§6. Конечно порождённые модули над областью главных идеалов

Всюду в этом параграфе K означает произвольную область главных идеалов. Все рассматриваемые нами K-модули по умолчанию предполагаются конечно порождёнными. Под свободным K-модулем ранга нуль понимается нулевой K-модуль.

6.1. Метод Гаусса. Будем называть элементарным преобразованием строк прямоугольной матрицы $A \in \operatorname{Mat}_{m \times n}(K)$ замену каких-нибудь двух строк r_i и r_i их линейными комбинациями

$$r_i' = \alpha r_i + \beta r_i$$
 и $r_i' = \gamma r_i + \delta r_i$

с обратимым определителем $\Delta = \alpha \delta - \beta \gamma \in K$. В этом случае матрица преобразования

$$\begin{pmatrix} r_i \\ r_i \end{pmatrix} \mapsto \begin{pmatrix} r_i' \\ r_i' \end{pmatrix} = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \begin{pmatrix} r_i \\ r_i \end{pmatrix}$$

обратима 1 , и исходные строки r_i и r_j восстанавливаются из преобразованных строк r_i' и r_j' по формулам $r_i = (\delta r_i' - \beta r_j')/\Delta$ и $r_j = (-\gamma r_i' + \alpha r_j')/\Delta$.

Упражнение 6.1. Убедитесь в этом.

В частности, прибавление к одной строке другой строки, умноженной на произвольное число $x \in K$, а также перестановка двух строк местами и умножение строк на обратимые элементы $s_1, s_2 \in K$ тоже являются элементарными преобразованиями, задаваемыми 2×2 матрицами

$$\begin{pmatrix} 1 & 0 \\ x & 1 \end{pmatrix}$$
, $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ и $\begin{pmatrix} s_1 & 0 \\ 0 & s_2 \end{pmatrix}$.

Элементарное преобразование не меняет линейной оболочки строк матрицы A и заключается в умножении A слева на обратимую $m \times m$ матрицу L, которая получается из единичной $m \times m$ матрицы тем же самым элементарным преобразованием строк, что происходит в матрице A.

Симметричным образом, элементарным преобразованием столбцов матрицы A мы называем замену каких-нибудь двух столбцов c_i и c_j их линейными комбинациями $c_i' = \alpha c_i + \beta c_j$ и $c_j' = \gamma c_i + \delta c_j$ с обратимым в K определителем $\alpha \delta - \beta \gamma$. Такое преобразование не меняет линейной оболочки столбцов матрицы A и достигается умножением A справа на обратимую $n \times n$ матрицу R, которая получается из единичной $n \times n$ матрицы тем же самым элементарным преобразованием столбцов, что производится в матрице A. Прибавление к одному из столбцов другого, умноженного на произвольное число $x \in K$, а также перестановка столбцов местами и умножение столбцов на обратимые элементы из K являются частными примерами элементарных преобразований.

Лемма 6.1

В области главных идеалов K любую пару ненулевых элементов (a,b), стоящих в одной строке (соотв. в одном столбце) матрицы $A \in \operatorname{Mat}_{m \times n}(K)$, можно подходящим элементарным преобразованием содержащих их столбцов (соотв. строк) заменить парой (d,0), где $d = \operatorname{hod}(a,b)$.

Доказательство. Запишем $d=\log(a,b)$ как d=ax+by, и пусть a=da', b=db'. Тогда a'x+b'y=1 и a'b-b'a=0. Поэтому

$$(a,b)\cdot \begin{pmatrix} x & -b' \\ y & a' \end{pmatrix} = (d,0)$$
 и $\begin{pmatrix} x & y \\ -b' & a' \end{pmatrix} \cdot \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} d \\ 0 \end{pmatrix}$,

¹См. прим. 5.15 на стр. 92.

где
$$\det \begin{pmatrix} x & -b' \\ y & a' \end{pmatrix} = \det \begin{pmatrix} x & y \\ -b' & a' \end{pmatrix} = 1.$$

Теорема 6.1

В области главных идеалов K любая матрица $A \in \mathrm{Mat}_{m \times n}(K)$ конечным числом элементарных преобразований строк и столбцов преобразуется в матрицу $D_A = (d_{ij})$, у которой $d_{ij} = 0$ при $i \neq j$ и $d_{ii} \mid d_{jj}$ при i < j, где мы считаем, что $d \mid 0$ для всех $d \in K$, но $0 \nmid d$ при $d \neq 0$.

Доказательство. Если A=0, то доказывать нечего. Если $A\neq 0$, то перестановками строк и столбцов добьёмся, чтобы $a_{11}\neq 0$. Если все элементы матрицы A делятся на a_{11} , то вычитая из всех строк подходящие кратности первой строки, а из всех столбцов — подходящие кратности первого столбца, добьёмся того, чтобы все элементы за исключением a_{11} в первом столбце и первой строке занулились. При этом все элементы матрицы останутся делящимися на a_{11} , и можно заменить A на матрицу размера $(m-1)\times (n-1)$, дополнительную к первой строке и первому столбцу матрицы A, после чего повторить процедуру.

Пусть в матрице A есть элемент a, не делящийся на a_{11} , и d= нод (a,a_{11}) . Ниже мы покажем, что в этом случае можно элементарными преобразованиями перейти к новой матрице A' с $a'_{11}=d$. Так как $(a_{11})\subsetneq (d)$, главный идеал, порождённый левым верхним угловым элементом матрицы, при таком переходе строго увеличится. Поскольку в области главных идеалов не существует бесконечно возрастающих цепочек строго вложенных друг в друга идеалов, после конечного числа таких переходов мы получим матрицу, все элементы которой делятся на a_{11} , и к этой матрице будут применимы предыдущие рассуждения.

Если не делящийся на a_{11} элемент a стоит в первой строке или первом столбце, достаточно заменить пару (a_{11},a) на (d,0) по лем. 6.1. Если все элементы первой строки и первого столбца делятся на a_{11} , а не делящийся на a_{11} элемент a стоит строго ниже и правее a_{11} , то мы, как и выше, сначала занулим все элементы первой строки и первого столбца за исключением самого a_{11} , вычитая из всех строк подходящие кратности первой строки, а из всех столбцов — подходящие кратности первого столбца. К элементу a при этом будут добавляться числа, кратные a_{11} , и нод (a,a_{11}) не изменится. Далее, прибавим ту строку, где стоит a, к первой строке и получим в ней копию элемента a. Наконец, заменим пару (a_{11},a) на (d,0) по лем. 6.1.

6.1.1. Инвариантные множители и нормальная форма Смита. Ниже, в \mathbf{n}° 6.3.4 на стр. 118 мы покажем, что «диагональная» матрица D_A , в которой $d_{ij}=0$ при $i\neq j$ и $d_{ii}\mid d_{jj}$ при i< j, с точностью до умножения её элементов на обратимые элементы из K не зависит от выбора последовательности элементарных преобразований, приводящих матрицу A к такому виду. По этой причине диагональные элементы d_{ii} матрицы D_A называются инвариантными множителями матрицы A, а сама диагональная матрица D_A — нормальной формой Смита матрицы A.

