1u_1+\ldots+x_mu_m$ для некоторых $x_i\in K, w_i\in G$ и $m\in\mathbb{N}$.

Множество $E\subset M$ называется базисом модуля M, если каждый вектор $v\in M$ единственным образом линейно выражается через векторы из E, т. е. $v=\sum_{e\in E}x_ee$, где все $x_e\in K$ и только конечное множество из них отлично от нуля, и равенство двух таких сумм $\sum_{e\in E}x_ee=\sum_{e\in E}y_ee$ с конечным числом ненулевых слагаемых равносильно равенству коэффициентов $x_e=y_e$ при каждом векторе $e\in E$.

Модуль M, обладающий базисом, называется csofodhыm, и коэффициенты x_e единственного линейного выражения вектора v через базисные векторы $e \in E$ какого-либо базиса $E \subset M$ называются csofodhamamu вектора v в базисе e. Иначе можно сказать, что свободный модуль с базисом e представляет собою прямую сумму $\bigoplus_{e \in E} Ke$ одинаковых копий e0, занумерованных элементами e1.

ЛЕММА 5.1

Множество векторов E составляет базис K-модуля M если и только если оно линейно независимо и линейно порождает M над K.

Доказательство. Пусть множество векторов E порождает K-модуль M. Если существует линейное соотношение $x_1e_1+\ldots+x_ne_n=0$, в котором $e_i\in E$ и $x_1\neq 0$, то оно у нулевого вектора $0\in M$ имеется два различных представления в линейной комбинации векторов из E: первое даётся указанным соотношением, второе имеет вид $0=0\cdot e_1$. Наоборот, если множество E линейно независимо и имеется равенство $\sum_{e\in E}x_ee=\sum_{e\in E}y_ee$, в обоих частях которого имеется лишь конечное число ненулевых коэффициентов, то перенося все ненулевые слагаемые в одну часть, получаем конечное линейное соотношение $\sum_{e\in E}(x_e-y_e)\cdot e=0$, возможное только если все коэффициенты нулевые, т. е. только когда $x_e=y_e$ при всех e.

Предостережение 5.2. Если кольцо коэффициентов K не является полем, то линейная зависимость векторов, вообще говоря, не даёт возможности линейно выразить один из этих векторов через другие. Поэтому понятие размерности в том виде, как оно определяется для векторных пространств над полем, не переносится буквально на модули над произвольными коммутативными кольцами. Например, идеал $I \subset K$ порождается как модуль над K одним элементом если и только если он главный, т. е. I=(d) для некоторого $d\in K$. Такой идеал является свободным K-модулем с базисом d если и только если d не делит нуль в K. Если же идеал $I\subset K$ не главный, то его нельзя линейно породить менее, чем двумя элементами, а любой набор, содержащий по меньшей мере два разных элемента кольца линейно зависим, так как ab-ba=0 для любых $a,b\in K$. Поэтому в неглавном идеале заведомо нет базиса. Так, идеал $(x,y)\subset \mathbb{Q}[x,y]$, состоящий из всех многочленов с нулевым свободным членом, как модуль над кольцом $K=\mathbb{Q}[x,y]$ линейно порождается векторами $w_1=x$ и $w_2=y$, которые линейно зависимы над K, ибо $yw_1-xw_2=0$, но ни один из них не выражается линейно через другой.

Пример 5.12 (задание модуля образующими и соотношениями)

Координатный модуль K^n из прим. 5.2 на стр. 82 свободен, так как каждый вектор (x_1,\ldots,x_n) единственным образом представляется в виде линейной комбинации $x_1e_1+\ldots+x_ne_n$ стандартных базисных векторов $e_i=(0,\ldots,0,1,0,\ldots,0)$, где единственная ненулевая координата

равна 1 и стоит на i-том месте. Если некоторый K-модуль M линейно порождается над K векторами w_1,\ldots,w_m , то имеется K-линейный эпиморфизм

$$\pi: K^m \twoheadrightarrow M$$
, $(x_1, \dots, x_m) \mapsto x_1 w_1 + \dots + x_m w_m$.

Его ядро $R=\ker\pi$ называется модулем соотношений между образующими w_i , поскольку оно состоит из всех тех строк $(x_1,\ldots,x_n)\in K^m$, что являются коэффициентами линейных соотношений $x_1w_1+\ldots+x_mw_m=0$ между образующими w_i в модуле M. Таким образом, каждый конечно порождённый K-модуль M имеет вид $M=K^m/R$ для некоторого числа $m\in\mathbb{N}$ и некоторого подмодуля $R\subset K^m$.

5.1.6. Ранг свободного модуля. Модуль F называется свободным модулем ранга r если он обладает базисом из r векторов. Число r обозначается $\operatorname{rk} F$ и не зависит от выбора базиса в силу следующей теоремы.

Теорема 5.1

Все базисы свободного модуля F над коммутативным кольцом K с единицей равномощны.

Доказательство. Пусть множество векторов $E\subset F$ является базисом в F, т. е. $F=\bigoplus_{e\in E}Ke$. Рассмотрим произвольный максимальный идеал 1 т $\subset K$. В прим. 5.11 на стр. 86 мы видели, что фактормодуль $F/\mathfrak{m}F$ является векторным пространством над полем $\mathbb{k}=K/\mathfrak{m}$ и изоморфен $\bigoplus_{e\in E}\mathbb{k}\cdot [e]$ в силу форм. (5-10) на стр. 87. Таким образом классы [e] векторов $e\in E$ составляют базис векторного пространства $F/\mathfrak{m}F$ над полем $\mathbb{k}=K/\mathfrak{m}$. Но из курса линейной алгебры известно 2 , что все базисы векторного пространства имеют одинаковую мощность.

5.2. Алгебры над коммутативными кольцами. Модуль A над коммутативным кольцом K называется K-алгеброй или алгеброй над K, если на нём задана операция умножения

$$A \times A \to A$$
, $(a, b) \mapsto ab$,

которая K-линейна по a при фиксированном b и K-линейна по b при фиксированном a , b . a

$$(x_1a_1 + x_2a_2)b = x_1a_1b + x_2a_2b$$
 и $a(y_1b_1 + y_2b_2) = y_1ab_1 + y_2ab_2$

для всех $a,b,a_i,b_j\in A$ и всех $x_i,y_j\in K$. Поскольку для всех $a\in A$ выполняются равенства

$$0 \cdot a = (0+0) a = 0 \cdot a + 0 \cdot a$$
 и $a \cdot 0 = a(0+0)a = a \cdot 0 + a \cdot 0$,

мы заключаем, что $0 \cdot a = 0 = a \cdot 0$ для всех $a \in A$ в любой K-алгебре A.

Алгебра A называется accoциативной, если (ab)c = a(bc) для всех $a,b,c \in A$, и коммутативной — если ab = ba для всех $a,b \in A$. Алгебра A называется ancefpoù c единицей, если в ней есть нейтральный элемент по отношению к умножению, т. е. такой $e \in A$, что ea = ae = a для всех $a \in A$. Так как для любых элементов e', e'' с этим свойством выполняются равенства $e' = e' \cdot e'' = e''$, единица в алгебре единственна, если существует.

¹См. прим. 4.3 на стр. 70.

²См. теор. 7.3 на стр. 93 лекции http://gorod.bogomolov-lab.ru/ps/stud/geom_ru/2122/lec_07.pdf.

 $^{^3}$ Такие функции от двух аргументов называются билинейными.

Отображение $\varphi:A\to B$ между K-алгебрами A и B называется гомоморфизмом K-алгебр, если оно K-линейно и перестановочно с умножением, т. е. $\varphi(a_1a_2)=\varphi(a_1)\varphi(a_2)$. Будучи гомоморфизмами K-модулей, гомоморфизмы K-алгебр обладают всеми свойствами из \mathfrak{n}° 5.1.1 на стр. 82 выше.

