
§8. Грассмановы многочлены и определители

8.1. Длина, знак и чётность перестановки. Биективные отображения

𝑔∶ {1, … , 𝑛} → {1, … , 𝑛} , 𝑖 ↦ 𝑔𝑖 ,

называются перестановками𝑛 элементов. Перестановки образуют группу преобразований мно-
жества {1, … , 𝑛} в смысле n∘ 0.6 на стр. 16. Эта группа обозначается 𝑆𝑛 = Aut({1, … , 𝑛}) и на-
зывается 𝑛-той симметрической группой. Перестановку 𝑔 ∈ 𝑆𝑛 принято записывать словом

𝑔 = (𝑔1, … ,𝑔𝑛) ,

𝑖-тая буква которого равна значению 𝑔𝑖 = 𝑔(𝑖) отображения 𝑔 на элементе 𝑖. Например, слово

(2, 4, 3, 5, 1) ∈ 𝑆5

задаёт отображение 1 ↦ 2, 2 ↦ 4, 3 ↦ 3, 4 ↦ 5, 5 ↦ 1. Композиция 𝑓𝑔 перестановок 𝑓, 𝑔
действует по правилу 𝑓𝑔∶ 𝑖 ↦ 𝑓(𝑔(𝑖)). Например, в группе 𝑆5 две возможных композиции пе-
рестановок 𝑓 = (2, 4, 3, 5, 1) и 𝑔 = (3, 2, 1, 5, 4) суть 𝑓𝑔 = (3, 4, 2, 1, 5) и 𝑔𝑓 = (2, 5, 1, 4, 3).

Назовём пару возрастающих чисел 𝑖 < 𝑗 инверсной для перестановки 𝑔, если 𝑔𝑖 > 𝑔𝑗. Та-
ким образом, каждая перестановка 𝑔 ∈ 𝑆𝑛 разбивает множество всех 𝑛(𝑛−1)∕2 возрастающих
пар 1 ⩽ 𝑖 < 𝑗 ⩽ 𝑛 на два непересекающихся подмножества — инверсные пары и неинверс-
ные пары. Количество инверсных пар перестановки 𝑔 называется числом инверсий или длиной
перестановки 𝑔 и обозначается 𝓁(𝑔).

Упражнение 8.1. Найдите max 𝓁(𝑔) по всем 𝑔 ∈ 𝑆𝑛 и укажите все перестановки на которых он
достигается.

Число sgn(𝑔) ≝ (−1)𝓁(𝑔) называется знаком перестановки𝑔. Перестановка𝑔 называется чётной,
если sgn(𝑔) = 1 и нечётной, если sgn(𝑔) = −1.

Перестановка, меняющая местами какие-либо два элемента 𝑖, 𝑗 и оставляющая все осталь-
ные элементы на месте, обозначается 𝜎𝑖𝑗 и называется транспозицией 𝑖-го и 𝑗-го элементов.

Упражнение 8.2. Убедитесь, что каждая перестановка 𝑔 ∈ 𝑆𝑛 является композицией транспо-
зиций.

Разложение перестановки в композицию транспозиций не единственно: например, транспози-
цию 𝜎13 = (3, 2, 1) ∈ 𝑆3 иначе можно записать как 𝜎12𝜎23𝜎12 или как 𝜎23𝜎12𝜎23. Тем не ме-
нее чётность количества транспозиций, в композицию которых раскладывается данная пере-
становка 𝑔, не зависит от способа разложения и совпадает с чётностью числа инверсных пар
перестановки 𝑔, т. е. все чётные перестановки являются композициями чётного числа транспо-
зиций, а нечётные — нечётного. Это вытекает из следующей леммы.

Лемма 8.1

sgn(𝑔𝜎𝑖𝑗) = − sgn(𝑔) для любой перестановки 𝑔 ∈ 𝑆𝑛 и любой транспозиции 𝜎𝑖𝑗 ∈ 𝑆𝑛.

Доказательство. Перестановки

𝑔 = (𝑔1, … ,𝑔𝑖−1, 𝒈𝑖, 𝑔𝑖+1, … ,𝑔𝑖−1, 𝒈𝑗, 𝑔𝑗+1, … ,𝑔𝑛)
𝑔𝜎𝑖𝑗 = (𝑔1, … ,𝑔𝑖−1, 𝒈𝑗, 𝑔𝑖+1, … ,𝑔𝑖−1, 𝒈𝑖, 𝑔𝑗+1, … ,𝑔𝑛)

(8-1)
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отличаются друг от друга транспозицией элементов 𝑔𝑖 и 𝑔𝑗, стоящих на 𝑖-том и 𝑗-том местах
перестановки 𝑔. В этих двух перестановках пара (𝑖, 𝑗), а также 2(𝑗− 𝑖 − 1) пар вида (𝑖,𝑚) и (𝑚, 𝑗)
с произвольным 𝑚 из промежутка 𝑖 < 𝑚 < 𝑗 имеют противоположную инверсность, а инверс-
ность всех остальных пар одинакова. □

Следствие 8.1

Если перестановка 𝑔 является композицией 𝑚 транспозиций, то sgn(𝑔) = (−1)𝑚 и чётность
перестановки совпадает с чётностью числа 𝑚.

Доказательство. Тождественная перестановка не имеет инверсных пар и, стало быть, чётна. В
силу леммы, перестановка получающаяся из тождественной умножением на 𝑚 транспозиций,
имеет чётность (−1)𝑚. □

Следствие 8.2 (знаковый гомоморфизм)

Отображение sgn∶ 𝑆𝑛 ↠ {+1, −1}, 𝑔 ↦ (−1)𝓁(𝑔), является мультипликативным гомоморфиз-
мом, т. е. sgn(𝑔ℎ) = sgn(𝑔) sgn(ℎ) для всех 𝑔, ℎ ∈ 𝑆𝑛, и множества чётных и нечётных переста-
новок суть полные прообразы элементов 1 и −1 при этом гомоморфизме. □

Пример 8.1 (правило ниточек)

Интерпретация чётности перестановки как чётности числа инверсных пар даёт практический
способ отыскания чётности перестановки — не самый быстрый1, но полезный в ряде ситуаций,
с которыми мы далее столкнёмся. Напишем исходные числа и их перестановку друг под другом,
как на рис. 8⋄1, и соединим одинаковые числа нитями так, чтобы ни одна из нитей не вылезала
за пределы прямоугольника, образованного четырьмя угловыми числами, и чтобы все точки пе-
ресечения нитей были простыми двойными2. Тогда чётность числа инверсных пар будет равна
чётности числа точек пересечения нитей.
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Рис. 8⋄1. sgn(2, 9, 6, 1, 8, 3, 5, 7, 4) = +1 (всего 18 пересечений).