Так как каждое элементарное преобразование строк (соотв. столбцов) матрицы A является результатом умножения матрицы A слева (соотв. справа) на квадратную обратимую матрицу, которая получается из единичной матрицы E ровно тем же преобразованием, что совершается в матрице A, мы заключаем, что $D_A = LAR$, где $L = L_\ell \dots L_2 L_1$ и $R = R_1 R_2 \dots R_r$ — обратимые матрицы размеров $m \times m$ и $n \times n$, являющиеся произведениями обратимых матриц L_i и R_j , осуществляющих последовательные элементарные преобразования строк и столбцов матрицы A. Мы будем называть L и R матрицами перехода от матрицы A к её нормальной форме Смита. Так как $L = L_\ell \dots L_1 E$ и $R = ER_1 \dots R_r$, матрицы L и R получаются из единичных матриц размеров $m \times m$ и $n \times n$ теми же цепочками элементарных преобразований строк и соответственно столбцов, которые производились с матрицей A. Поэтому для явного отыскания матриц L

и R следует приписать к матрице $A\in \mathrm{Mat}_{m\times n}(K)$ справа и снизу единичные матрицы размеров $m\times m$ и $n\times n$ так, что получится Γ -образная таблица вида

$$\begin{bmatrix} A & E \\ E & \end{bmatrix}$$

и в процессе приведения матрицы A к диагональному виду осуществлять элементарные преобразования строк и столбцов сразу во всей Γ -образной таблице. В результате на выходе получится Γ -образная таблица

$$\begin{array}{|c|c|c|}
\hline
D_A & L \\
\hline
R & \\
\end{array}$$

Пример 6.1

Вычислим нормальную форму Смита и матрицы перехода к ней для целочисленной матрицы

$$A = \begin{pmatrix} -9 & -18 & 15 & -24 & 24 \\ 15 & 30 & -27 & 42 & -36 \\ -6 & -12 & 6 & -12 & 24 \\ 31 & 62 & -51 & 81 & -87 \end{pmatrix} \in \operatorname{Mat}_{4x5}(\mathbb{Z}).$$

Составляем Г-образную матрицу

Прибавим к 4-й строке третью, умноженную на 5 и переставим полученную строку наверх:

1	2	-21	21	33	0	0	5	1
- 9	-18	15	-24	24	1	0	0	0
15	30	-27	42	-36	0	1	0	0
-6	-12	6	-12	24	0	0	1	0
1	0	0	0	0				
0	1	0	0	0				
0	0	1	0	0				
0	0	0	1	0				
0	0	0	0	1				

Теперь обнулим 1-ю строку и 1-й столбец левой матрицы вне левого верхнего угла, прибавив

ко всем строкам и столбцам надлежащие кратности 1-й строки и 1-го с	
	столона:

1	0	0	0	0	0	0	5	1
0	0	-174	165	321	1	0	45	9
0	0	288	-273	-531	0	1	-75	-15
0	0	-120	114	222	0	0	31	6
1	-2	21	-21	-33				
0	1	0	0	0				
0	0	1	0	0				
0	0	0	1	0				
0	0	0	0	1				

Делаем второй столбец пятым, а к 3-му столбцу прибавляем 4-й:

1	0	0	0	0	0	0	5	1
0	- 9	165	321	0	1	0	45	9
0	15	-273	-531	0	0	1	-75	-15
0	-6	114	222	0	0	0	31	6
1	0	-21	-33	-2				
0	0	0	0	1				
0	1	0	0	0				
0	1	1	0	0				
0	0	0	1	0				

Вычитаем из 2-й строки 4-ю:

1	0	0	0	0	0	0	5	1
0	-3	51	99	0	1	0	14	3
0	15	-273	-531	0	0	1	-75	-15
0	-6	114	222	0	0	0	31	6
1	0	-21	-33	-2				
0	0	0	0	1				
0	1	0	0	0				
0	1	1	0	0				
0	0	0	1	0				

Все элементы 3×4 матрицы, стоящей в строках со 2-й по 4-ю и столбцах со 2-го по 5-й, делятся на 3. Поэтому мы обнуляем в этой матрице верхнюю строку и левый столбец, вычитая из 3-й и 4-й строк подходящие кратности 2-й строки, а потом из 3-го и 4-го столбцов — подходящие кратности 2-го:

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 5 & 1 \\ 0 & -3 & 0 & 0 & 0 & 1 & 0 & 14 & 3 \\ 0 & 0 & -18 & -36 & 0 & 5 & 1 & -5 & 0 \\ 0 & 0 & 12 & 24 & 0 & -2 & 0 & 3 & 0 \\ \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -21 & -33 & -2 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 17 & 33 & 0 \\ 0 & 1 & 18 & 33 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ \end{bmatrix}$$

Теперь прибавляем к 3-й строке 4-ю:

1	0	0	0	0	0	0	5	1
0	-3	0	0	0	1	0	14	3
0	0	-6	-12	0	3	1	-2	0
0	0	12	24	0	-2	0	3	0
1	0	-21	-33	-2				
0	0	0	0	1				
0	1	17	33	0				
0	1	18	33	0				
0	0	0	1	0				

и видим, что можно занулить все недиагональные элементы исходной матрицы, прибавляя к 4-й строке удвоенную 3-ю и вычитая из 4-го столбца удвоенный 3-й:

Таким образом, инвариантные множители матрицы A суть 1, -3, -6, 0 и

$$L = \begin{pmatrix} 0 & 0 & 5 & 1 \\ 1 & 0 & 14 & 3 \\ 3 & 1 & -2 & 0 \\ 4 & 2 & -1 & 0 \end{pmatrix}, \quad R = \begin{pmatrix} 1 & 0 & -21 & 9 & -2 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 17 & -1 & 0 \\ 0 & 1 & 18 & -3 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}, \quad D_A = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & -3 & 0 & 0 & 0 \\ 0 & 0 & -6 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

Упражнение 6.2. Проверьте равенство $LAR = D_A$ прямым вычислением.

6.1.2. Отыскание обратной матрицы. Пусть квадратная матрица $A \in \operatorname{Mat}_n(K)$ обратима. Тогда и любая матрица вида B = LAR, где $L, R \in \operatorname{Mat}_n(K)$ обратимы, тоже обратима, ибо матрица $R^{-1}A^{-1}L^{-1}$ обратна к B. В частности, обратимы все матрицы, которые получаются из A элементарными преобразованиями строк и столбцов, включая нормальную форму Смита D_A .

Упражнение 6.3. Убедитесь, что диагональная матрица обратима если и только если обратимы все её диагональные элементы.

Таким образом, матрица A обратима если и только если обратимы все её инвариантные множители, и в этом случае существуют такие обратимые матрицы $L = L_{\ell} \dots L_1$ и $R = R_1 \dots R_r$,

что LAR = E, а каждая из матриц L_{ν} , R_{μ} имеет вид

где на обозначенных многоточиями местах главной диагонали стоят единицы, в остальных местах — нули, а определитель $\alpha\beta-\beta\gamma\in K$ обратим. В этом случае $A=L^{-1}ER^{-1}=L^{-1}R^{-1}$, откуда $A^{-1}=RL=RLE$, а E=RLA, т. е. умножение слева на матрицу $RL=R_1\dots R_rL_\ell\dots L_1$ задаёт цепочку элементарных преобразований строк, превращающую матрицу A в матрицу A, а матрицу A.

Упражнение 6.4. Покажите, что элементарными преобразованиями строк матрицы A можно превратить любой её ненулевой столбец в столбец, единственным ненулевым элементом которого является нод элементов исходного столбца матрицы A, и если этот элемент необратим, то и матрица A необратима.

Таким образом, чтобы выяснить, обратима ли $n \times n$ матрица A, и найти A^{-1} , если A обратима, следует элементарными преобразованиями строк и столбцов $n \times 2n$ матрицы $A \mid E$ попытаться получить в левой половине матрицу E, последовательно слева направо обнуляя в каждом столбце все элементы, кроме одного. Если в ходе вычислений матрица A превратится в заведомо необратимую матрицу, то и сама матрица A необратима. Ну а если удастся превратить матрицу A в матрицу E, то на выходе получится матрица A0, в которой A1.