Примерами *коммутативных* ассоциативных K-алгебр с единицами являются алгебра многочленов $K[x_1,\ldots,x_n]$ и другие конечно порождённые коммутативные K-алгебры из прим. 4.5 на стр. 71. Основным модельным примером некоммутативной K-алгебры является

Пример 5.13 (алгебра K-линейных эндоморфизмов)

Модуль $\operatorname{Hom}_K(M,M)$ всех K-линейных отображений $M\to M$ обозначается $\operatorname{End} M$ или $\operatorname{End}_K M$ и называется алгеброй эндоморфизмов 1 K-модуля M, поскольку композиция эндоморфизмов

$$\operatorname{End}(M) \times \operatorname{End}(M) \to \operatorname{End}(M)$$
, $(\varphi, \psi) \mapsto (\varphi \circ \psi : w \mapsto \varphi(\psi(w)))$,

задаёт на End M структуру ассоциативной K-алгебры с единицей, в роли которой выступает тождественный эндоморфизм $\mathrm{Id}_M: w\mapsto w.$

Упражнение 5.15. Проверьте, что композиция отображений ассоциативна и линейно зависит от каждого из двух компонуемых отображений.

5.2.1. Алгебра матриц $\mathrm{Mat}_n(K)$. Рассмотрим свободный координатный модуль $M=K^n$ с базисом из векторов e_1,\dots,e_n . Каждый K-линейный эндоморфизм $\varphi:K^n\to K^n$ однозначно задаётся набором из n векторов $w_i=\varphi(e_i)$ — образами базисных векторов под действием эндоморфизма φ . В самом деле, поскольку любой вектор $w\in K^n$ единственным образом записывается в виде $w=x_1e_1+\dots+x_ie_i$, значение φ на нём вычисляется как

$$\varphi(w) = \varphi(x_1 e_1 + \dots + x_n e_n) = x_1 \varphi(e_1) + \dots + x_n \varphi(w_n) = x_1 w_1 + \dots + x_n w_n,$$

и наоборот, для любого набора векторов $w_1, \dots, w_n \in K^n$ отображение

$$\varphi_{w_1,\ldots,w_n}: K^n \to K^n, \quad x_1e_1+\ldots+x_ne_n \mapsto x_1w_1+\ldots+x_nw_n,$$

является K-линейным и переводит каждый базисный вектор e_i в вектор w_i .

Упражнение 5.16. Убедитесь в этом.

Таким образом, мы получаем биекцию между K-линейными эндоморфизмами $K^n \to K^n$, т. е. элементами K-модуля End K^n , и упорядоченными наборами (w_1, \dots, w_n) из n векторов $w_i \in K^n$, т. е. элементами K-модуля $K^n \times \dots \times K^n \simeq K^{n^2}$.

Упражнение 5.17. Убедитесь в том, что эта биекция K-линейна, т. е. является изоморфизмом K-модулей.

Набор векторов $w_j = \varphi(e_j) \in K^n$, задающих эндоморфизм $\varphi: K^n \to K^n$, принято записывать в виде квадратной матрицы Φ размера $n \times n$, помещая координаты j-го вектора w_j в j-й cmonfeq этой таблицы:

$$w_1, w_2, \dots, w_n = \begin{pmatrix} \varphi_{11} \\ \vdots \\ \varphi_{n1} \end{pmatrix}, \begin{pmatrix} \varphi_{12} \\ \vdots \\ \varphi_{n2} \end{pmatrix}, \dots, \begin{pmatrix} \varphi_{1n} \\ \vdots \\ \varphi_{nn} \end{pmatrix} \rightarrow \Phi = \begin{pmatrix} \varphi_{11} & \varphi_{12} & \dots & \varphi_{1n} \\ \vdots & \vdots & \dots & \vdots \\ \varphi_{n1} & \varphi_{n2} & \dots & \varphi_{nn} \end{pmatrix}.$$

¹Терминологию, относящуюся к отображениям множеств, см. на стр. 5.

²См. прим. 5.3 на стр. 82.

Матрица $\Phi = \left(\varphi_{ij} \right)$ в i-й строке и j-м столбце которой находится i-я координата вектора $\varphi(e_j)$, называется матрицей отображения $\varphi \colon K^n \to K^n$ в базисе e_1, \dots, e_n . Таким образом, сопоставляя эндоморфизму φ его матрицу Φ , мы получаем изоморфизм K-модулей

$$\operatorname{End}(K^n) \cong \operatorname{Mat}_{n \times n}(K), \quad \varphi \mapsto \Phi,$$
 (5-11)

где $\mathrm{Mat}_n(K) \stackrel{\mathrm{def}}{=} \mathrm{Mat}_{n \times n}(K)$ — модуль $n \times n$ матриц 1 с элементами из K. Изоморфизм (5-11) позволяет перенести на K-модуль матриц ассоциативное умножение с единицей, которое имеется в алгебре $\mathrm{End}(K^n)$ из прим. 5.13 выше и задаётся композицией отображений. Возникающая таким образом билинейная ассоциативная операция

$$\operatorname{Mat}_{n\times n}(K) \times \operatorname{Mat}_{n\times n}(K) \to \operatorname{Mat}_{n\times n}(K), \quad (\Phi, \Psi) \mapsto \Phi\Psi,$$

где Φ и Ψ суть матрицы K-линейных отображений $\varphi, \psi: K^n \to K^n$, а $\Phi\Psi$ — матрица их композиции $\varphi\psi: K^n \to K^n$, $w \mapsto \varphi(\psi(w))$, называется произведением матриц. Элемент $p_{ij} \in K$ произведения $P = \Phi\Psi = (p_{ij})$ является i-й координатой вектора

$$\varphi(\psi(e_i)) = \varphi(\psi_{1i}e_1 + ... + \psi_{ni}e_n) = \psi_{1i}\varphi(e_1) + ... + \psi_{ni}\varphi(e_n),$$

которая равна $\psi_{1j}\varphi_{i1}+\ldots+\psi_{nj}\varphi_{in}$. Мы заключаем, что произведение $\mathcal{C}=AB$ матриц $A=\left(a_{ij}\right)$ и $B=\left(b_{ij}\right)$ имеет в i-й строке и j-м столбце элемент

$$c_{ij} = \sum_{k} a_{ik} b_{kj} = a_{i1} b_{1j} + a_{i2} b_{2j} + \dots + a_{in} b_{nj}.$$

Единицей алгебры $\mathrm{Mat}_{n \times n}(K)$ является матрица тождественного отображения $\mathrm{Id}: K^n \to K^n$

$$E = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & 1 \end{pmatrix} \in \operatorname{Mat}_{n \times n}(K),$$
 (5-12)

(по диагонали стоят единицы, в остальных местах — нули). Как и композиция отображений, умножение матриц не коммутативно. Например,

$$\begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix} \cdot \begin{pmatrix} 3 & 0 \\ 4 & 5 \end{pmatrix} = \begin{pmatrix} 11 & 10 \\ 12 & 15 \end{pmatrix}$$
$$\begin{pmatrix} 3 & 0 \\ 4 & 5 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} 3 & 6 \\ 4 & 23 \end{pmatrix}.$$

Как модуль над K алгебра $\mathrm{Mat}_n(K)$ изоморфна координатному модулю K^{n^2} и тем самым свободна. Стандартный базис в $\mathrm{Mat}_n(K)$ состоит из матриц E_{ij} , единственным ненулевым элементом которых является единица, стоящая в i-й строке и j-м столбце. Произвольная матрица $A=(a_{ij})$ линейно выражается через этот базис по формуле $A=\sum_{i,j}a_{ij}E_{ij}$. Прообразами базисных матриц E_{ij} при изоморфизме (5-11) являются K-линейные отображения $E_{ij}:K^n\to K^n$, которые

¹См. прим. 5.3 на стр. 82.