Упражнение 8.3. Докажите это и убедитесь при помощи правила ниточек, что знак тасующей
перестановки (𝑖1, … , 𝑖𝑘, 𝑗1, … , 𝑗𝑚), где оба набора номеров 𝑖1, … , 𝑖𝑘 и 𝑗1, … , 𝑗𝑚 возрастают
слева направо, равен sgn(𝑖1, … , 𝑖𝑘, 𝑗1, … , 𝑗𝑚) = (−1)|𝐼|+𝑘(𝑘+1)∕2, где |𝐼| ≝ 𝑖1 + … + 𝑖𝑘.

1Обычно быстрее бывает разложить перестановку в композицию непересекающихся циклов и вос-
пользоваться тем, что циклы чётной длины нечётны, а циклы нечётной длины чётны.

2Это означает, что в каждой точке пересечения встречается ровно две нити, причём пересечение про-
исходит трансверсально: /\, а не по касательной: )(.
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8.2. Определитель. Рассмотрим произвольное коммутативное кольцо 𝐾 с единицей, произ-
вольную квадратную матрицу 𝐶 = (𝑐𝑖𝑗) ∈ Mat𝑛(𝐾) и обозначим через 𝑣1, … , 𝑣𝑛 ∈ 𝐾𝑛 её столб-
цы. Многочлен

det𝐶 = det(𝑣1, … , 𝑣𝑛) ≝ ∑𝑔∈𝑆𝑛
sgn(𝑔) ⋅ 𝑐𝑔11𝑐𝑔22 … 𝑐𝑔𝑛𝑛 (8-2)

называется определителем матрицы 𝐶 или набора векторов 𝑣1, … , 𝑣𝑛. Формула (8-2) предпи-
сывает всеми возможными способами выбирать в матрице 𝑛 элементов так, чтобы в каждой
строке и в каждом столбце выбирался ровно один элемент. Каждые такие 𝑛 элементов надо пе-
ремножить, а полученные 𝑛! произведений сложить с надлежащими знаками, определяемыми
так: множество клеток, где стоят выбранные 𝑛 элементов, представляет собою график биек-
тивного отображения 𝑗 ↦ 𝑔𝑗 из множества номеров столбцов в множество номеров строк, т. е.
перестановки 𝑛 номеров {1, … , 𝑛}, и знак равен знаку этой перестановки. Например, опреде-
лители матриц размеров 2 × 2 и 3 × 3 имеют вид

det (
𝑐11 𝑐12
𝑐21 𝑐22) = 𝑐11𝑐22 − 𝑐12𝑐21 (8-3)

det
⎛
⎜
⎜
⎝

𝑐11 𝑐12 𝑐13
𝑐21 𝑐22 𝑐23
𝑐31 𝑐32 𝑐33

⎞
⎟
⎟
⎠

= 𝑐11𝑐22𝑐33 + 𝑐13𝑐21𝑐32 + 𝑐12𝑐23𝑐31−
− 𝑐11𝑐23𝑐32 − 𝑐13𝑐22𝑐31 − 𝑐12𝑐21𝑐33 (8-4)

(во втором равенстве сначала выписаны тождественная и две циклических перестановки, по-
том — три транспозиции).

Предложение 8.1

Определитель det𝐶 = det(𝑣1, … , 𝑣𝑛) линеен по каждому столбцу 𝑣𝑖 матрицы 𝐶, кососимметри-
чен (т. е. det(𝑣1, … , 𝑣𝑛) = 0 если 𝑣𝑖 = 𝑣𝑗 для некоторых 𝑖 ≠ 𝑗) и не меняется при транспониро-
вании матрицы1 (т. е. det𝐶𝑡 = det𝐶, где 𝐶𝑡 = (𝑐𝑡𝑖𝑗) имеет 𝑐𝑡𝑖𝑗 = 𝑐𝑗𝑖).

Доказательство. Так как каждое из 𝑛! произведений, которые складываются в формуле (8-2),
содержит ровно по одному сомножителю из каждого столбца, оно линейно по каждому столб-
цу, а значит линейна и их сумма. Если 𝑖-тый столбец матрицы 𝐶 совпадает с 𝑗-тым, то 𝑐𝑔𝑖𝑖 = 𝑐𝑔𝑖𝑗
и 𝑐𝑔𝑗𝑗 = 𝑐𝑔𝑗𝑖 для любой перестановки 𝑔 ∈ 𝑆𝑛. Множество всех перестановок разбивается в
объединение не пересекающихся пар вида (𝑔,𝑔𝜎𝑖𝑗), поскольку композиция с транспозицией
𝜎𝑖𝑗 ∶ 𝑆𝑛 ⥲ 𝑆𝑛, 𝑔 ↦ 𝑔𝜎𝑖𝑗, является инволютивной2 биекцией без неподвижных точек3. В сум-
ме (8-2) слагаемые, отвечающие каждой паре 𝑔 и 𝑔𝜎𝑖𝑗 имеют вид

sgn(𝑔) ⋅ 𝑐𝑔11 … 𝑐𝑔𝑖𝑖 … 𝑐𝑔𝑗𝑗 … 𝑐𝑔𝑛𝑛 и sgn(𝑔𝜎𝑖𝑗) ⋅ 𝑐𝑔11 … 𝑐𝑔𝑗𝑖 … 𝑐𝑔𝑖𝑗 … 𝑐𝑔𝑛𝑛
и различаются только знаком, сокращая друг друга. Поэтому сумма получится нулевая. Нако-
нец, равенство det𝐶𝑡 = det𝐶 вытекает из того, что набор произведений 𝑛-ок матричных эле-
ментов в разложениях det𝐶 и det𝐶𝑡 одинаков, а знаки, с которыми каждое произведение входит
в det𝐶 и det𝐶𝑡, суть знаки обратных друг другу перестановок.

Упражнение 8.4. Покажите, что знаки обратных друг другу перестановок совпадают.