Пример 6.2

Выясним, обратима ли в $\mathrm{Mat}_4(\mathbb{Z})$ матрица

$$A = \begin{pmatrix} 1 & -3 & 2 & 2 \\ -3 & 9 & -6 & -5 \\ -1 & 4 & 0 & 2 \\ 3 & -7 & 11 & 12 \end{pmatrix}.$$

Приписываем к ней справа единичную матрицу:

Обнуляем 1-й столбец вне левого верхнего угла, прибавляя ко всем строкам надлежащие кратности 1-й строки:

1	-3	2	2	1	0	0	0	
0	0	0	1	3	1	0	0	
0	1	2	4	1	0	1	0	
0	2	5	6	-3	0	0	1	

Теперь обнуляем верхний и нижний элементы 2-го столбца, прибавляя к верхней и нижней строкам надлежащие кратности 3-й строки, после чего переставляем 2-ю строку вниз:

1	0	8	14	4	0	3	0	
0	1	2	4	1	0	1		
0	0	1	-2	-5	0	-2	1	•
0	0	0	1	3	1	0	0	

Обнуляем верхние два элемента 3-го столбца, прибавляя к верхним двум строкам надлежащие кратности 3-й строки:

Наконец, обнуляем 4-й столбец над нижней единицей, прибавляя к верхним трём строкам надлежащие кратности 4-й строки:

Таким образом, матрица А обратима и

$$A^{-1} = \begin{pmatrix} -46 & -30 & 19 & -8 \\ -13 & -8 & 5 & -2 \\ 1 & 2 & -2 & 1 \\ 3 & 1 & 0 & 0 \end{pmatrix}.$$

Упражнение 6.5. Проверьте прямым умножением двух матриц, что $AA^{-1} = E$.

6.1.3. Решение систем линейных уравнений. Система линейных уравнений

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ a_{31}x_1 + a_{32}x_2 + \dots + a_{3n}x_n = b_3 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$
(6-1)

на неизвестные x_1,\dots,x_n в матричных обозначениях записывается одним равенством Ax=b, в котором $A=\begin{pmatrix} a_{ij} \end{pmatrix} \in \operatorname{Mat}_{m \times n}(K)$, а x и b обозначают столбцы высоты n и m, состоящие из неизвестных и правых частей уравнений (6-1). Как и выше, обозначим через $D_A=LAR$ нормальную форму Смита матрицы A. Умножая равенство Ax=b слева на L и полагая x=Ry, где $y=R^{-1}x$ — новые переменные, получаем систему уравнений $D_Ay=c$ на неизвестные y, в которой c=Lb и матрица коэффициентов D_A диагональна, и которая равносильна (6-1) в том смысле, что между решениями обеих систем имеется K-линейная биекция x=Ry. В частности, система $D_Ay=c$ совместна если и только если совместна исходная система (6-1).

Уравнения системы $D_A y = c$ имеют вид $d_{ii} y_i = c_i$. Такое уравнение не имеет решений, если и только если $d_{ii} \nmid c_i$. Если же $d_{ii} \mid c_i$, то при $d_{ii} = c_i = 0$ решениями уравнения являются все числа $y_i \in K$, а при $d_{ii} \neq 0$ уравнение имеет единственное решение $y_i = c_i/d_{ii}$.

Пусть $d_{ii}\neq 0$ при $i\leqslant r$ и $d_{jj}=0$ при j>r. Мы заключаем, что система $D_Ay=c$ несовместна если и только если $d_{ii}\nmid c_i$ хотя бы при одном $i\leqslant r$ или $c_j\neq 0$ хотя бы при одном j>r, и в этом случае исходная система (6-1) тоже несовместна. Если же система $D_Ay=c$ совместна, то её решения имеют вид $y=w_0+w$, где $w_0=(c_1/d_{11},\dots,c_r/d_{rr},0,\dots,0)^t$, а вектор $w\in K^n$ пробегает свободный подмодуль ранга $\min(m,n)-r$ с базисом из векторов

$$W_k = (0, \dots, 0, 1, 0, \dots, 0)^t$$
, где 1 стоит на $(r+k)$ -м месте,

и в этом случае все решения исходной системы (6-1) имеют вид $x=u_0+u$, где $u_0=Rw_0$, а $u\in K^n$ пробегает свободный подмодуль ранга $\min(m,n)-r$ с базисом из векторов $u_k=Rw_k$.

Отметим, что столбец c=Lb правых частей системы $D_Ay=c$ получается из столбца b правых частей исходной системы (6-1) теми же преобразованиями строк, что производятся с матрицей A в процессе её приведения к виду D_A , а матрица R получается из единичной матрицы E теми же преобразованиями столбцов, что производятся с матрицей A в том же процессе. Поэтому для отыскания c и R можно составить Γ -образную матрицу вида

$$\begin{bmatrix} A & b \\ E \end{bmatrix}$$

приведести А к нормальной форме Смита и получить на выходе

$$\begin{bmatrix} D_A & c \\ R \end{bmatrix}$$
.

Пример 6.3

Найдём все целые решения системы уравнений

$$\begin{cases} -65x_1 - 156x_2 + 169x_3 + 104x_4 = 117 \\ -143x_1 - 351x_2 + 364x_3 + 221x_4 = 195 \\ 52x_1 + 117x_2 - 143x_3 - 91x_4 = -156 \end{cases}$$
(6-2)

Для этого составим Г-образную таблицу из матрицы коэффициентов при неизвестных, к которой справа приписана матрица правых частей уравнений, а снизу — единичная матрица:

-65	-156	169	104	117
-143	-351	364	221	195
52	117	-143	-91	-156
1	0	0	0	
0	1	0	0	
0	0	1	0	
0	0	0	1	

-13	-39	26	13	-39
-65	-156	169	104	117
52	117	-143	-91	-156
1	0	0	0	
0	1	0	0	
0	0	1	0	
0	0	0	1	

Вычтем из 2-й строки 1-ю, умноженную на 2, и поменяем две верхние строки местами:

Поскольку все элементы матрицы коэффициентов делятся на 13, зануляем в ней верхнюю строку и левый столбец, за исключением верхнего левого углового элемента, прибавляя ко 2-й и 3-й строкам надлежащие кратности 1-й строки, а ко 2-му, 3-му и 4-му столбцам — надлежащие кратности 1-го столбца:

Прибавляем к 3-й строке 2-ю, после чего вычитаем 2-й столбец из 3-го и 4-го:

_	13	0	0	0	-39	
	0	39	0	0	312	
	0	0	0	0	0	
	1	-3	5	4		
	0	1	-1	-1		
	0	0	1	0		
	0	0	0	1		

Мы заключаем, что система (6-2) равносильна системе

$$\begin{cases}
-13y_1 = -39 \\
39y_2 = 312
\end{cases}$$
(6-3)

на *четыре* неизвестные y_1, \dots, y_4 , через которые исходные неизвестные x_1, \dots, x_4 выражаются по формуле:

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 1 & -3 & 5 & 4 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix} .$$
 (6-4)

Все решения системы (6-3) описываются формулой:

$$(y_1, y_2, y_3, y_4) = (3, 8, z_1, z_2),$$
 где $z_1, z_2 \in \mathbb{Z}$ — любые.

Решения исходной системы получаются из них по формуле (6-4):

$$(x_1, x_2, x_3, x_4) = (5z_1 + 4z_2 - 21, 8 - z_1 - z_2, z_1, z_2),$$
 где $z_1, z_2 \in \mathbb{Z}$ — любые.