мы обозначаем также, как и базисные матрицы, и которые действуют на базисные векторы e_k координатного модуля K^n по правилам

$$E_{ij}(e_k) = \begin{cases} e_i & \text{при } k = j \\ 0 & \text{при } k \neq j. \end{cases}$$

Отсюда немедленно получается таблица умножения базисных матриц E_{ij} :

$$E_{ik}E_{\ell j} = \begin{cases} E_{ij} & \text{при } k = \ell \\ 0 & \text{при } k \neq \ell, \end{cases}$$
 (5-13)

которая ещё раз показывает, что умножение матриц не коммутативно: $E_{12}E_{21} \neq E_{21}E_{12}$. Упражнение 5.18. Составьте таблицу коммутатиров $[E_{ik}, E_{\ell j}] \stackrel{\text{def}}{=} E_{ik}E_{\ell j} - E_{\ell j}E_{ik}$.

Пример 5.14 Вычислим A^{2023} для матрицы $A=\begin{pmatrix}1&1\\0&1\end{pmatrix}$. Поскольку $A=E+E_{12}$ и матрицы E и E_{12} коммутируют, вычислить $(E+E_{12})^{2023}$ можно по формуле для раскрытия бинома 1 , а так как $E_{12}^n=0$ при n>1, на ответ влияют только первые два члена:

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}^{2023} = (E + E_{12})^{2023} = E + 2023 \, E_{12} = \begin{pmatrix} 1 & 2023 \\ 0 & 1 \end{pmatrix} \, .$$

Упражнение 5.19. Покажите, что $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}^n = \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}$ при всех $n \in \mathbb{Z}$.

5.2.2. Обратимые элементы. Элемент a алгебры A с единицей $e \in A$ называется обратимым, если существует такой элемент $a^{-1} \in A$, что $aa^{-1} = a^{-1}a = e$. В ассоциативной алгебре A это требование можно ослабить до существования таких $a', a'' \in A$, что a'a = aa'' = e. В самом деле, тогда a' = a'e = a'(aa'') = (a'a)a'' = ea'' = a''. Это вычисление заодно показывает, что обратный к a элемент a^{-1} , если он существует, однозначно определяется по a равенствами $aa^{-1} = a^{-1}a = e$.

Пример 5.15 (обратимые 2×2 -матрицы)

Выясним, какие 2 × 2-матрицы

$$\Phi = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

обратимы в алгебре $\mathrm{Mat}_{2\times 2}(K)$ из n° 5.2.1. Чтобы получить нули в правом верхнем и левом нижнем углах произведения

$$\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} * & 0 \\ 0 & * \end{pmatrix}$$

можно в качестве первого приближения к левой матрице взять матрицу со строками

$$(\alpha,\beta)=(d,-b)$$
 и $(\gamma,\delta)=(-c,a)$.

¹См. формулу (0-8) на стр. 8.

Тогда

$$\begin{pmatrix} d & -b \\ -c & d \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} ad-bc & 0 \\ 0 & ad-bc \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} d & -b \\ -c & d \end{pmatrix} \,.$$

Матрица

$$\Phi^{\vee} \stackrel{\text{def}}{=} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

называется присоединённой к матрице Φ , а число $\det \Phi \stackrel{\text{def}}{=} ad - bc \in K$ — определителем матрицы Φ . В этих обозначениях предыдущее равенство переписывается в виде

$$\Phi^{\vee}\Phi = \Phi\Phi^{\vee} = \det(\Phi) \cdot E$$
.

Мы заключаем, что если $\det \Phi$ обратим в K, то матрица Φ обратима и $\Phi^{-1} = \det(\Phi)^{-1}\Phi^{\vee}$.

Упражнение 5.20. Убедитесь, что $(AB)^{\vee} = B^{\vee}A^{\vee}$ для любых $A, B \in \mathrm{Mat}_{2\times 2}(K)$.

Из упражнения вытекает, что для всех $A, B \in \mathrm{Mat}_{2\times 2}(K)$

$$\det(AB) \cdot E = AB(AB)^{\vee} = ABB^{\vee}A^{\vee} = A \cdot \det(B) \cdot E \cdot A^{\vee} = \det(B) \cdot AA^{\vee} = \det(A) \cdot \det(B) \cdot E$$

откуда $\det(AB) = \det(A) \cdot \det(B)$. Мы заключаем, что если матрица Φ обратима, то

$$1 = \det E = \det(\Phi \Phi^{-1}) = \det(\Phi) \cdot \det(\Phi^{-1}),$$

и тем самым $\det \Phi$ обратим в K. Итак, 2×2 матрица Φ обратима если и только если обратим её определитель, и в этом случае $\Phi^{-1} = \det(\Phi)^{-1}\Phi^{\vee}$.

Пример 5.16 (обращение унитреугольной матрицы)

Диагональ, идущая из левого верхнего угла квадратной матрицы в правый нижний, называется главной. Если все стоящие под (соотв. над) главной диагональю элементы нулевые, матрица называется верхней (соотв. нижней) треугольной.

Упражнение 5.21. Проверьте, что верхние и нижние треугольные матрицы являются подалгебрами 1 в Mat $_n(K)$.

Треугольные матрицы с единицами на главной диагонали называются *унитреугольными*. По-кажем, что каждая верхняя унитреугольная матрица $A=\left(a_{ij}\right)$ обратима 2 и обратная к ней матрица $B=A^{-1}$ тоже верхняя унитреугольная с наддиагональными элементами

$$b_{ij} = \sum_{s=0}^{j-i-1} (-1)^{s+1} \sum_{i < \nu_1 < \dots < \nu_s < j} a_{i\nu_1} a_{\nu_1\nu_2} a_{\nu_2\nu_3} \dots a_{\nu_{s-1}\nu_s} a_{\nu_s j} =$$

$$= -a_{ij} + \sum_{i < k < j} a_{ik} a_{kj} - \sum_{i < k < \ell < j} a_{ik} a_{k\ell} a_{\ell j} + \sum_{i < k < \ell < m < j} a_{ik} a_{k\ell} a_{\ell m} a_{mj} - \dots$$
 (5-14)

Для этого запишем матрицу A в виде линейной комбинации базисных матриц E_{ii} :

$$A = E + \sum_{i < j} a_{ij} E_{ij} = E + N,$$

¹Т. е. являются подмодулями, замкнутыми относительно умножения.

 $^{^2}$ Причём этот факт, как и приводимое здесь доказательство, остаётся в силе для матриц с элементами в произвольном (даже некоммутативном) ассоциативном кольце с единицей.

где матрица $N = \sum_{i < j} a_{ij} E_{ij}$ представляет собою наддиагональную часть матрицы A. Согласно форм. (5-13) на стр. 92 коэффициент при E_{ij} в матрице N^k равен нулю при j-i < k, а при $j-i \geqslant k$ представляет собою сумму всевозможных произведений N^k

$$\underbrace{a_{i\nu_1}a_{\nu_1\nu_2}...a_{\nu_{k-2}\nu_{k-1}}a_{\nu_{k-1}j}}_{k \text{ сомножителей}}, \quad \text{где} \quad i < \nu_1 < ... < \nu_{k-1} < j \,.$$

В частности, он заведомо зануляется, когда k превышает размер матрицы A. Полагая x=E, y=N в равенстве $(x+y)(x^{m-1}-x^{m-2}y+\ldots+(-1)^{m-1}y^{m-1})=x^m-y^m$, при достаточно большом m мы получим матричное равенство $A(E-N+N^2-N^3+\ldots)=E$, откуда

$$A^{-1} = E - N + N^2 - N^3 + \dots$$

что и утверждалось.