Тем самым, разложения (8-2) для det𝐶 и det𝐶𝑡 состоят из одних и тех же слагаемых с одними и
теми же знаками. □

1См. обсуждение перед предл. 5.4 на стр. 95.
2Т. е. обратной самой себе.
3Равенство 𝑔 = 𝑔𝜎𝑖𝑗 невозможно, так как умножая на 𝑔−1 слева, получаем Id = 𝜎𝑖𝑗, что не так.
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Следствие 8.3

Определитель является полилинейной кососимметричной функцией от строк матрицы. □

Следствие 8.4

Определитель меняет знак при любой транспозиции строк или столбцов матрицы1.

Доказательство. В силу кососимметричности и полилинейности

0 = det(… , (𝑣𝑖 + 𝑣𝑗), … , (𝑣𝑖 + 𝑣𝑗), …) = det(… , 𝑣𝑖, … , 𝑣𝑗, …) + det(… , 𝑣𝑗, … , 𝑣𝑖, …) ,

что и утверждается. □
Упражнение 8.5. Убедитесь, что если 1+ 1 ≠ 0 в 𝐾, то каждая знакопеременная функция от 𝑛

векторов кососимметрична.

Пример 8.2 (знакопеременные многочлены, определитель Вандермонда и базис Шура)

Многочлен 𝑓 ∈ ℤ[𝑥1, … , 𝑥𝑛] называется знакопеременным если для всех перестановок 𝑔 ∈ 𝑆𝑛

𝑓(𝑥𝑔1 , … , 𝑥𝑔𝑛) = sgn(𝑔) ⋅ 𝑓(𝑥1, … , 𝑥𝑛) .

Так как при транспозиции любой пары переменных знакопеременный многочлен𝑓меняет знак,
в каждом мономе 𝑥𝜈11 … 𝑥𝜈𝑛𝑛 многочлена 𝑓 все степени 𝜈𝑖 попарно различны, и вместе с таким
мономом в 𝑓 входят 𝑛! мономов 𝑥𝜈1𝑔1… 𝑥𝜈𝑛𝑔𝑛 , где 𝑔 ∈ 𝑆𝑛, причём коэффициенты при мономах
𝑥𝜈11 … 𝑥𝜈𝑛𝑛 и 𝑥𝜈1𝑔1… 𝑥𝜈𝑛𝑔𝑛 получаются друг из друга умножением на знак sgn(𝑔). Мы заключаем, что
знакопеременные многочлены образуют свободный ℤ модуль с базисом из многочленов

𝛥𝜈 ≝ ∑
𝑔∈𝑆𝑛

sgn(𝑔) 𝑥𝜈1𝑔1… 𝑥𝜈𝑛𝑔𝑛 = det(𝑥𝜈𝑖𝑗 ) = det

⎛
⎜
⎜
⎜
⎝

𝑥𝜈11 𝑥𝜈12 ⋯ 𝑥𝜈1𝑛
𝑥𝜈21 𝑥𝜈22 ⋯ 𝑥𝜈2𝑛
⋮ ⋮ ⋱ ⋮
𝑥𝜈𝑛1 𝑥𝜈𝑛2 ⋯ 𝑥𝜈𝑛𝑛

⎞
⎟
⎟
⎟
⎠

, (8-5)

которые нумеруются диаграммами Юнга 𝜈 из 𝑛 строк попарно разных длин 𝜈1 > … > 𝜈𝑛 ⩾ 0.
Минимальной такой диаграмме 𝛿 = ((𝑛 − 1), … , 0) отвечает определитель Вандермонда

𝛥𝛿 = det(𝑥𝑛−𝑖
𝑗 ) = det

⎛
⎜
⎜
⎜
⎝

𝑥𝑛−1
1 … 𝑥𝑛−1

𝑛
⋮ ⋮ ⋮
𝑥1 … 𝑥𝑛
1 … 1

⎞
⎟
⎟
⎟
⎠

= ∏
𝑖<𝑗

(𝑥𝑖 − 𝑥𝑗) . (8-6)

Последнее равенство вытекает из того, что при подстановке 𝑥𝑖 = 𝑥𝑗 с 𝑗 ≠ 𝑖 определитель Ван-
дермонда, как и всякий знакопеременный многочлен, обращается в нуль, и поэтому делится
в ℤ[𝑥1, … , 𝑥𝑛] на 𝑥𝑖 − 𝑥𝑗. Так все такие разности неприводимы, а кольцо ℤ[𝑥1, … , 𝑥𝑛] факто-
риально, определитель Вандермонда делится на ∏𝑖<𝑗(𝑥𝑖 − 𝑥𝑗), а поскольку лексикографически
старшие мономы определителя и произведения равны𝑥𝑛−1

1 𝑥𝑛−2
2 … 𝑥𝑛−1 и имеют коэффициент1,

частное от деления равно 1. Это рассуждение показывает, что любой знакопеременный мно-
гочлен 𝑓 делится в ℤ[𝑥1, … , 𝑥𝑛] на определитель Вандермонда, и частное является симметри-
ческим многочленом. Мы заключаем, что знакопеременные многочлены образуют свободный
модуль ранга1 с базисом𝛥𝛿 над кольцом симметрических многочленов, а симметрические мно-
гочлены Шура 𝜎𝜆 = 𝛥𝜆+𝛿∕𝛥𝛿, где 𝜆 = (𝜆1, … , 𝜆𝑛) пробегает произвольные диаграммы Юнга из 𝑛
строк, а 𝜆 + 𝛿 = (𝜆1 + (𝑛 − 1), 𝜆2 + (𝑛 − 2), … , 𝜆𝑛), образуют базис ℤ-модуля симметрических
многочленов.

1Функции с таким свойством называются знакопеременными.
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8.3. Грассмановы многочлены. Алгебра грассмановых многочленов 𝐾 ⟨𝜉1, … , 𝜉𝑛⟩ от перемен-
ных 𝜉1, … , 𝜉𝑛 с коэффициентами в произвольном коммутативном кольце𝐾 с единицей опреде-
ляется точно также, как алгебра обычных многочленов, но только грассмановы переменные 𝜉𝑖,
в отличие от обычных, не коммутируют, а антикоммутируют друг с другом, т. е. подчиняются
соотношениям1

∀ 𝑖, 𝑗 𝜉𝑖 ∧ 𝜉𝑗 = −𝜉𝑗 ∧ 𝜉𝑖 и ∀ 𝑖 𝜉𝑖 ∧ 𝜉𝑖 = 0 . (8-7)