6.2. Инвариантные множители. Как мы видели в прим. 5.12 на стр. 88, произвольный K-модуль M, линейно порождённый над K конечным набором векторов

$$\mathbf{w} = (w_1, \dots, w_m),$$

представляет собою фактор $M\simeq K^m/R_{\pmb w}$ свободного координатного модуля K^m по подмодулю $R_{\pmb w}\subset K^m$ линейных соотношений между порождающими векторами $\pmb w$. Подмодуль $R_{\pmb w}$ состоит из всех таких строк $(x_1,\ldots,x_m)\in K^m$, что $x_1w_1+\ldots+x_mw_m=0$ в M, и является ядром эпиморфизма

$$\pi_{\mathbf{w}} : K^m \to M, \quad (x_1, \dots, x_m) \mapsto x_1 w_1 + \dots + x_m w_m.$$
 (6-5)

Теорема 6.2

Каждый подмодуль N в свободном модуле F конечного ранга над областью главных идеалов K тоже свободен, и $\mathrm{rk}\,N\leqslant\mathrm{rk}\,F$.

Доказательство. Индукция по $m=\operatorname{rk} F$. При m=1 модуль $N\simeq K$, и каждый ненулевой подмодуль $N\subset K$ представляет собою главный идеал $(d)\subset K$, который является свободным K-модулем ранга 1 с базисом d. Пусть теперь m>1. Зафиксируем в F базис e_1,\ldots,e_m и будем записывать векторы из N строками их координат в этом базисе. Первые координаты всевозможных векторов $v\in N$ образуют идеал $(d)\subset K$. Если d=0, подмодуль N содержится в свободном модуле ранга m-1 с базисом e_2,\ldots,e_m . По индукции, такой модуль N свободен и $\operatorname{rk} N\leqslant (m-1)$. Если $d\neq 0$, обозначим через $u\in N$ какой-нибудь вектор с первой координатой d. Порождённый вектором u модуль Ku свободен ранга 1, поскольку равенство xu=0 влечёт равенство xd=0, возможное в целостном кольце K только при x=0. Покажем, что $N=Ku\oplus N'$, где $N'\subset N$ —подмодуль, состоящий из векторов с нулевой первой координатой. Очевидно, что $Ku\cap N'=0$. Если первая координата вектора $v\in N$ равна xd, то v=xu+w, где $w=v-xu\in N'$. Поэтому N=Ku+N', и $N=Ku\oplus N'$ по предл. 5.2 на стр. 85. Модуль N' содержится в свободном модуле ранга m-1 с базисом e_2,\ldots,e_m . По индукции он свободен и $\operatorname{rk} N'\leqslant (m-1)$. Поэтому $N=Ku\oplus N'$ тоже свободен и $\operatorname{rk} N=1+\operatorname{rk} N'\leqslant m$.

Пример 6.4 (качественный анализ систем линейных уравнений)

Каждая матрица $A\in \operatorname{Mat}_{m\times n}(K)$ задаёт K-линейное отображение $F_A:K^n\to K^m, x\mapsto Ax$, переводящее стандартные базисные векторы $e_1,\dots,e_n\in K^n$ в столбцы матрицы A. Множество решений системы линейных уравнений Ax=b является полным прообразом $F^{-1}(b)$ данного вектора $b\in K^m$ при отображении F_A . Если $b\notin \operatorname{im} F_A$, то этот прообраз пуст и система Ax=b несовместна. Если $b\in \operatorname{im} F_A$, то $F_A^{-1}(b)=w+\ker F_A$ представляет собою сдвиг свободного модуля $\ker F_A\subset K^n$ на такой вектор $w\in K^n$, что F(w)=b. На языке уравнений ядро $\ker F_A$ является множеством решений системы однородных линейных уравнений Ax=0 с теми же самыми левыми частями, что и система Ax=b. Наличие у такой системы ненулевого решения означает, что $\ker F_A\neq 0$, и в этом случае любая система Ax=b либо несовместна, либо множество её решений является сдвигом свободного модуля положительного ранга, что согласуется с n° 6.1.3 на стр. 108.

Теорема 6.3 (теорема о взаимном базисе)

Пусть F — свободный модуль ранга m над областью главных идеалов K, и $N \subset F$ — произвольный его подмодуль. Тогда в модуле F существует такой базис $\mathbf{e} = (e_1, \dots, e_m)$, что подходящие кратности $\lambda_1 e_1, \dots, \lambda_n e_n$ первых $n = \operatorname{rk} N$ его базисных векторов составляют базис в N и $\lambda_i \mid \lambda_j$ при i < j.

Доказательство. Зафиксируем произвольные базисы $\boldsymbol{w}=(w_1,\dots,w_m)$ в F и $\boldsymbol{u}=\boldsymbol{w}$ $C_{\boldsymbol{wu}}$ в N. Последний существует по теор. 6.2 и состоит из $n\leqslant m$ векторов. Обозначим через $D=LC_{\boldsymbol{wu}}R$ нормальную форму Смита матрицы перехода $C_{\boldsymbol{wu}}$. Поскольку матрицы L и R обратимы, набор векторов $\boldsymbol{e}=\boldsymbol{w}$ L^{-1} является базисом в F, а набор векторов $\boldsymbol{v}=\boldsymbol{u}$ R — базисом в N. Так как

$$v = uR = wC_{wu}R = eLC_{wu}R = eD$$

векторы $v_i = d_{ii}e_i$ базиса \boldsymbol{v} имеют предписанный теоремой вид, в котором $\lambda_i = d_{ii}$ суть инвариантные множители матрицы $C_{\boldsymbol{wu}}$.

Определение 6.1

Множители $\lambda_1,\dots,\lambda_n$ из теор. 6.3 называются инвариантными множителями подмодуля N в свободном модуле F, а построенные в теор. 6.3 базисы e_1,\dots,e_m в F и $\lambda_1e_1,\dots,\lambda_ne_n$ в N называются взаимными базисами свободного модуля F и его подмодуля N. В n° 6.3.4 на стр. 118 ниже мы покажем, что множители λ_i не зависят от выбора взаимных базисов, что оправдывает эпитет «инвариантные» в их названии.

Пример 6.5

Построим взаимные базисы целочисленной решётки \mathbb{Z}^3 и её подрешётки $L\subset\mathbb{Z}^3$, порождённой столбцами матрицы

$$A = \begin{pmatrix} 126 & 51 & 72 & 33 \\ 30 & 15 & 18 & 9 \\ 60 & 30 & 36 & 18 \end{pmatrix}. \tag{6-6}$$

Обозначим через ${\bf e}=(e_1,e_2,e_3)$ стандартный базис в \mathbb{Z}^3 . По условию, столбцы матрицы A, т. е. векторы ${\bf a}=(a_1,a_2,a_3,a_4)={\bf e}\,A$ порождают решётку L. Пусть $D_A=LAR$ — нормальная форма Смита матрицы A. Тогда векторы ${\bf w}={\bf a}\,R={\bf e}\,AR$ тоже порождают L, поскольку образующие ${\bf a}={\bf w}\,R^{-1}$ линейно через них выражаются. По предл. 5.6 на стр. 97 векторы ${\bf u}={\bf e}\,L^{-1}$ составляют базис в \mathbb{Z}^3 , так как матрица перехода от них к стандартному базису обратима. При этом ${\bf e}={\bf u}\,L$. В силу равенств ${\bf w}={\bf e}\,AR={\bf u}\,LAR={\bf u}\,D_A$, образующие $w_i=d_{ii}u_i$ пропорциональны базисным векторам u_i . Поэтому взаимные базисы в \mathbb{Z}^3 и L состоят из векторов ${\bf u}$, т. е. столбцов матрицы L^{-1} , и векторов $w_i=d_{ii}u_i$ с ненулевыми d_{ii} . Для их отыскания приведём матрицу A к нормальной форме Смита. Так как матрица R нас сейчас не интересует, в вычислении из прим. 6.1 на стр. 104 можно ограничиться только верхней частью Γ -образной таблицы:

Отнимаем из первой строки удвоенную третью:

6	-9	0	-3	1	0	-2
30	15	18	9	0	1	0
60	30	36	18	0	0	1

и делаем четвёртый столбец первым:

-3	6	-9	0	1	0	-2	
9	30	15	18	0	1	0	
18	60	30	36	0	0	1	

Так как все элементы левой матрицы делятся на 3, зануляем в ней 1-ю строку и 1-й столбец вне левого верхнего угла:

Теперь зануляем 3-ю строку, отнимая из неё удвоенную 2-ю:

$$\begin{bmatrix} -3 & 0 & 0 & 0 & 1 & 0 & -2 \\ 0 & 48 & -12 & 18 & 3 & 1 & -6 \\ 0 & 0 & 0 & 0 & 0 & -2 & 1 \end{bmatrix}.$$

Прибавляем к 3-му столбцу 4-й и переставляем результат во 2-й столбец:

$$\begin{bmatrix} -3 & 0 & 0 & 0 & 1 & 0 & -2 \\ 0 & 6 & 48 & 18 & 3 & 1 & -6 \\ 0 & 0 & 0 & 0 & 0 & -2 & 1 \end{bmatrix}$$

Отнимаем из 3-го и 4-го столбцов 2-й, умноженный на 8 и на 3, меняем знак в первой строке и получаем окончательно:

$$\boxed{D_A \mid L} = \begin{bmatrix} 3 & 0 & 0 & 0 & -1 & 0 & 2 \\ 0 & 6 & 0 & 0 & 3 & 1 & -6 \\ 0 & 0 & 0 & 0 & 0 & -2 & 1 \end{bmatrix}.$$

Из проделанного вычисления уже видно, что $L\simeq\mathbb{Z}^2$, а $\mathbb{Z}^3/L\simeq\mathbb{Z}/(3)\oplus\mathbb{Z}/(6)\oplus\mathbb{Z}$. Для отыскания матрицы L^{-1} действуем как в прим. 6.2 на стр. 107: приписываем к L единичную матрицу

$$L = \begin{bmatrix} -1 & 0 & 2 & 1 & 0 & 0 \\ 3 & 1 & -6 & 0 & 1 & 0 \\ 0 & -2 & 1 & 0 & 0 & 1 \end{bmatrix},$$

прибавляем ко 2-й строке утроенную 1-ю:

затем прибавляем к 3-й строке удвоенную 2-ю:

наконец, отнимаем из 1-й строки удвоенную 3-ю, меняем в ней знак и получаем

$$L^{-1} = \begin{pmatrix} 11 & 4 & 2 \\ 3 & 1 & 0 \\ 6 & 2 & 1 \end{pmatrix}.$$

Таким образом, взаимные базисы решётки \mathbb{Z}^3 и её подрешётки L состоят из векторов

$$u_1 = (11, 3, 6), \quad u_2 = (4, 1, 2), \quad u_3 = (2, 0, 1)$$

и векторов $w_1 = 3u_1 = (33, 9, 18), w_2 = 6u_2 = (24, 6, 12).$

Упражнение 6.6. Выразите последние два вектора через столбцы матрицы (6-6).

6.3. Элементарные делители. Зафиксируем в каждом классе ассоциированных простых элементов кольца K какого-нибудь представителя и обозначим множество всех этих попарно неассоциированных представителей через P(K). Как и ранее, будем обозначать через $v_p(m)$ показатель, с которым $p \in P(K)$ входит в разложение элемента $m \in K$ на простые множители. Сопоставим каждому упорядоченному набору необратимых чисел

$$\lambda_1, \dots, \lambda_n \in K$$
, где $\lambda_i \mid \lambda_i$ при $i < j$, (6-7)

неупорядоченное дизъюнктное объединение по всем $i=1,\ldots,n$ степеней $p^{\nu_p(\lambda_i)}$ с ненулевыми показателями $\nu_p(\lambda_i)$. Иначе говоря, рассмотрим для каждого $i=1,\ldots,n$ разложение на простые множители $\lambda_i = \prod_{p \in P(K)} p^{\nu_p(\lambda_i)}$ и соберём все участвующие в этих разложениях сомножители p^{ν} с $\nu>0$ в одно неупорядоченное множество, где каждая степень p^{ν} , присутствующая в разложении ровно k чисел λ_i , тоже присутствует ровно k раз. Получающееся таким образом неупорядоченное множество (возможно повторяющихся) степеней p^{ν} называется набором элементарных делителей упорядоченного набора (6-7).

Лемма 6.2

Описанная выше процедура устанавливает биекцию между рассматриваемыми с точностью до умножения каждого элемента на обратимое число из K упорядоченными наборами необратимых чисел $\lambda_1,\dots,\lambda_n\in K$, в которых $\lambda_i\mid \lambda_j$ при i< j, и всевозможными неупорядоченными наборами степеней p^{ν} , где $p\in P(K), n\in \mathbb{N}$, элементы в которых могут повторяться.

Доказательство. Набор $\lambda_1,\dots,\lambda_n$ однозначно восстанавливается по своему набору элементарных делителей следующим образом. Расставим элементарные делители в клетки диаграммы Юнга так, чтобы в первой строке шли в порядке нестрого убывания степени того $p\in P(K)$, степеней которого в наборе элементарных делителей имеется больше всего. Во вторую строку поместим в порядке нестрого убывания степени простого числа, следующего за p по общему количеству вхождений его степеней в набор элементарных делителей и т. д. Поскольку λ_n делится на все остальные λ_i , в его разложение на простые множители входят все встречающиеся среди элементарных делителей простые основания, причём каждое из них — с максимально возможным показателем. Таким образом, λ_n является произведением всех элементарных делителей, стоящих в первом столбце построенной диаграммы Юнга. По индукции мы заключаем, что произведения элементарных делителей по столбцам диаграммы, перебираемым слева направо, суть $\lambda_n,\dots,\lambda_1$, т. е. прочитанный справа налево набор (6-7).

Пример 6.6

Набор элементарных делителей

возникает из множителей $\lambda_1=3,\lambda_2=3\cdot 2,\lambda_3=3\cdot 2^2\cdot 7,\lambda_4=3^2\cdot 2^3\cdot 7\cdot 5,\lambda_5=3^2\cdot 2^3\cdot 7^2\cdot 5.$

Теорема 6.4 (теорема об элементарных делителях)

Всякий конечно порождённый модуль над областью главных идеалов K изоморфен

$$K^{n_0} \oplus \frac{K}{(p_1^{n_1})} \oplus \ldots \oplus \frac{K}{(p_{\alpha}^{n_{\alpha}})}$$
 (6-8)

где $n_{\nu} \in \mathbb{N}$, все $p_{\nu} \in K$ просты, и слагаемые в прямой сумме могут повторяться. Два модуля

$$K^{n_0} \oplus rac{K}{\left(p_1^{n_1}
ight)} \oplus \ldots \oplus rac{K}{\left(p_{lpha}^{n_{lpha}}
ight)}$$
 и $K^{m_0} \oplus rac{K}{\left(q_1^{m_1}
ight)} \oplus \ldots \oplus rac{K}{\left(q_{eta}^{m_{eta}}
ight)}$

изоморфны если и только если $n_0=m_0$, $\alpha=\beta$ и слагаемые можно перенумеровать так, чтобы $n_{\nu}=m_{\nu}$ и $p_{\nu}=s_{\nu}q_{\nu}$, где все $s_{\nu}\in K$ обратимы.