- **5.3. Матричный формализм.** Матрица из m строк и n столбцов, заполненная элементами какого-нибудь K-модуля R, называется $m \times n$ матрицей с элементами из R. Множество всех таких матриц обозначается $\mathrm{Mat}_{m \times n}(R)$ и тоже является K-модулем, изоморфным прямому произведению mn копий модуля R.
- **5.3.1.** Умножение матриц. Пусть элементы K-модулей L и M можно билинейно перемножать со значениями в K-модуле N, т. е. задано такое отображение $L \times M \to N$, $(u,w) \to uw$, что $(x_1u_1+x_2u_2)(y_1w_1+y_2w_2)=x_1y_1u_1w_1+x_1y_2u_1w_2+x_2y_1u_2w_1+x_2y_2u_2w_2$ для всех $u_i \in L$, $w_i \in M$ и $x_i, y_i \in K$. Тогда для всех $m, s, n \in \mathbb{N}$ определено произведение матриц

$$\operatorname{Mat}_{m \times s}(L) \times \operatorname{Mat}_{s \times n}(M) \to \operatorname{Mat}_{m \times n}(N)$$
, $(A, B) \mapsto AB$.

Обратите внимание, что в этом произведении ширина левой матрицы A должна быть равна высоте правой матрицы B, а само произведение имеет столько же строк, сколько левый сомножитель, и столько же столбцов, сколько правый. При m=n=1 результатом умножения строки ширины s на столбец высоты s является матрица размера 1×1 , т. е. один элемент, который определяется так:

$$(a_1, \dots, a_s) \begin{pmatrix} b_1 \\ \vdots \\ b_s \end{pmatrix} \stackrel{\text{def}}{=} a_1 b_1 + \dots + a_s b_s = \sum_{k=1}^s a_k b_k.$$
 (5-15)

Для произвольных m и n элемент c_{ij} матрицы C = AB равен произведению i-й строки из A на j-й столбец из B, посчитанному по формуле (5-15):

$$c_{ij} = (a_{i1}, \dots a_{is}) \cdot \begin{pmatrix} b_{1j} \\ \vdots \\ b_{sj} \end{pmatrix} = \sum_{k=1}^{s} a_{ik} b_{kj}.$$
 (5-16)

 $^{^1}$ Продуктивно представлять себе E_{ij} как стрелку, ведущую из числа j в число i на числовой прямой. Произведение k сомножителей E_{ij} отлично от нуля если и только если конец каждой стрелки совпадает с началом предыдущей, и в этом случае такое произведение равно сумме всех перемножаемых стрелок, рассматриваемых как целочисленные векторы на числовой прямой. Таким образом, каждое ненулевое произведение k стрелок имеет длину как минимум k, а разложения элемента E_{ij} в произведение k таких элементов находятся в биекции со всевозможными способами пройти из j в i за k шагов.

 $^{^{2}}$ Поскольку матрицы E и N коммутируют друг с другом, в результате этой подстановки мы получим верное матричное равенство.

Иначе можно сказать, что в j-том столбце матрицы AB стоит линейная комбинация s столбцов матрицы A с коэффициентами из j-го столбца матрицы B. Это описание получается, если подставить в формулу (5-15) в качестве элементов b_i числа из j-го столбца матрицы B, а в качестве элементов a_j — столбцы матрицы A, интерпретируемые как элементы K-модуля L^m , записанные в виде координатных столбцов.

Упражнение 5.22. Удостоверьтесь, что это описание согласуется с формулой (5-16).

Например, для того, чтобы превратить матрицу

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix}$$
 (5-17)

в матрицу из четырёх столбцов, равных, соответственно, сумме 1-го столбца матрицы A со 2-м, умноженным на λ , сумме 1-го и 3-го столбцов матрицы A, сумме 3-го столбца матрицы A со 2-м, умноженным на μ , и сумме всех трёх столбцов матрицы A, умноженных на их номера, надо умножить матрицу A справа на матрицу

$$\begin{pmatrix} 1 & 1 & 0 & 1 \\ \lambda & 0 & \mu & 2 \\ 0 & 1 & 1 & 3 \end{pmatrix}$$

Упражнение 5.23. Проверьте это прямым вычислением по формуле (5-16).

Симметричным образом, если в формуле (5-15) взять в в качестве элементов a_j те, что стоят в i-й строке матрицы A, а в качестве b_i — строки матрицы B, интерпретируемые как элементы K-модуля M^n , записанные в виде координатных строк, то можно сказать, что i-й строкой матрицы AB является линейная комбинация строк матрицы B с коэффициентами, стоящими в i-й строке матрицы A. Например, если в той же матрице (5-17) хочется поставить вторую строку на место первой, а вместо второй написать её сумму с первой строкой, умноженной на λ , то это достигается умножением слева на матрицу

$$\begin{pmatrix} 0 & 1 \\ \lambda & 1 \end{pmatrix}$$

Упражнение 5.24. Проверьте это прямым вычислением по формуле (5-16).

Предыдущие два описания произведения AB получаются друг из друга одновременной перестановкой букв A, B и заменой слов «столбец» и «строка» друг на друга. Матрица $C^t=(c_{ij}^t)$ размера $n\times m$, по строкам которой записаны столбцы $m\times n$ матрицы $C=(c_{ij})$, называется m матрице C. Её элементы $c_{ij}^t=c_{ji}$ получаются отражением элементов матрицы C относительно биссектрисы левого верхнего угла матрицы.

Предложение 5.4

Для матриц с элементами из коммутативного кольца выполняется равенство $(AB)^t = B^t A^t$, т. е. транспонирование обращает порядок сомножителей в произведениях матриц, элементы которых коммутируют друг с другом.

Доказательство. Пусть
$$AB=C$$
, $B^tA^t=D$, тогда $c_{ij}=\sum\limits_k a_{ik}b_{kj}=\sum\limits_k a_{ki}^tb_{jk}^t=\sum\limits_k b_{jk}^ta_{ki}^t=d_{ji}$. \square

Упражнение 5.25. Убедитесь, что если операция умножения $L \times M \to N$ билинейна, то произведение матриц $\mathrm{Mat}_{m \times s}(L) \times \mathrm{Mat}_{s \times n}(M) \to \mathrm{Mat}_{m \times n}(N)$ тоже билинейно, т. е.

$$(x_1A_1 + x_2A_2)B = x_1A_1B + x_2A_2B$$
 и $A(y_1B_1 + y_2B_2) = y_1AB_1 + y_2AB_2$

для всех $A,A_1,A_2\in \mathrm{Mat}_{m imes s}(L),B,B_1,B_2\in \mathrm{Mat}_{m imes s}(M)$ и $x_i,y_i\in K.$

Предложение 5.5

Если на K-модулях $L_1, L_2, L_3, L_{12}, L_{23}, L_{123}$ заданы билинейные ассоциативные 1 умножения

$$L_1 \times L_2 \to L_{12} \,, \quad L_{12} \times L_3 \to L_{123} \,, \quad L_2 \times L_3 \to L_{23} \,, \quad L_1 \times L_{23} \to L_{123} \,,$$

то при всех $m, k, \ell, n \in \mathbb{N}$ умножения матриц

$$\begin{split} \operatorname{Mat}_{m \times k}(L_1) \times \operatorname{Mat}_{k \times \ell}(L_2) &\to \operatorname{Mat}_{m \times \ell}(L_{12}) \,, \quad \operatorname{Mat}_{m \times \ell}(L_{12}) \times \operatorname{Mat}_{\ell \times n}(L_3) &\to \operatorname{Mat}_{m \times n}(L_{123}) \,, \\ \operatorname{Mat}_{k \times \ell}(L_2) \times \operatorname{Mat}_{\ell \times n}(L_3) &\to \operatorname{Mat}_{k \times n}(L_{23}) \,, \quad \operatorname{Mat}_{m \times k}(L_1) \times \operatorname{Mat}_{k \times n}(L_{23}) &\to \operatorname{Mat}_{m \times n}(L_{123}) \,. \end{split}$$

тоже ассоциативны, т. е. (AB)C = A(BC) когда эти произведения определены.