Символ « ∧» здесь и далее используется для обозначения грассманова (антикоммутативного)
умножения, чтобы отличать его от обычного (коммутативного). Константы из 𝐾 по определе-
нию перестановочны с грассмановыми переменными, и умножение переменных на константы
записывается обычным образом: 𝑎𝜉𝑖 = 𝜉𝑖𝑎, для всех 𝑖 и всех 𝑎 ∈ 𝐾. Для каждой строго возрас-
тающей слева направо последовательности номеров 𝐼 = (𝑖1, … , 𝑖𝑚), где 𝑖1 < … < 𝑖𝑚, положим

𝜉𝐼 ≝ 𝜉𝑖1 ∧ … ∧ 𝜉𝑖𝑚 . (8-8)

Каждая перестановка 𝑔 = (𝑔1, … ,𝑔𝑚) ∈ 𝑆𝑚 переменных в этом мономе меняет его знак по
правилу

𝜉𝑖𝑔(1)
∧ … ∧ 𝜉𝑖𝑔(𝑚)

= sgn(𝑔) ⋅ 𝜉𝑖1 ∧ … ∧ 𝜉𝑖𝑚 . (8-9)

Поскольку квадраты грассмановых переменных равны нулю, мономы (8-9) исчерпывают всё
множество грассмановых мономов, т. е. однородные грассмановы многочлены степени 𝑚 от 𝑛
переменных 𝜉1, … , 𝜉𝑛 по-определению образуют свободный 𝐾-модуль ранга (𝑛𝑚) с базисом из
мономов (8-8). Этот модуль обозначается 𝛬𝑚. Вся грассманова алгебра как модуль над 𝐾 явля-
ется конечной прямой суммой 𝐾 ⟨𝜉1, … , 𝜉𝑛⟩ = 𝛬0 ⊕ 𝛬1 ⊕ 𝛬2 ⊕ … ⊕ 𝛬𝑛, где младшее слагае-
мое 𝛬𝑛 ≃ 𝐾 состоит из констант и имеет в качестве базиса моном 𝜉∅ ≝ 1, отвечающий пусто-
му набору 𝐼 = ∅ и служащий единицей грассмановой алгебры, а старшее слагаемое 𝛬𝑛 ≃ 𝐾
имеет в качестве базиса 𝜉(1,…,𝑛) = 𝜉1 ∧ … ∧ 𝜉𝑛 — единственный моном степени 𝑛, отвеча-
ющий набору 𝐼 = (1, … , 𝑛). Обратите внимание, что этот моном аннулируется умножением
на любой грассманов многочлен с нулевым свободным членом. Умножение базисных мономов
𝜉𝐼 = 𝜉𝑖1 ∧ … ∧ 𝜉𝑖𝑘 и 𝜉𝐽 = 𝜉𝑗1 ∧ … ∧ 𝜉𝑗𝑚 происходит по правилу

𝜉𝐼 ∧ 𝜉𝐽 =
{

sgn(𝐼, 𝐽) 𝜉𝐼⊔𝐽 если 𝐼 ∩ 𝐽 = ∅
0 если 𝐼 ∩ 𝐽 ≠ ∅ ,

(8-10)

где sgn(𝐼, 𝐽) — знак тасующей перестановки, упорядочивающей набор (𝑖1, … , 𝑖𝑘, 𝑗1, … , 𝑗𝑚) по
возрастанию2. Так как для базисных грассмановых мономов выполняется равенство3

(𝜉𝑖1 ∧ … ∧ 𝜉𝑖𝑘) ∧ (𝜉𝑗1 ∧ … ∧ 𝜉𝑗𝑚) = (−1)𝑘𝑚(𝜉𝑗1 ∧ … ∧ 𝜉𝑗𝑚) ∧ (𝜉𝑖1 ∧ … ∧ 𝜉𝑖𝑘) ,

однородные грассмановы многочлены коммутируют друг с другом по правилу

𝜔 ∧ 𝜂 = (−1)deg𝜔 deg𝜂𝜂 ∧ 𝜔 , (8-11)

1Если1+1не делит нуль в𝐾, то соотношения 𝜉𝑖∧𝜉𝑖 = 0могут быть опущены, поскольку они вытекают
из соотношений 𝜉𝑖 ∧ 𝜉𝑗 = −𝜉𝑗 ∧ 𝜉𝑖, если положить в них 𝑖 = 𝑗. Если же −1 = 1, то антикоммутирование
𝜉𝑖∧𝜉𝑗 = −𝜉𝑗∧𝜉𝑖 не отличается от коммутирования𝜉𝑖∧𝜉𝑗 = 𝜉𝑗∧𝜉𝑖, и в этой ситуации именно соотношение
𝜉𝑖 ∧ 𝜉𝑖 = 0 отличает грассмановы переменные от обычных.

2Если 𝐼 ⊔ 𝐽 = {1, … ,𝑛}, то sgn(𝑖1, … , 𝑖𝑘, 𝑗1, … , 𝑗𝑚) = (−1)|𝐼|+𝑘(𝑘+1)∕2 по упр. 8.3 на стр. 128.
3Для проноса каждой из 𝑚 переменных 𝜉𝑗 влево через 𝑘 переменных 𝜉𝑖 нужно совершить 𝑘 транспо-

зиций.
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которое называется кошулевым правилом знаков. В частности, любой однородный многочлен
чётной степени коммутирует со всеми грассмановыми многочленами.

Упражнение 8.6. Опишите центр грассмановой алгебры

𝑍(𝐾 ⟨𝜉1, … , 𝜉𝑛⟩) ≝ {𝜏 ∈ 𝐾 ⟨𝜉1, … , 𝜉𝑛⟩ | ∀𝜔 ∈ 𝐾 ⟨𝜉1, … , 𝜉𝑛⟩ 𝜏 ∧ 𝜔 = 𝜔 ∧ 𝜏} .