Определение 6.2

Набор (возможно повторяющихся) степеней $p_i^{n_i}$, по которым происходит факторизация в (6-8), называется набором элементарных делителей модуля (6-8).

Доказательство существования разложения (6-8). Пусть K-модуль M порождается векторами

$$W_1,\ldots,W_m$$
.

Тогда $M=K^m/R$, где R — ядро эпиморфизма $K^m \twoheadrightarrow M$, переводящего стандартные базисные векторы $e_i \in K^m$ в образующие $w_i \in M$, как в форм. (6-5) на стр. 111. По теор. 6.3 в K^m существует такой базис u_1,\ldots,u_m , что некоторые кратности $\lambda_1u_1,\ldots,\lambda_ku_k$ первых K базисных векторов составляют базис в R. Таким образом, $M=K^m/R=K/(\lambda_1)\oplus\ldots\oplus K/(\lambda_k)\oplus K^{m-k}$. Если i-й инвариантный множитель λ_i обратим, то отвечающее ему слагаемое $K/(\lambda_i)=K/K$ нулевое. Если λ_i необратим, то $\lambda_i=p_1^{m_1}\ldots p_s^{m_s}$, где $p_j\in K$ — попарно не ассоциированные простые элементы, и по китайской теореме об остатках $K/(\lambda_i)=K/(p_1^{m_1})\oplus\ldots\oplus K/(p_s^{m_s})$, что и даёт разложение (6-8).

Чтобы установить единственность разложения (6-8) для заданного K-модуля M, мы дадим инвариантное описание его ингредиентов во внутренних терминах модуля M. Этому посвящены идущие ниже разделы \mathbf{n}° 6.3.1 — \mathbf{n}° 6.3.3. Далее, в \mathbf{n}° 6.3.4 мы установим обещанные ранее независимость инвариантных множителей матрицы A от способа её приведения K нормальной форме Смита D_A и независимость инвариантных множителей подмодуля K K в свободном модуле K от выбора взаимных базисов в K и K.

6.3.1. Отщепление кручения. Вектор w из модуля M над целостным 1 кольцом K называется элементом кручения, если xw=0 для какого-нибудь ненулевого $x\in K$. Например, любой класс $[k]_n\in\mathbb{Z}/(n)$ является элементом кручения в \mathbb{Z} -модуле $\mathbb{Z}/(n)$, так как $n[k]_n=[nk]_n=[0]_n$. В общем случае элементы кручения составляют подмодуль в M, который обозначается

Tors
$$M \stackrel{\text{def}}{=} \{ w \in M \mid \exists x \neq 0 : xm = 0 \}$$
 (6-9)

и называется подмодулем кручения в М.

Упражнение 6.7. Убедитесь в том, что Tors M действительно является подмодулем в M.

Если Тогѕ M=0, то говорят, что модуль M не имеет кручения. Например, любой идеал целостного кольца K и любой подмодуль в координатном модуле K^n над таким кольцом не имеют кручения. Если Тогѕ M=M, то M называется модулем кручения. Например, фактор K/I по любому ненулевому идеалу $I\subset K$ является K-модулем кручения, поскольку для любого класса $[a]\in K/I$ и любого ненулегого $x\in I$ класс x[a]=[xa]=[0], так как $xa\in I$.

¹См. n° 1.4.1 на стр. 28.

Предложение 6.1

Для любого модуля M над целостным кольцом K фактормодуль M / Tors(M) не имеет кручения. Если подмодуль $N \subset M$ таков, что Tors(M/N) = 0, то $Tors(M) \subset N$.

Доказательство. При ненулевом $x \in K$ равенство x[w] = [xw] = [0] в M / Tors(M) означает, что $xw \in \text{Tors}(M)$, т. е. yxw = 0 для некоторого ненулевого $y \in K$. Так как в K нет делителей нуля, $xy \neq 0$ и $w \in \text{Tors}(M)$, т. е. [w] = [0]. Это доказывает первое утверждение. Для доказательства второго заметим, что если $w \in \text{Tors}(M) \setminus N$, то класс $[w] \in M / N$ является ненулевым элементом кручения.

Теорема 6.5

Всякий конечно порождённый модуль M над областью главных идеалов K является прямой суммой свободного модуля и подмодуля кручения. В частности, любой модуль без кручения автоматически свободен.

Доказательство. По уже доказанному $M\simeq K^{n_0}\oplus K/(p_1^{n_1})\oplus \ldots \oplus K/(p_\alpha^{n_\alpha})$, где первое слагаемое свободно от кручения, а сумма остальных $N=K/(p_1^{n_1})\oplus \ldots \oplus K/(p_\alpha^{n_\alpha})$ является модулем кручения, и тем самым содержится в $\mathrm{Tors}(M)$. Так как $M/N\simeq K^{n_0}$ не имеет кручения, $\mathrm{Tors}(M)\subset N$ по предл. 6.1. Тем самым, $\mathrm{Tors}(M)=N$, $M=K^{n_0}\oplus \mathrm{Tors}(M)$ и $M/\mathrm{Tors}(M)\simeq K^{n_0}$.

Следствие 6.1 (из существования разложения из теор. 6.5) В форм. (6-8) на стр. 114 сумма $K / \left(p_1^{n_1} \right) \oplus \ldots \oplus K / \left(p_{\alpha}^{n_{\alpha}} \right) = \operatorname{Tors}(M)$ и число n_0 , равное рангу свободного модуля $M / \operatorname{Tors}(M)$, не зависят от выбора разложения (6-8).

6.3.2. Отщепление p-кручения. Для каждого простого $p \in P(K)$ назовём подмодуль

$$\operatorname{Tors}_{p}(M) \stackrel{\text{def}}{=} \{ w \in M \mid \exists k \in \mathbb{N} : p^{k} w = 0 \}$$

подмодулем p-кручения в M, а его элементы — элементами p-кручения.

Упражнение 6.8. Убедитесь, что ${\rm Tors}_p(M)$ действительно является подмодулем в M и докажите для него аналог предл. 6.1: фактор M / ${\rm Tors}_p(M)$ не имеет p-кручения, и если подмодуль $N\subset M$ таков, что ${\rm Tors}_p(M/N)=0$, то ${\rm Tors}_p(M)\subset N$.

Теорема 6.6

Всякий конечно порождённый модуль кручения $M=\operatorname{Tors}(M)$ над областью главных идеалов K является прямой суммой своих подмодулей p-кручения: $M=\bigoplus_p\operatorname{Tors}_p(M)$, где сумма берётся по всем таким $p\in P(K)$, что $\operatorname{Tors}_p(M)\neq 0$. При этом каждый конечно порождённый модуль p-кручения имеет вид $K/(p^{\nu_1})\oplus\ldots\oplus K/(p^{\nu_k})$, где $\nu_1,\ldots,\nu_k\in\mathbb{N}$.