Доказательство. Пусть AB = P, BC = Q. Проверим, что (i, j)-е элементы матриц PC и AQ равны:

$$\begin{split} \sum_k p_{ik} c_{kj} &= \sum_k \Big(\sum_\ell a_{i\ell} b_{\ell k}\Big) c_{kj} = \sum_{k\ell} (a_{i\ell} b_{\ell k}) c_{kj} = \\ &= \sum_{k\ell} a_{i\ell} (b_{\ell k} c_{kj}) = \sum_\ell a_{i\ell} \Big(\sum_k b_{\ell k} c_{kj}\Big) = \sum_\ell a_{i\ell} q_{\ell j} \,. \end{split}$$

Обратите внимание, что 2-е и 4-е равенства используют билинейность умножений.

5.3.2. Матрицы перехода. Пусть в K-модуле M заданы два набора векторов:

$$\boldsymbol{u} = (u_1, \dots, u_n)$$
 и $\boldsymbol{w} = (w_1, \dots, w_m)$,

причём первый из них содержится в линейной оболочке второго, т. е. каждый вектор u_j имеет вид $u_j=w_1c_{1j}+w_2c_{2j}+\ldots+w_mc_{mj}$, где $c_{ij}\in K$. Эти n равенств собираются в одну матричную формулу $\boldsymbol{u}=\boldsymbol{w}$ $C_{\boldsymbol{wu}}$, где $\boldsymbol{u}=(u_1,\ldots,u_n)$ и $\boldsymbol{w}=(w_1,\ldots,w_m)$ суть матрицы-строки с элементами из M, а матрица $C_{\boldsymbol{wu}}=(c_{ij})$ получается подстановкой в матрицу \boldsymbol{u} вместо каждого из векторов u_j столбца коэффициентов его линейного выражения через векторы w_i . Матрица $C_{\boldsymbol{wu}}$ называется матрицей перехода от векторов \boldsymbol{u} к векторам \boldsymbol{w} . Название объясняется тем, что если имеется набор векторов $\boldsymbol{v}=(v_1,\ldots,v_k)$, линейно выражающихся через векторы \boldsymbol{u} по формулам $\boldsymbol{v}=\boldsymbol{u}C_{\boldsymbol{uv}}$, то выражение векторов \boldsymbol{v} через векторы \boldsymbol{w} задаётся матрицей

$$C_{wv} = C_{wu}C_{uv}, (5-18)$$

которая возникает при подстановке $\boldsymbol{u}=\boldsymbol{w}\mathcal{C}_{\boldsymbol{w}\boldsymbol{u}}$ в разложение $\boldsymbol{v}=\boldsymbol{u}\mathcal{C}_{\boldsymbol{u}\boldsymbol{v}}$. В частности, если вектор $v\in \mathrm{span}(u_1,\dots,u_n)\subset \mathrm{span}(w_1,\dots,w_n)$ линейно выражается через векторы \boldsymbol{u} по формуле $v=u_1x_1+\dots+u_nx_n=\boldsymbol{u}\boldsymbol{x}$, где $\boldsymbol{x}=(x_1,\dots,x_n)^t\in K^n$ — столбец коэффициентов, то этот

 $^{^{1}}$ Т. е. (ab)c=a(bc) всякий раз, когда произведения определены.

же вектор выражается через векторы \boldsymbol{w} по формуле $v=w_1y_1+\ldots+w_my_m=\boldsymbol{wy}$ со столбцом коэффициентов $\boldsymbol{y}=(y_1,\ldots,y_m)^t\in K^m$, который связан со столбцом \boldsymbol{x} соотношением

$$y = C_{wu}x$$
.

Отметим, что когда набор векторов ${\pmb w}=(w_1,\dots,w_m)$ линейно зависим, у каждого вектора v из их линейной оболочки имеется много pазных линейных выражений через векторы w_j . Поэтому обозначение ${\cal C}_{{\pmb w}{\pmb v}}$ в этой ситуации не корректно в том смысле, что элементы матрицы ${\cal C}_{{\pmb w}{\pmb v}}$ определяются наборами векторов ${\pmb w}$ и ${\pmb v}$ не однозначно. Тем не менее, равенство (5-18) вполне осмысленно и означает, что имея какие-нибудь линейные выражения ${\cal C}_{{\pmb w}{\pmb v}}$ и ${\cal C}_{{\pmb w}{\pmb v}}$ и векторов ${\pmb v}$ через ${\pmb w}$ и векторов ${\pmb v}$ через ${\pmb w}$, мы можем явно предъявить одно из линейных выражений ${\cal C}_{{\pmb w}{\pmb v}}$ векторов ${\pmb v}$ через векторы ${\pmb w}$, перемножив матрицы ${\cal C}_{{\pmb w}{\pmb v}}$ и ${\cal C}_{{\pmb w}{\pmb v}}$.

Если же набор векторов ${\boldsymbol e}=(e_1,\dots,e_n)$ является базисом своей линейной оболочки, то матрица перехода $C_{{\boldsymbol e}{\boldsymbol w}}$, выражающая произвольный набор векторов ${\boldsymbol w}=(w_1,\dots,w_m)$ через ${\boldsymbol e}$ однозначно определяется наборами ${\boldsymbol e}$ и ${\boldsymbol w}$, т. е. ${\boldsymbol u}={\boldsymbol w}$ если и только если $C_{{\boldsymbol e}{\boldsymbol u}}=C_{{\boldsymbol e}{\boldsymbol w}}$. Отсюда получается следующий критерий обратимости матрицы с элементами из коммутативного кольца.

Предложение 5.6

Следующие условия на квадратную матрицу $C \in \operatorname{Mat}_n(K)$ эквивалентны:

- 1) матрица C обратима в $\mathrm{Mat}_n(K)$
- 2) столбцы матрицы C образуют базис свободного модуля K^n
- 3) строки матрицы C образуют базис свободного модуля K^n .

Доказательство. Последние два свойства равносильны, так как по предл. 5.4 на стр. 95 равенства BC = CB = E при транспонировании превращаются в равенства $C^tB^t = B^tC^t = E$, и тем самым обратимость матрицы C влечёт обратимость транспонированной матрицы C^t и наоборот. Чтобы доказать равносильность первых двух условий, обозначим через $\mathbf{u} = (u_1, \dots, u_n)$ набор столбцов матрицы C, рассматриваемых как векторы координатного модуля K^n . Тогда $C = C_{eu}$ является матрицей перехода от векторов \mathbf{u} к стандартному базису $\mathbf{e} = (e_1, \dots, e_n)$ модуля K^n . Если векторы \mathbf{u} образуют базис в K^n , то векторы \mathbf{e} линейно через них выражаются: $\mathbf{e} = \mathbf{u}$ C_{ue} , где $C_{ue} \in \mathrm{Mat}_n(K)$. Из формулы (5-18) вытекают равенства $C_{ee} = C_{eu}C_{ue}$ и $C_{uu} = C_{ue}C_{eu}$. Так как оба набора векторов являются базисами, $C_{ee} = C_{uu} = E$. Поэтому матрицы C_{ue} и C_{eu} обратны друг другу. Наоборот, если матрица C_{eu} обратима, то умножая обе части равенства $\mathbf{u} = \mathbf{e}C_{eu}$ справа на C_{eu}^{-1} , получаем линейное выражение $\mathbf{e} = \mathbf{u}$ C_{eu}^{-1} векторов \mathbf{e} через векторы \mathbf{u} . Поэтому последние линейно порождают модуль K^n . Пусть столбец $\mathbf{x} = (x_1, \dots, x_n)^t \in K^n$ таков, что $\mathbf{u} = 0$. Поскольку векторы \mathbf{e} составляют базис в K^n и \mathbf{e} $C_{eu} = \mathbf{u} = \mathbf{u}$ столбец $C_{eu} = \mathbf{u} = \mathbf{u}$ столбец $C_{eu} = \mathbf{u} = \mathbf{u}$ нулевой, т. е. векторы \mathbf{u} линейно независимы.