8.3.1. Грассманова алгебра свободного модуля. Обозначим через 𝑉 свободный 𝐾-модуль
ранга 𝑟. Если векторы 𝑒1, … , 𝑒𝑟 ∈ 𝑉 образуют базис модуля 𝑉, то алгебра грассмановых много-
членов𝐾 ⟨𝑒1, … , 𝑒𝑟⟩ от переменных 𝑒1, … , 𝑒𝑟 обозначается 𝛬𝑉 и называется грассмановой (или
внешней) алгеброй свободного модуля 𝑉, а подмодуль однородных грассмановых многочленов
степени 𝑑 обозначается 𝛬𝑑𝑉 ⊂ 𝛬𝑉 и называется 𝑑-й внешней степенью свободного модуля 𝑉.
Эти не апеллирующие к выбору базиса названия и обозначения связаны с тем, что при каждом
𝑑 = 0, 1, … , 𝑛 подмодуль 𝛬𝑑 = 𝛬𝑑𝑉 ⊂ 𝐾 ⟨𝑒1, … , 𝑒𝑟⟩ однородных многочленов степени 𝑑 не за-
висит от выбора базиса в 𝑉. В самом деле, подмодуль констант 𝛬0𝑉 ≃ 𝐾 порождается единицей
грассмановой алгебры, подмодуль 𝛬1𝑉 однородных грассмановых многочленов степени 1, т. е.
множество всевозможных𝐾-линейных комбинаций базисных векторов 𝑒1, … , 𝑒𝑟, канонически
отождествляется с модулем 𝑉 и тоже не зависит от выбора базиса, а для прочих 𝑑 подмодуль
𝛬𝑑𝑉 ⊂ 𝐾 ⟨𝑒1, … , 𝑒𝑟⟩ является линейной оболочкой всевозможных произведений 𝑣1 ∧ … ∧ 𝑣𝑑,
составленных из 𝑑 произвольных векторов 𝑣𝑖 ∈ 𝑉 и опять таки не зависит от выбора базиса.
Таким образом, вся алгебра 𝛬𝑉 = ⨁𝑛

𝑑=0 𝛬𝑑𝑉 является прямой суммой модулей, не зависящих
от выбора базиса в 𝑉.

Упражнение 8.7. Убедитесь, что 𝑣 ∧ 𝑣 = 0 и 𝑢 ∧ 𝑤 = −𝑤 ∧ 𝑢 для всех 𝑢, 𝑣,𝑤 ∈ 𝑉.

8.3.2. Линейные замены переменных и миноры. Пусть в обозначениях их предыдущего
раздела 𝑛 однородных грассмановых линейных форм 𝜂1, … , 𝜂𝑛 ∈ 𝛬1𝑉 линейно выражается че-
рез 𝑚 однородных грассмановых форм 𝜉1, … , 𝜉𝑚 ∈ 𝛬1𝑉 по формуле

(𝜂1, … , 𝜂𝑛) = (𝜉1, … , 𝜉𝑚) ⋅ 𝐶 ,

где 𝐶 ∈ Mat𝑛×𝑘(𝐾). Тогда при каждом 𝑑 произведения 𝜂𝐽 = 𝜂𝑗1 ∧ … ∧ 𝜂𝑗𝑑 степени 𝑑 линейно
выражается через произведения 𝜉𝐼 = 𝜉𝑖1 ∧ … ∧ 𝜉𝑖𝑑 по формуле

𝜂𝐽 = 𝜂𝑗1 ∧ … ∧ 𝜂𝑗𝑑 = (∑
𝑖1
𝜉𝑖1𝑐𝑖1𝑗1) ∧ (∑

𝑖2
𝜉𝑖2𝑐𝑖2𝑗2) ∧ … ∧ (∑

𝑖𝑑
𝜉𝑖𝑑𝑐𝑖𝑑𝑗𝑑) =

= ∑
1⩽𝑖1<…<𝑖𝑑⩽𝑚

𝜉𝑖1 ∧ … ∧ 𝜉𝑖𝑑 ⋅ ∑
𝑔∈𝑆𝑑

sgn(𝑔) 𝑐𝑖𝑔(1)𝑗1 … 𝑐𝑖𝑔(𝑑)𝑗𝑑 = ∑
𝐼
𝜉𝐼 ⋅ 𝑐𝐼𝐽 , (8-12)

где 𝐼 = (𝑖1, … , 𝑖𝑑) пробегает наборы из 𝑑 возрастающих номеров, а 𝑐𝐼𝐽 = det𝐶𝐼𝐽 обозначает
определитель 𝑑 × 𝑑-подматрицы 𝐶𝐼𝐽 ⊂ 𝐶, сосредоточенной в пересечениях столбцов с номе-
рами из 𝐽 и строк с номерами из 𝐼. Определитель 𝑐𝐼𝐽 ≝ det𝐶𝐼𝐽 называется 𝐼𝐽-тым минором 𝑑-
того порядка в матрице 𝐶. Таким образом, 𝐼𝐽-тый элемент матрицы, выражающей грассманов
моном 𝜂𝐽 через грассмановы мономы 𝜉𝐼 равен 𝐼𝐽-тому минору 𝑑-того порядка в матрице, выра-
жающей переменные 𝜂 через переменные 𝜉. Матрица размера (𝑛𝑑) × (𝑛𝑑), клетки которой нуме-
руются лексикографически упорядоченными наборами 𝐼 из𝑑 возрастающих номеров и которая
имеет в клетке (𝐼𝐽) минор 𝑐𝐼𝐽 матрицы 𝐶, обозначается 𝛬𝑑𝐶 и называется 𝑑-й внешней степенью
матрицы 𝐶.
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Предложение 8.2 (мультипликативность внешних степеней)

Для любых матриц 𝐴 ∈ Mat𝑚×𝑘(𝐾), 𝐵 ∈ Mat𝑘×𝑛(𝐾) над произвольным коммутативным коль-
цом𝐾 при всех 1 ⩽ 𝑑 ⩽ min(𝑚, 𝑛, 𝑘) выполняется равенство 𝛬𝑑(𝐴 ⋅𝐵) = 𝛬𝑑𝐴 ⋅𝛬𝑑𝐵. В частности,
для квадратных матриц 𝐴 и 𝐵 одинакового размера det(𝐴𝐵) = det(𝐴) det(𝐵).