Доказательство. Если простое $q \in K$ не ассоциировано с p, то нод $(p^k, q^m) = 1$ для всех k, m, и класс $[p^k]$ обратим в факторкольце $K / (q^m)$. Поэтому гомоморфизм умножения на p^k :

$$K/(q^m) \to K/(q^m)$$
, $x \mapsto p^k x$,

биективен и, в частности, не имеет ядра. Напротив, модуль $K/(p^{\nu})$ аннулируется умножением на p^{ν} . Тем самым, в разложении из форм. (6-8) на стр. 114

$$M = \operatorname{Tors}(M) = \left(\frac{K}{(p^{\nu_1})} \oplus \ldots \oplus \frac{K}{(p^{\nu_k})}\right) \oplus \left(\bigoplus_{q \neq p} \left(\frac{K}{(q^{\mu_{q,1}})} \oplus \ldots \oplus \frac{K}{(q^{\mu_{q,m_q}})}\right)\right)$$

слагаемое в левых скобках содержится в $\operatorname{Tors}_p(M)$, а фактор по нему, изоморфный сумме в правых скобках, не имеет p-кручения. Поэтому $\operatorname{Tors}_p(M)$ совпадает с левым слагаемым, $M/\operatorname{Tors}_p(M)$ изоморфен правому слагаемому, и $M \simeq \operatorname{Tors}_p(M) \oplus \left(M/\operatorname{Tors}_p(M)\right)$.

Следствие 6.2 (из существования разложения из теор. 6.6)

В форм. (6-8) на стр. 114 сумма всех подмодулей $K/(p^{\nu})$ с заданным $p \in P(K)$ является подмодулем p-кручения в M и не зависит от выбора разложения (6-8).

6.3.3. Инвариантность показателей p-кручения. Согласно теор. 6.6 каждый конечно порождённый модуль p-кручения M над областью главных идеалов K имеет вид

$$M = \frac{K}{(p^{\nu_1})} \oplus \ldots \oplus \frac{K}{(p^{\nu_n})}.$$
 (6-10)

Упорядоченные по нестрогому убыванию натуральные числа $v_1 \geqslant v_2 \geqslant ... \geqslant v_n$ называются показателями p-кручения модуля M. Они образуют диаграмму Юнга $v = v(M) = (v_1, ..., v_n)$, которая называется цикловым типом модуля p-кручения M. Для завершения доказательства теор. 6.4 остаётся проверить, что цикловой тип зависит только от модуля M, а не от выбора конкретного разложения (6-10). Для этого рассмотрим гомоморфизм умножения на p

$$\varphi: M \to M, \quad w \mapsto pw$$

и обозначим через $\varphi^k = \varphi \circ \dots \circ \varphi : w \mapsto p^k w$ его k-кратную итерацию, считая, что $\varphi^0 = \mathrm{Id}_M$. Очевидно, что $\ker \varphi^k \subseteq \ker \varphi^{k+1}$ при всех k, и $\ker \varphi^k = M$ при $k \geqslant \nu_1$, но $\ker \varphi^k \neq M$ при $k < \nu_1$. Таким образом, мы имеем конечную цепочку возрастающих подмодулей

$$0 = \ker \varphi^0 \subseteq \ker \varphi^1 \subseteq \dots \subseteq \ker \varphi^{\nu_1 - 1} \subseteq \ker \varphi^{\nu_1} = M, \tag{6-11}$$

которая зависит только от модуля M. В частности, v_1 зависит только от M.

Лемма 6.3

Для каждого $k=1,\ldots,\nu_1$ фактормодуль $\ker \varphi^k / \ker \varphi^{k-1}$ является векторным пространством над полем $\Bbbk = K/(p)$ размерности, равной высоте k-го столбца диаграммы Юнга $\nu(M)$.

Доказательство. Зададим умножение класса $[x] \in K/(p)$ на класс $[w] \in \ker \varphi^k/\ker \varphi^{k-1}$ правилом $[x][z] \stackrel{\text{def}}{=} [xz]$. Оно корректно, поскольку для x' = x + py и w' = w + u, где $p^{k-1}u = 0$, имеем x'w' = xw + (x + py)u + pyw, где $p^{k-1}\big((x + py)u + pyw\big) = 0$, так как $p^{k-1}u = 0$ и $p^kw = 0$. Аксиомы дистрибутивности и ассоциативности очевидно выполняются. Это доказывает первое утверждение. Для доказательства второго рассмотрим произвольное разложение (6-10). Гомоморфизм φ переводит каждое слагаемое этого разложения в себя. Обозначим через $\varphi_i = \varphi|_{K/(p^{\nu_i})}$ ограничение φ на i-е слагаемое $K/(p^{\nu_i})$ разложения (6-10). Фактор модуль $\ker \varphi^k/\ker \varphi^{k-1}$ изоморфен прямой сумме фактормодулей $\ker \varphi^k_i/\ker \varphi^{k-1}_i$.

Упражнение 6.9. Убедитесь, что при каждом i для каждого $k=1,\ldots,\nu_i$ отображение

$$K/(p) \to \ker \varphi_i^k/\ker \varphi_i^{k-1}$$
, $x \pmod p \mapsto p^{\nu_i-k}x \pmod \ker \varphi_i^{k-1}$,

корректно определено, \(\mathbb{k} \)-линейно и биективно.

Таким образом, на каждом слагаемом разложения (6-10) цепочка ядер (6-11) имеет вид

$$0 = \ker \varphi_i^0 \subsetneq \ker \varphi_i^1 \subsetneq \dots \subsetneq \ker \varphi_i^{\nu_i - 1} \subsetneq \ker \varphi_i^{\nu_i} = K/(p_i^{\nu_i}),$$

и каждый из её факторов $\ker \varphi_i^k/\ker \varphi_i^{k-1}$ при $k=1,\ldots,\nu_i$ является одномерным векторным пространством над полем $\Bbbk=K/(p)$, а во всём модуле (6-10) пространство $\ker \varphi^k/\ker \varphi^{k-1}$ является прямой суммой этих одномерных пространств в количестве, равном числу строк диаграммы ν , длина которых не меньше k, т. е. длине k-го столбца диаграммы ν .

На этом доказательство теоремы об элементарных делителях заканчивается.

Следствие 6.3 (теорема об инвариантных множителях)

Всякий конечно порождённый модуль над областью главных идеалов K изоморфен

$$K^{n_0} \oplus \frac{K}{(\lambda_1)} \oplus \ldots \oplus \frac{K}{(\lambda_q)}$$
 (6-12)

где n_0,g — целые неотрицательные, а $\lambda_1,\dots,\lambda_g\in K$ — такие ненулевые необратимые элементы, что $\lambda_i\mid \lambda_i$ при i< j. Два таких модуля

$$K^{n_0} \oplus \frac{K}{(\lambda_1)} \oplus \ldots \oplus \frac{K}{(\lambda_g)}$$
 и $K^{m_0} \oplus \frac{K}{(\mu_1)} \oplus \ldots \oplus \frac{K}{(\mu_h)}$

изоморфны если и только если $n_0=m_0$, g=h и $\lambda_i=s_i\mu_i$, где все $s_i\in K$ обратимы.

6.3.4. Единственность инвариантных множителей. Пусть F — свободный модуль конечного ранга m над областью главных идеалов K и $N \subset F$ — его подмодуль. Покажем, что множители $\lambda_1, \ldots, \lambda_n$ из теоремы о взаимном базисе 1 не зависят от выбора взаимных базисов. В самом деле, фактормодуль M = F/N ничего не знает о взаимных базисах, и по теореме об элементарных делителях 2 он имеет вид

$$M \simeq K^{m_0} \oplus \frac{K}{(p_1^{m_1})} \oplus \dots \oplus \frac{K}{(p_{\alpha}^{m_{\alpha}})}$$
 (6-13)

С другой стороны, если базис e_1,\dots,e_m модуля F таков, что векторы $\lambda_1e_1,\dots,\lambda_ne_n$ составляют базис в N и $\lambda_i\mid\lambda_j$ при i< j, то $M=F/N\simeq K^{m-n}\oplus K/(\lambda_1)\oplus\dots\oplus K/(\lambda_n)$, где каждый фактор $K/(\lambda)$ либо нулевой (если λ обратим), либо — когда λ необратим — распадается по китайской теореме об остатках в прямую сумму модулей вида $K/(p^{\nu_p(\lambda)})$, где $p^{\nu_p(\lambda)}$ берутся из разложения $\lambda=\prod_{p\in P(K)}p^{\nu_p(\lambda)}$ на простые множители. Мы заключаем, что $m_0=m-n$, а набор степеней $p^{\nu_p(\lambda)}$ является набором элементарных делителей упорядоченного по отношению делимости набора всех необратимых множителей λ , который по лем. 6.2 на стр. 114 однозначно восстанавливается по набору своих элементарных делителей. Таким образом число $n=m-m_0$ и все ненулевые необратимые инвариантные множители подмодуля N однозначно считываются с разложения (6-13), что и доказывает независимость инвариантных множителей подмодуля N от выбора взаимного базиса.