Пример 5.17 (теорема об элементарных симметрических функциях)

Многочлен $f \in \mathbb{Z}[x_1,\dots,x_n]$ называется cимметрическим, если он не меняется при перестановках переменных, т. е. когда $f(x_1,\dots,x_n)=f(x_{g(1)},\dots,x_{g(n)})$ для всех биекций

$$g: \{1,\ldots,n\} \xrightarrow{\sim} \{1,\ldots,n\}.$$

Иначе говоря, многочлен f симметрический если и только если вместе с каждым входящим в f мономом $x_1^{m_1} \dots x_n^{m_n}$ с тем же самым коэффициентом в f входят и все мономы $x_1^{m_{g(1)}} \dots x_n^{m_{g(n)}}$, которые получаются из него перестановками степеней. Так как среди них есть ровно один моном $x_1^{\lambda_1} \dots x_n^{\lambda_n}$ с невозрастающими показателями $\lambda_1 \geqslant \dots \geqslant \lambda_n$, мы заключаем, что однородные симметрические многочлены степени d образуют свободный \mathbb{Z} -модуль с базисом из многочленов

$$m_{\lambda}=$$
 (сумма всех различных мономов вида $x_1^{\lambda_{g(1)}}\dots x_n^{\lambda_{g(n)}})$, (5-19)

где $\lambda = (\lambda_1, \dots, \lambda_n)$ пробегает диаграммы Юнга¹ из d клеток и n строк, часть из которых может быть нулевой длины. Многочлен (5-19) называется мономиальным симметрическим.

Упражнение 5.26. Сколько слагаемых в правой части (5-19)?

Симметрические многочлены $e_0=1$ и $e_k(x_1,\dots,x_n)=\sum_{i_1<\dots< i_k}x_{i_1}\dots x_{i_k}$, равный сумме всех произведений из k различных переменных, где $1\leqslant k\leqslant n$, называются элементарными. Они появляются в формулах Виета: если α_1,\dots,α_n — корни приведённого многочлена

$$t^{n} + a_{1}t^{n-1} + \dots + a_{n} = \prod_{i=1}^{n} (x - \alpha_{i}),$$
 (5-20)

то $a_i = (-1)^i e_i(\alpha_1, ..., \alpha_n).$

Упражнение 5.27. Убедитесь в этом.

Для каждой диаграммы Юнга $\mu=(\mu_1,\dots,\mu_n)$ положим $e_\mu\stackrel{\text{def}}{=} e_{\mu_1}\dots e_{\mu_n}$. Это лишь другое обозначение для монома $e_1^{m_1}\dots e_n^{m_n}$, каждый показатель m_i в котором равен количеству строк длины i в диаграмме μ .

Упражнение 5.28. Убедитесь, что диаграмма Юнга μ и набор $(m_1,\dots,m_n)\in\mathbb{Z}_{\geqslant 0}^n$ взаимно однозначно определяют друг друга из равенства $e_{\mu_1}\dots e_{\mu_n}=e_1^{m_1}\dots e_n^{m_n}$.

Многочлен e_μ однороден степени $m_1+2m_2+\ldots+nm_n$, а его лексикографически старший по переменным x_1,\ldots,x_n мономом является произведением старших мономов $x_1\ldots x_{\mu_1}$ из $e_{\mu_1},x_1\ldots x_{\mu_2}$ из e_{μ_2} и т. д. вплоть до $x_1\ldots x_{\mu_n}$ из e_{μ_n} . Это произведение является результатом перемножения переменных x_i , вписанных в клетки диаграммы Юнга μ так, что номер переменной совпадает с номером столбца, в котором она стоит, и равно $x_1^{\mu_1}\ldots x_n^{\mu_n}$, где $\mu^t=(\mu_1^t,\ldots,\mu_n^t)$ — транспонированная к μ диаграмма Юнга 2 . Таким образом, разложение многочлена e_μ по базису (5-19) имеет вид:

$$e_{\mu} = m_{\mu^t} + ($$
лексикографически младшие члены $)$. (5-21)

Если линейно упорядочить все диаграммы λ из d клеток и не более, чем n строк по лексикографическому возрастанию наборов чисел $(\lambda_1,\dots,\lambda_n)$, а все диаграммы μ из d клеток и не более, чем n столбцов — по лексикографическому возрастанию наборов чисел (μ_1^t,\dots,μ_n^t) , равных длинам строк транспонированных диаграмм μ^t , то согласно формуле (5-21) матрица перехода от многочленов e_μ к многочленам m_μ окажется верхней унитреугольной. В прим. 5.16 на стр. 93 мы видели, что такая матрица обратима в алгебре целочисленных матриц. Тем самым, по предл. 5.6 многочлены $e_\mu = e_1^{m_1} \dots e_n^{m_n}$, где $m_1 + 2m_2 + \dots + nm_n = d$, тоже составляют

¹См. прим. 0.3 на стр. 8.

 $^{^{2}}$ Её строками являются столбцы диаграммы μ также, как при транспонировании матриц.

базис модуля однородных симметрических многочленов степени d над \mathbb{Z} . Это означает, что любой симметрический многочлен единственным образом представляется в виде многочлена от элементарных симметрических многочленов e_1,\ldots,e_n . Иначе говоря, алгебра симметрических многочленов $\mathbb{Z}[e_1,\ldots,e_n]$.

Пример 5.18 (дискриминант)

Дискриминантом приведённого многочлена $f(x)=t^n+a_1t^{n-1}+\ldots+a_n=\prod_{i=1}^n(x-\alpha_i)$ называется произведение $\Delta_f=\prod_{i< j}(\alpha_i-\alpha_j)^2$ квадратов разностей его корней, вычисленное в любом кольце, над которым f полностью раскладывается на линейные множители. Будучи симметрическим многочленом от корней, Δ_f является многочленом от $e_i(\alpha_1,\ldots,\alpha_n)=(-1)^ia_i$, т. е. многочленом от коэффициентов уравнения. При этом $\Delta_f=0$ если и только если f не сепарабелен. Так, дискриминант квадратного трёхчлена $f(x)=x^2+px+q=(x-\alpha_1)(x-\alpha_2)$ равен $(\alpha_1-\alpha_2)^2=(\alpha_1+\alpha_2)^2-4\alpha_1\alpha_2=p^2-4q$. Он зануляется если и только если f является полным квадратом линейного двучлена, и если $\Delta_f=\delta^2$ сам является квадратом, то корни f находятся из равенств $\alpha_1+\alpha_2=-p, \alpha_1-\alpha_2=\pm\delta$.

Упражнение 5.29. Вычислите дискриминант кубического трёхчлена $x^3 + px + q$.