Доказательство. Рассмотрим в свободном 𝐾-модуле 𝑉 с базисом 𝒆 = (𝑒1, … , 𝑒𝑚) наборы векто-
ров 𝒂 = (𝑎1, … , 𝑎𝑘) = 𝒆𝐴 и 𝒃 = (𝑏1, … , 𝑏𝑛) = 𝒂𝐵 = 𝒆𝐴𝐵. Обозначим через 𝒆𝒅 ⊂ 𝛬𝑑𝑉 набор
из (𝑚𝑑) грассмановых мономов 𝑒𝐼 = 𝑒𝑖1 ∧ … ∧ 𝑒𝑖𝑑 , а через 𝒃𝒅,𝒂𝒅 ⊂ 𝛬𝑑𝑉 — наборы из (𝑛𝑑) и (𝑘𝑑)
грассмановых многочленов 𝑏𝐽 = 𝑏𝑗1 ∧ … ∧ 𝑏𝑗𝑑 и 𝑎𝐿 = 𝑎𝓁1 ∧ … ∧ 𝑎𝓁𝑑 соответственно. Набор

мономов 𝒆𝒅 является базисом в 𝛬𝑑𝑉, а набор многочленов 𝒃𝒅 выражается через него, с одной
стороны, как 𝒃𝒅 = 𝒆𝒅 𝛬𝑑(𝐴𝐵), а с другой стороны — как 𝒃𝒅 = 𝒂𝒅 𝛬𝑑𝐵 = 𝒆𝒅 𝛬𝑑𝐴𝛬𝑑𝐵. Поскольку
матрица перехода от произвольного набора векторов к базису однозначно определяется этим
набором, мы заключаем, что 𝛬𝑑(𝐴 ⋅ 𝐵) = 𝛬𝑑𝐴 ⋅ 𝛬𝑑𝐵. □

Пример 8.3 (детерминантная формула для инвариантных множителей)

Из предл. 8.2 вытекает, что столбцы матрицы𝛬𝑘(𝐴𝐵) являются линейными комбинациями столб-
цов матрицы 𝛬𝑘𝐴. Поэтому любое число 𝑥 ∈ 𝐾, делящее все 𝑘 × 𝑘 миноры матрицы 𝐴, делит и
все 𝑘 × 𝑘 миноры матрицы 𝐴𝐵 для любой матрицы 𝐵, на которую 𝐴 можно умножить справа.
Если матрица 𝐵 обратима, то 𝐴 = (𝐴𝐵)𝐵−1 получается из матрицы 𝐴𝐵 правым умножением на
матрицу 𝐵−1, и значит, число 𝑥 ∈ 𝐾, делящее все 𝑘 × 𝑘 миноры матрицы 𝐴𝐵, делит и все 𝑘 × 𝑘
миноры матрицы 𝐴. Мы заключаем, что наибольший общий делитель 𝑘 × 𝑘 миноров любой
матрицы 𝐴 не меняется при умножении матрицы 𝐴 справа на обратимые матрицы. Аналогич-
но проверяется, что наибольший общий делитель 𝑘 × 𝑘 миноров матрицы 𝐴 не меняется при
умножении матрицы 𝐴 на обратимые матрицы слева. Обозначим наибольший общий делитель
всех 𝑘 × 𝑘 миноров матрицы 𝐴 через 𝛥𝑘(𝐴).

Если кольцо 𝐾 является областью главных идеалов, то по теор. 6.1 на стр. 103 для любой
матрицы𝐴 найдутся такие обратимые матрицы 𝐿 и𝑅, что у матрицы𝐷𝐴 = 𝐿𝐴𝑅 все элементы𝑑𝑖𝑗
с 𝑖 ≠ 𝑗 нулевые, и 𝑑𝑖𝑖 ∣ 𝑑𝑗𝑗 при 𝑖 < 𝑗. Поскольку 𝛥𝑘(𝐷𝐴) = 𝑑11 …𝑑𝑘𝑘 и 𝛥𝑘(𝐴) = 𝛥𝑘(𝐷𝐴), мы
заключаем, что 𝑑𝑖𝑖 = 𝛥𝑖(𝐴)∕𝛥𝑖−1(𝐴), если𝛥𝑖−1(𝐴) ≠ 0, а если𝛥𝑘(𝐴) = 0 при каком-то 𝑘, то 𝑑𝑗𝑗 = 0
при всех 𝑗 ⩾ 𝑘. Это даёт новое доказательство независимости нормальной формы Смита1 𝐷𝐴
и инвариантных множителей 𝑑𝑖𝑖 матрицы 𝐴 от способа её приведения к нормальной форме
Смита.

Пример 8.4 (дискриминант соизмеримой подрешётки и формула Пика)

Пусть ℤ-подмодуль 𝑈 ⊂ ℤ𝑛 таков, что фактор ℤ𝑛∕𝑈 конечен. Обозначим через 𝒆 какой-нибудь
базис в ℤ𝑛, а через 𝒖 = 𝒆 𝐶𝒆𝒖 — какой-нибудь базис в 𝑈. Абсолютная величина определителя
матрицы 𝐶𝒆𝒖 называется дискриминантом соизмеримой2 с ℤ𝑛 подрешётки 𝑈 и обозначается

𝐷𝑈 ≝ | det𝐶𝒆𝒖| .

Упражнение 8.8. Покажите, что если матрица 𝐶 ∈ Mat𝑛(𝐾) обратима, то det𝐶 обратим в 𝐾.

Из упражнения вытекает, что дискриминант не зависит от выбора базисов 𝒆 и 𝒖, так как для
любых других базисов 𝒗 = 𝒆 𝐶𝒆𝒗 в ℤ𝑛 и 𝒘 = 𝒖𝐶𝒖𝒘 в 𝐿 матрицы переходов 𝐶𝒗𝒆 = 𝐶−1

𝒆𝒗 и 𝐶𝒖𝒘,
будучи обратимыми над ℤ, имеют определители ±1, откуда

| det𝐶𝒗𝒘| = | det(𝐶𝒗𝒆𝐶𝒆𝒖𝐶𝒖𝒘)| = | det(𝐶𝒗𝒆) det(𝐶𝒆𝒖) det(𝐶𝒖𝒘)| = | det𝐶𝒆𝒖| .

1См. n∘ 6.1.1 на стр. 103.
2См. предл. 7.2 на стр. 124.
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Беря качестве 𝒆 и 𝒖 взаимные базисы 𝑣1, … , 𝑣𝑛 и 𝜆1𝑒1, … , 𝜆𝑛𝑒𝑛, заключаем, что дискриминант
𝐷𝑈 = 𝜆1 … 𝜆𝑛 равен числу элементов в факторе ℤ𝑛∕𝑈 ≃ ℤ∕(𝜆1) ⊕ … ⊕ ℤ∕(𝜆𝑛).