Применительно к модулю $F=K^m$ со стандартным базисом ${\bf e}=(e_1,\ldots,e_m)$ и его подмодулю $N\subset K^m$, порождённому столбцами ${\bf a}=(a_1,\ldots,a_n)$ матрицы $A\in {\rm Mat}_{m\times n}(K)$, это утверждение означает, что элементы d_{ii} нормальной формы Смита матрицы A не зависят от способа её приведения к нормальной форме и даже собственно от матрицы, а зависят лишь от подмодуля N. В самом деле, если D=LAR — это (какая-нибудь) нормальная форма Смита матрицы A, то из равенства ${\bf a}={\bf e}A$ вытекает равенство ${\bf a}R={\bf e}L^{-1}LAR={\bf e}L^{-1}D$. В силу обратимости матриц R

¹См. теор. 6.3 на стр. 111.

²См. теор. 6.4 на стр. 114.

и L векторы ${\pmb u}={\pmb e}\,L^{-1}$ тоже составляют базис в ${\pmb K}^m$, а векторы ${\pmb w}={\pmb a}R$ линейно порождают N. Так как ${\pmb w}={\pmb u}\,D$, векторы ${\pmb u}=(u_1,\ldots,u_m)$ и векторы $w_i=d_{ii}u_i$ с ненулевыми d_{ii} образуют вза-имные базисы модуля ${\pmb K}^m$ и его подмодуля ${\pmb N}$, а ненулевые диагональные элементы d_{ii} являются инвариантными множителями этого подмодуля.

Ответы и указания к некоторым упражнениям

Упр. 6.1. $\begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}^{-1} = \frac{1}{4} \begin{pmatrix} \delta & -\beta \\ -\gamma & \alpha \end{pmatrix}$ как мы видели в прим. 5.15 на стр. 92.

Упр. 6.3. Если матрица D диагональна, то матрица DA (соотв. AD) получается из матрицы A умножением её i-й строки (соотв. i-го столбца) на диагональный элемент d_{ii} матрицы D. Поэтому равенство AD = DA = E равносильно тому, что $a_{ii}d_{ii} = 1$ и $a_{ij} = 0$ при всех $i \neq j$.

Упр. 6.4. Последовательно заменяя в данном столбце пары ненулевых элементов a,b по лем. 6.1 на стр. 102 парами нод(a,b), 0, получаем столбец в котором отличен от нуля ровно один элемент $d \in K$, равный нод элементов исходного столбца. Если матрица A обратима, то её столбцы (a_1,\ldots,a_n) образуют базис в K^n , причём $a_j=de_i$, где (e_1,\ldots,e_n) — стандартный базис в K^n . Пусть стандартный базисный вектор e_i выражается через столбцы матрицы A по формуле $e_i=\sum x_v a_v$. Тогда $a_j-\sum dx_v a_v=0$, и вектор a_j входит в эту линейную комбинацию с коэффициентом $1-dx_j$, откуда $dx_j=1$.

Упр. 6.6. Векторы w_1 , w_2 — это первые два вектора набора $\boldsymbol{w} = \boldsymbol{a} R$, где матрица $R = R_1 R_2 R_3 R_4$ задаёт совершённые в прим. 6.5 на стр. 112 преобразования столбцов:

$$R_1 = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

делает четвёртый столбец первым,

$$R_2 = \begin{pmatrix} 1 & 2 & -3 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

прибавляет ко 2-у и 3-у столбцам 1-й, умноженный на 2 и на -3,

$$R_3 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix}$$

записывает во 2-й столбец сумму к 3-го и 4-го, а в 3-й столбец — бывший 2-й,

$$R_4 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & -8 & -3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

отнимает из 3-го и 4-го столбцов 2-й, умноженный на 8 и на 3. Вычисляя произведение 1 , получаем

$$R = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & -8 & -3 \\ 0 & 1 & -8 & -2 \\ 1 & -3 & 26 & 9 \end{pmatrix},$$

 $^{^{1}}$ Или, что тоже самое, применяя указанные четыре преобразования к единичной матрице 4 imes 4.

откуда $w_1 = a_4$ и $w_2 = a_2 + a_3 - 3a_4$.

- Упр. 6.7. Если $x_1w_1=0$ и $x_2w_2=0$ для ненулевых $x_1,x_2\in K$, то $x_1x_2(w_1\pm w_2)=0$ и $x_1x_2\neq 0$, так как в K нет делителей нуля, и $x_1(yw_1)=x_2(yw_2)=0$ для всех $y\in K$.
- Упр. 6.8. Если $p^{k_1}w_1=0$ и $p^{k_2}w_2=0$, то $p^{k_1+k_2}(w_1\pm w_2)=0$ и $p^{k_1}yw_1=0$ для всех $y\in K$. Равенство $p^{k_1}[w]=[0]$ в M / $\mathrm{Tors}_p(M)$ означает, что $p^{k_1}w\in\mathrm{Tors}_p(M)$, т. е. $p^{k_2}p^{k_1}w=0$ для некоторого $k_2\in\mathbb{N}$, откуда $p^{k_1+k_2}w=0$ и $w\in\mathrm{Tors}_p(M)$, т. е. [w]=[0]. Если $w\in\mathrm{Tors}_p(M)\setminus N$, то класс $[w]\in M/N$ является ненулевым элементом p-кручения.
- Упр. 6.9. Класс $[p^{\nu_i-k}x] \in K/(p^{\nu_i})$ лежит в $\ker \varphi_i^k$, поскольку $p^k[p^{\nu_i-k}x] = [p^{\nu_i}x] = [0]$. Если x' = x + py, то $p^{\nu_i-k}x' = p^{\nu_i-k}x + p^{\nu_i-k+1}y$ и класс $[p^{\nu_i-k+1}y] \in K/(p^{\nu_i})$ лежит в $\ker \varphi_i^{k-1}$, так как $p^{k-1}[p^{\nu_i-k+1}y] = [p^{\nu_i}y] = [0]$. Линейность отображения очевидна. Оно сюрьективно, поскольку каждый класс $[y] \in K/(p^{\nu_i})$, такой что $[p^ky] = [0]$, имеет $y = p^{\nu_i-k}x$ для некоторого $x \in K$ в силу того, что p^kx делится на p^{ν_i} в факториальном кольце K если и только если x делится на p^{ν_i-k} . Ядро отображения нулевое по той же причине: если класс $[p^{\nu_i-k}x] \in K/(p^{\nu_i})$ лежит в $\ker \varphi_i^{k-1}$, то $p^{k-1}p^{\nu_i-k}x = p^{\nu_i-1}x$ делится на p^{ν_i} , а значит $x \colon p$ и класс $[x] \in K/(p)$ нулевой.