5.3.3. Матрицы линейных отображений. Пусть K-модули N и M линейно порождаются наборами векторов $\mathbf{u}=(u_1,\ldots,u_n)$ и $\mathbf{w}=(w_1,\ldots,w_m)$ соответственно. Всякое K-линейное отображение $F: N \to M$ однозначно задаётся набором $F(\mathbf{u}) \stackrel{\mathrm{def}}{=} \left(F(u_1),\ldots,F(u_n)\right)$ своих значений на порождающих векторах и действует на произвольный вектор $v=\mathbf{u}x$, где $x\in K^n$ столбец коэффициентов линейного выражения вектора v через образующие \mathbf{u} , по правилу

$$F(ux) = F\left(\sum_{i=1}^{n} u_i x_i\right) = \sum_{i=1}^{n} F(u_i) x_i = F(u)x.$$
 (5-22)

Матрица перехода от набора векторов $F({m u})$ к образующим ${m w}$ модуля ${m M}$ обозначается

$$F_{wu} = C_{wF(u)} \in \mathrm{Mat}_{m \times n}(K)$$

и называется матрицей отображения F в образующих w и u. Её j-й столбец состоит из коэффициентов линейного выражения вектора $F(u_j)$ через векторы w. Согласно (5-22) произвольный вектор $v=ux\in N$, выражающийся через образующие u со столбцом коэффициентов x, переводится отображением F в вектор $F(v)=wF_{wu}x\in M$, который выражается через образующие w со столбцом коэффициентов $F_{wu}x$.

Вычисление (5-22) также показывает, что для любого набора векторов $v=(v_1,\dots,v_k)$ в N, любой матрицы $A\in \operatorname{Mat}_{\ell\times k}(K)$ и любого K-линейного отображения $F:N\to M$ выполняется равенство F(vA)=F(v)A.

Если K-модуль L порождается векторами $\boldsymbol{v} = (v_1, \dots, v_\ell)$ и K-линейные отображения

$$F: N \to L$$
 и $G: L \to M$

имеют матрицы F_{vu} и G_{wv} , соответственно, в образующих v, u и в образующих w, v, то композиция $H=GF:N\to M$ имеет в образующих w, u матрицу $H_{wu}=G_{wv}F_{vu}$, поскольку

$$H(\boldsymbol{u}) = G\big(F(\boldsymbol{u})\big) = G\big(\boldsymbol{v}F_{\boldsymbol{v}\boldsymbol{u}}\big) = G(\boldsymbol{v})F_{\boldsymbol{v}\boldsymbol{u}} = \boldsymbol{w}G_{\boldsymbol{w}\boldsymbol{v}}F_{\boldsymbol{v}\boldsymbol{u}} \,.$$

¹Ср. с n° 5.2.1 на стр. 90.

Предостережение 5.3. (некорректность обозначения F_{wu}) Если образующие w линейно зависимы, то как и в n° 5.3.2, матрица F_{wu} линейного отображения F определяется образующими w и w не однозначно, поскольку набор векторов F(w) имеет много разных линейных выражений через векторы w. Предыдущие формулы означают при этом, что если задано какое-то выражение v=ux вектора v через образующие w, то столбец коэффициентов $y=F_{wu}x$ даёт одно из возможных линейных выражений F(v)=wy вектора F(v) через образующие w и что получить одну из возможных матриц для композиции отображений можно перемножив какие-нибудь из матриц этих отображений в том же порядке, в каком берётся композиция.

Предостережение 5.4. (не все матрицы являются матрицами гомоморфизмов) Если образующие ${\pmb u}$ линейно зависимы, то матрица $F_{{\pmb w}{\pmb u}}$ не может быть произвольной: для любого линейного соотношения ${\pmb u}{\pmb x}=0$ между векторами ${\pmb u}$ в ${\pmb N}$ в модуле ${\pmb M}$ должно выполняться соотношение

$$0 = F(0) = F(ux) = wF_{wu}x,$$

т. е. отображение $x\mapsto F_{wu}x$ должно переводить коэффициенты любого линейного соотношения между образующими u в коэффициенты линейного соотношения между образующими w. Наоборот, если матрица F_{wu} обладает этим свойством, то правило $ux\mapsto w$ $F_{wu}x$ корректно задаёт K-линейное отображение $N\to M$, поскольку равенство $ux_1=ux_2$ означает, что $u(x_1-x_2)=0$, откуда $wF_{wu}(x_1-x_2)=0$, и значит, $wF_{wu}x_1=wF_{wu}x_2$. Мы получаем

Предложение 5.7

Если модули $N=K^n/R_N$ и $M=K^m/R_M$ заданы при помощи образующих и соотношений, как в прим. 5.12 на стр. 88, то матрица $A\in \mathrm{Mat}_{m\times n}(K)$ тогда и только тогда является матрицей некоторого линейного отображения $F:N\to M$, когда для любого столбца $x\in R_N$ столбец $Ax\in R_M$. Две такие матрицы A и B задают одинаковые отображения $N\to M$ если и только если $(A-B)x\in R_M$ для всех $x\in K^n$.

ПРИМЕР 5.19 (ГОМОМОРФИЗМЫ МЕЖДУ АДДИТИВНЫМИ ГРУППАМИ ВЫЧЕТОВ)

Как мы уже отмечали в прим. 5.4 на стр. 82, любые две абелевы группы A и B могут рассматриваться как модули над кольцом \mathbb{Z} .

Упражнение 5.30. Убедитесь, что отображение $A \to B$ является гомоморфизмом абелевых групп 1 если и только если оно \mathbb{Z} -линейно.

В аддитивной группе вычетов $\mathbb{Z}/(m)$, рассматриваемой как \mathbb{Z} -модуль, результатом умножения класса $[k]_m \in \mathbb{Z}/(m)$ на число $z \in \mathbb{Z}$ является класс $[zk]_m$. Поэтому класс $[1]_m$ порождает $\mathbb{Z}/(m)$ над \mathbb{Z} и отображение факторизации $\mathbb{Z} \to \mathbb{Z}/(m)$, $z \mapsto [z]_m$, является сюрьективным гомоморфизмом \mathbb{Z} -модулей. Таким образом, $\mathbb{Z}/(m)$ является фактором свободного модуля \mathbb{Z} по подмодулю соотношений $R = (m) \subset \mathbb{Z}$, который тоже свободен с базисом m. По предл. 5.7 каждое \mathbb{Z} -линейное отображение $\mathbb{Z}/(n) \to \mathbb{Z}/(m)$ получается из некоторого \mathbb{Z} -линейного отображения $\mathbb{Z} \to \mathbb{Z}$, отправляющего n в подмодуль $(m) \subset \mathbb{Z}$. Но $\mathrm{End}_{\mathbb{Z}}(\mathbb{Z}) \simeq \mathrm{Mat}_1(\mathbb{Z}) \simeq \mathbb{Z}$, и числу $a \in \mathbb{Z}$ отвечает при этом отождествлении эндоморфизм умножения на $a: z \mapsto az$. Так как $an \in (m)$ если и только если an является общим кратным m и n, мы заключаем, что a = k нок(m,n)/n, где $k \in \mathbb{Z}$ — любое. Два таких числа $a_1 = k_1$ нок(m,n)/n и $a_2 = k_2$ нок(m,n)/n задают одинаковые гомоморфизмы $\mathbb{Z}/(n) \to \mathbb{Z}/(m)$ если и только если они одинаково действуют на образующую $[1]_n$, т. е. тогда и только тогда, когда $[a_1]_m = [a_2]_m$. Поскольку $(k_1 - k_2)$ нок(m,n)/n

¹См. n° 1.5 на стр. 30.