На геометрическом языке1 дискриминант 𝐷𝑈 решётки 𝐿 ⊂ ℤ𝑛 ⊂ ℝ𝑛 равен евклидову объ-
ёму2 параллелепипеда 𝛱, натянутого в пространстве ℝ𝑛 на какой-нибудь базис решётки 𝑈. Та-
кой параллелепипед называется фундаментальным параллелепипедом решётки 𝑈. Его сдвиги
на векторы решётки покрывают всё пространство ℝ𝑛, не имея при этом общих внутренних то-
чек. Каждый элемент фактора ℤ𝑛 ∕𝑈 представляется точкой, лежащей в 𝛱. При этом каждая
внутренняя точка𝛱 не сравнима по модулю𝑈 ни с какими другими точками из𝛱, каждая внут-
ренняя точка любой (𝑛 − 1)-мерной гиперграни 𝛱 сравнима ещё ровно с одной точкой из 𝛱,
лежащей на параллельной гиперграни, каждая внутренняя точка любой (𝑛 − 2)-мерной гра-
ни 𝛱 сравнима ровно с тремя точками из 𝛱, лежащими на трёх параллельных (𝑛 − 2)-мерных
гранях, и т. д. Каждая вершина 𝛱 сравнима с остальными 2𝑛 − 1 вершинами. Мы заключаем,
что объём 𝛱, равный числу элементов в факторе ℤ𝑛∕𝑈, может быть вычислен по формуле Пика:

Vol𝛱 = ∑
𝑛
𝑑=0 𝑝𝑑∕2𝑛−𝑑 ,

где 𝑝𝑑 при 𝑑 < 𝑛 обозначает число точек, лежащих внутри 𝑑-мерных граней 𝛱, а 𝑝𝑛 — число
внутренних точек самого 𝛱.

8.3.3. Соотношения Лапласа. Для каждого набора из 𝑚 возрастающих индексов

𝐽 = (𝑗1, … , 𝑗𝑚) ⊂ {1, … , 𝑛}

положим deg 𝐽 ≝ 𝑚, |𝐽| ≝ 𝑗1 + … + 𝑗𝑚 и обозначим через 𝐽 = (𝑗1, … , 𝑗𝑛−𝑚) = {1, … , 𝑛} −𝐽
дополнительный к 𝐽 набор из 𝑛 − 𝑚 возрастающих индексов. Для произвольной квадратной
матрицы 𝐴 = (𝑎𝑖𝑗) ∈ Mat𝑛(𝐾) рассмотрим в грассмановой алгебре 𝐾 ⟨𝜉1, … , 𝜉𝑛⟩ набор из 𝑛
линейных форм

𝛼𝑗 = 𝜉1𝑎1𝑗 + 𝜉2𝑎2𝑗 + … + 𝜉𝑛𝑎𝑛𝑗 , где 1 ⩽ 𝑗 ⩽ 𝑟 , (8-13)

или, в матричных обозначениях, (𝛼1, … ,𝛼𝑛) = (𝜉1, … , 𝜉𝑛)𝐴. Для двух наборов индексов 𝐼, 𝐽
одинаковой длины deg 𝐼 = deg 𝐽 = 𝑚 произведения

𝛼𝐽 = 𝛼𝑗1 ∧ … ∧ 𝛼𝑗𝑚 и 𝛼𝐼 = 𝛼𝑖1 ∧ … ∧ 𝛼𝑖𝑛−𝑚

имеют дополнительные степени 𝑚 и 𝑛 − 𝑚. Перемножая их по формуле (8-10), получим3

𝛼𝐽 ∧ 𝛼𝐼 =
{

(−1)|𝐽|+𝑚(𝑚+1)
2 𝛼1 ∧ … ∧ 𝛼𝑛 при 𝐼 = 𝐽

0 при 𝐼 ≠ 𝐽
(8-14)

Подставляя в равенство (8-14) разложения (8-13) и пользуясь формулами (8-12), в левой части
равенства получим

(∑
𝑀
𝜉𝑀𝑎𝑀𝐽 ) ∧ (∑

𝐿
𝜉𝐿𝑎𝐿𝐼 ) = (−1)

𝑚(𝑚+1)
2 𝜉1 ∧ … ∧ 𝜉𝑛 ∑

𝑀
(−1)|𝑀|𝑎𝑀𝐽𝑎𝑀𝐼 ,

1См. лекцию http://video.bogomolov-lab.ru/gorod/ps/stud/geom_ru/2122/lec_08.pdf.
2См. раздел 1.2.1 на стр. 133 лекции

http://video.bogomolov-lab.ru/gorod/ps/stud/geom_ru/2122/lec_10.pdf.
3Знак соответствующей тасующей перестановки был вычислен в упр. 8.3 на стр. 128.

http://video.bogomolov-lab.ru/gorod/ps/stud/geom_ru/2122/lec_08.pdf
http://video.bogomolov-lab.ru/gorod/ps/stud/geom_ru/2122/lec_10.pdf
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где𝑀 пробегает все индексы длины deg𝑀 = 𝑚, а в правой части при 𝐼 ≠ 𝐽 по-прежнему будет 0,

а при 𝐼 = 𝐽 получится (−1)
𝑚(𝑚+1)

2 +|𝐽| det𝐴⋅𝜉1∧…∧𝜉𝑛. Мы заключаем, для любых двух наборов 𝐽, 𝐼
из 𝑚 столбцов произвольной квадратной матрицы 𝐴 ∈ Mat𝑛(𝐾) выполняются соотношения
Лапласа

∑
𝑀

(−1)|𝑀|+|𝐽|𝑎𝑀𝐽𝑎𝑀𝐼 =
{

det𝐴 при 𝐼 = 𝐽,
0 при 𝐼 ≠ 𝐽,

(8-15)

где суммирование идёт по всем наборам 𝑀 из 𝑚 строк матрицы 𝐴.

При 𝐼 = 𝐽 соотношение (8-15) даёт формулу для вычисления определителя det𝐴 через все-
возможные миноры 𝑎𝑀𝐽 порядка𝑚, сосредоточенные в𝑚 фиксированных столбцах матрицы 𝐴
с номерами 𝐽, и дополнительные к ним миноры 𝑎𝐽𝑀 порядка 𝑛−𝑚, равные определителям мат-
риц, получающихся из 𝐴 вычёркиванием всех строк и столбцов, содержащих минор 𝑎𝑀𝐽:

det𝐴 = ∑
𝑀

(−1)|𝑀|+|𝐽|𝑎𝑀𝐽𝑎𝑀𝐽 . (8-16)

Произведение (−1)|𝑀|+|𝐽|𝑎𝑀𝐽 называется алгебраическим дополнением к минору 𝑎𝑀𝐽. При 𝐼 ≠ 𝐽
соотношение (8-15) с точностью до знака имеет вид

∑
𝑀

(−1)|𝑀|+|𝐼|𝑎𝑀𝐽𝑎𝑀𝐼 = 0 (8-17)

и называется теоремой об умножении на чужие алгебраические дополнения, поскольку левая
часть в (8-17) отличается от (8-16) тем, что миноры 𝑎𝑀𝐽 умножаются не на свои алгебраические
дополнения, а на дополнения к сосредоточенным в другом наборе столбцов 𝐼 ≠ 𝐽 минорам 𝑎𝑀𝐼.