делится на m если и только если k_1-k_2 делится на mn/нок(m,n)=нод(m,n), мы заключаем, что $\mathrm{Hom}_{\mathbb{Z}}(\mathbb{Z}/(n),\mathbb{Z}/(m))\simeq \mathbb{Z}/(\mathrm{Hod}(m,n))$. При этом изоморфизме классу $[k]\in\mathbb{Z}/(\mathrm{Hod}(m,n))$ отвечает гомоморфизм $\mathbb{Z}/(n)\to\mathbb{Z}/(m),[z]_n\mapsto [kz\,\mathrm{Hok}(n,m)/n]_m$. В частности, для всех n,m

$$\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/(n),\mathbb{Z}/(m)) \simeq \operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/(m),\mathbb{Z}/(n)),$$

и если m и n взаимно просты, то $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/(n),\mathbb{Z}/(m))\simeq \mathbb{Z}/(1)=0.$

Пример 5.20 (матрицы гомоморфизмов свободных модулей)

Если оба модуля N и M свободны и наборы векторов \boldsymbol{u} и \boldsymbol{w} являются их базисами, то, как мы видели в \mathbf{n}° 5.2.1 на стр. 90, сопоставление K-линейному отображению $F:N\to M$ его матрицы $F_{\boldsymbol{wu}}$ в этих базисах задаёт K-линейный изоморфизм $\operatorname{Hom}_K(N,M) \cong \operatorname{Mat}_{m\times n}(K), F\mapsto F_{\boldsymbol{wu}}$. В других базисах $\boldsymbol{e}=\boldsymbol{w}$ $C_{\boldsymbol{we}}$ и $\boldsymbol{f}=\boldsymbol{u}$ $C_{\boldsymbol{uf}}$ матрица гомоморфизма F примет вид

$$F_{fe} = C_{fu}F_{uw}C_{we} = C_{uf}^{-1}F_{u}C_{we} = C_{fu}F_{u}C_{ew}^{-1},$$
 (5-23)

поскольку $F(e) = F(w C_{we}) = F(w) C_{we} = u F_{uw} C_{uw} = f C_{fu} F_{uw} C_{uw}$.

Пример 5.21 (матрицы эндоморфизмов)

Пусть модуль M свободен и набор векторов u составляет его базис. Матрица F_{uu} линейного эндоморфизма $F:M\to M$ в базисах u и u обозначается просто F_u и называется матрицей эндоморфизма F в базисе u. По формуле (5-23) любом другом базисе u с u матрица оператора u имеет вид

$$F_{w} = C_{wu}F_{u}C_{uw} = C_{uw}^{-1}F_{u}C_{uw} = C_{wu}F_{u}C_{wu}^{-1}.$$
 (5-24)

Ответы и указания к некоторым упражнениям

- Упр. 5.1. Пусть $0 \cdot v = w$. Тогда $w + v = 0 \cdot v + 1 \cdot v = (0+1) \cdot v = 1 \cdot v = v$. Прибавляя к обеим частям этого равенства -v, получаем w = 0. Из равенства $0 \cdot v = 0$ вытекает, что $x \cdot 0 = x(0 \cdot v) = (x \cdot 0) \cdot v = 0 \cdot v = 0$. Наконец, равенство $(-1) \cdot v + v = (-1) \cdot v + 1 \cdot v = ((-1) + 1) \cdot v = 0 \cdot v = 0$ означает, что $(-1) \cdot v = -v$.
- Упр. 5.2. Не вполне очевидно, разве что, самое первое равенство. Оно вытекает из коммутативности умножения в кольце K: (vy)x = x(vy) = x(yv) = (xy)v = v(xy) = v(yx).
- Упр. 5.4. $\varphi\psi(xu+yw)=\varphi(x\psi(u)+y\psi(w))=x\varphi\psi(u)+y\varphi\psi(w).$
- Упр. 5.5. Сложите равенства $\varphi(\lambda u + \mu w) = \lambda \varphi(u) + \mu \varphi(w)$ и $\psi(\lambda u + \mu w) = \lambda \psi(u) + \mu \psi(w)$, а также умножьте первое из них на x.
- Упр. 5.6. Ядро и образ любого гомоморфизма абелевых групп являются абелевыми подгруппами согласно n° 1.5 на стр. 30. Если гомоморфизм K-линеен, то обе эти подгруппы выдерживают умножение на элементы из K, поскольку $x\varphi(u) = \varphi(xu)$ и $\varphi(u) = 0 \Rightarrow \varphi(xu) = x\varphi(u) = 0$.
- Упр. 5.7. Сопоставьте семейству гомоморфизмов $\varphi_{\mu}: N \to M_{\mu}$, в котором лишь конечное число ненулевых гомоморфизмов, отображение $\bigoplus_{\mu \in \mathcal{M}} \varphi_{\mu}: N \to \bigoplus_{\mu \in \mathcal{M}} M_{\mu}$, переводящее вектор $u \in N$ в семейство векторов $(\varphi_{\mu}(u))_{\mu \in \mathcal{M}}$ с конечным числом ненулевых членов.
- Упр. 5.8. Пусть $A \nsubseteq B$ две подгруппы в абелевой группе. Выберем $a \in A \setminus B$. Если $A \cup B$ является подгруппой, то $\forall b \in B \ a+b \in A \cup B$, но $a+b \notin B$, поскольку $a \notin B$. Следовательно, $a+b \in A$, откуда $b \in A$, т. е. $B \subseteq A$.
- Упр. 5.9. Все проверки проводятся дословно также, как для классов вычетов по модулю идеала коммутативного кольца (ср. с упр. 4.7 на стр. 70).
- Упр. 5.10. Так как каждый вектор $w\in M$ имеет единственное представление в виде $w=w_N+w_L$ с $w_N\in N$ и $w_L\in L$, корректно определены K-линейные сюрьекции $\pi_N:M\twoheadrightarrow N$ и $\pi_L:M\twoheadrightarrow L$, переводящие w_N+w_L соответственно в w_N и в w_L . Так как $\ker \pi_N=L$ и $\ker \pi_L=N$ отображения $\iota_{\pi_N}:M/L \cong N$ и $\iota_{\pi_L}:M/N \cong L$ из прим. 5.9 на стр. 86 являются искомыми изоморфизмами.
- Упр. 5.13. Если x' = x + y и w' = w + u, где $y \in I$, $u \in IM$, то [x'w'] = [xw + (xu + yw + xu)] = [xw], так как сумма в круглых скобках лежит в IM.
- Упр. 5.14. Поскольку подмодули N_i линейно порождают M, подмодули IN_i линейно порождают IM. Очевидно, что $IN_i \subset N_i \cap IM$, и при этом каждый подмодуль $N_i \cap IM$ имеет нулевое пересечение с суммой подмодулей $N_{\nu} \cap IM$ по всем $\nu \neq i$, ибо $N_i \cap \sum_{\nu \neq i} N_{\nu} = 0$.

Упр. 5.18. Ответ:

$$[E_{ij}, E_{k\ell}] \stackrel{\text{def}}{=} E_{ij} E_{k\ell} - E_{k\ell} E_{ij} = \begin{cases} E_{ii} - E_{jj} & \text{при } j = k \text{ и } i = \ell \\ E_{i\ell} & \text{при } j = k \text{ и } i \neq \ell \\ -E_{kj} & \text{при } j \neq k \text{ и } i = \ell \\ 0 & \text{в остальных случаях.} \end{cases}$$

Упр. 5.20. Прямая проверка:

$$\begin{split} (AB)^{\vee} &= \left(\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \right)^{\vee} = \begin{pmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{21} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{21} + a_{22}b_{22} \end{pmatrix}^{\vee} = \\ &= \begin{pmatrix} a_{21}b_{21} + a_{22}b_{22} & -a_{11}b_{21} - a_{12}b_{22} \\ -a_{21}b_{11} - a_{22}b_{21} & a_{11}b_{11} + a_{12}b_{21} \end{pmatrix} = \begin{pmatrix} b_{22} & -b_{12} \\ -b_{21} & b_{11} \end{pmatrix} \begin{pmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{pmatrix} = B^{\vee}A^{\vee} \end{split}$$

Упр. 5.25. Оба равенства проверяются прямым вычислением.