Упражнение 8.9. Установите транспонированный вариант соотношений Лапласа

∑
𝑀

(−1)|𝐼|+|𝑀|𝑎𝐽𝑀𝑎𝐼𝑀 =
{

det𝐴 при 𝐼 = 𝐽
0 при 𝐼 ≠ 𝐽.

(8-18)

Если обозначить через𝛬𝑚𝐴∨ матрицу размера (𝑛𝑚)×(𝑛𝑚), клетки которой, как и у матрицы𝛬𝑚𝐴,
нумеруются 𝑚-элементными подмножествами 𝐼, 𝐽 ⊂ {1, … , 𝑛}, но в клетке (𝐼𝐽) стоит алгебраи-
ческое дополнение к 𝐽𝐼-минору1 матрицы𝐴, т. е. (−1)|𝐼|+|𝐽|𝑎𝐽𝐼, то все соотношения (8-15) и (8-18)
можно свернуть в одно матричное равенство

𝛬𝑚𝐴 ⋅ 𝛬𝑚𝐴∨ = 𝛬𝑚𝐴∨ ⋅ 𝛬𝑚𝐴 = det(𝐴) ⋅ 𝐸 , (8-19)

где 𝐸 — единичная матрицу размера (𝑛𝑑) × (𝑛𝑑). Матрица 𝛬𝑚𝐴∨ называется присоединённой к
матрице 𝛬𝑚𝐴.

Пример 8.5 (соотношение Плюккера)

Рассмотрим 2 × 4 матрицу

𝐴 = (
𝑎11 𝑎12 𝑎13 𝑎14
𝑎21 𝑎22 𝑎23 𝑎24)

1Обратите внимание, что индексы 𝐼 и 𝐽 преставились!
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с элементами из кольца𝐾 = ℤ[𝑎11, … , 𝑎24] многочленов от восьми переменных𝑎𝑖𝑗 и обозначим
через 𝐴𝑖𝑗 = 𝑎1𝑖𝑎2𝑗 −𝑎1𝑗𝑎2𝑖, где 1 ⩽ 𝑖 < 𝑗 ⩽ 4, её 2×2минор, образованный 𝑖-м и 𝑗-м столбцами.
Раскладывая нулевой определитель

0 = det (
𝐴
𝐴) = det

⎛
⎜
⎜
⎜
⎝

𝑎11 𝑎12 𝑎13 𝑎14
𝑎21 𝑎22 𝑎23 𝑎24
𝑎11 𝑎12 𝑎13 𝑎14
𝑎21 𝑎22 𝑎23 𝑎24

⎞
⎟
⎟
⎟
⎠

по первым двум строкам, заключаем, что шесть миноров 𝐴𝑖𝑗 связаны соотношением Плюккера

𝐴12𝐴34 − 𝐴13𝐴24 + 𝐴14𝐴23 = 0 . (8-20)

Упражнение 8.10. Убедитесь, для любого поля 𝕜 и любых шести чисел 𝐴𝑖𝑗 ∈ 𝕜, удовлетворяю-
щих соотношению (8-20), существует матрица 𝐴 ∈ Mat2×4(𝕜) с 2 × 2 минорами 𝐴𝑖𝑗.

Мы заключаем, что шесть чисел 𝐴𝑖𝑗 из поля 𝕜 являются минорами 2× 4 матрицы с элементами
из 𝕜 если и только если они удовлетворяют соотношению Плюккера (8-20).

Пример 8.6 (определитель пучка матриц)

Рассмотрим квадратные матрицы 𝐴,𝐵 ∈ Mat𝑛(𝐾) и пару коммутирующих переменных 𝑥, 𝑦.
Матрица 𝑥 𝐴+ 𝑦 𝐵 имеет элементы в 𝐾[𝑥, 𝑦], и её определитель det(𝑥 𝐴+ 𝑦 𝐵) является однород-
ным многочленом степени 𝑛 от 𝑥 и 𝑦. Покажем, что его коэффициент при 𝑥𝑚𝑦𝑛−𝑚 равен

tr(𝛬𝑚𝐴 ⋅ 𝛬𝑚𝐵∨) = ∑𝐼𝐽(−1)|𝐼|+|𝐽|𝑎𝐼𝐽𝑏𝐼𝐽 , (8-21)

где суммирование идёт по всем 𝑚-элементным подмножествам 𝐼, 𝐽 ⊂ {1, … , 𝑛}. Для этого рас-
смотрим наборы линейных форм (𝛼1, … ,𝛼𝑛) = (𝜉1, … , 𝜉𝑛)𝐴 и (𝛽1, … ,𝛽𝑛) = (𝜉1, … , 𝜉𝑛)𝐵 от
грассмановых переменных 𝜉1, … , 𝜉𝑛. Тогда

det(𝑥𝐴 + 𝑦𝐵) ⋅ 𝜉1 ∧ … ∧ 𝜉𝑛 = (𝑥𝛼1 + 𝑦𝛽1) ∧ (𝑥𝛼2 + 𝑦𝛽2) ∧ … ∧ (𝑥𝛼𝑛 + 𝑦𝛽𝑛) .

Моном 𝑥𝑚𝑦𝑛−𝑚 возникает при выборе первого слагаемого в каких-либо 𝑚 скобках, скажем, с
номерами 𝑖1, … , 𝑖𝑚, и второго слагаемого во всех остальных скобках. Вклад такого произведе-
ния в коэффициент при 𝑥𝑚𝑦𝑛−𝑚 равен

sgn(𝑖1, … , 𝑖𝑚, 𝑖1, … , 𝑖𝑛−𝑚) ⋅ 𝛼𝑖1 ∧ … ∧ 𝛼𝑖𝑘 ∧ 𝛽𝑖1 ∧ … ∧ 𝛽𝑖𝑛−𝑚
=

= (−1)
𝑚(𝑚+1)

2 +|𝐼|𝛼𝐼 ∧ 𝛽𝐼 = (−1)
𝑚(𝑚+1)

2 +|𝐼|(∑
𝐽
𝜉𝐽𝑎𝐽𝐼) ∧ (∑

𝑀
𝜉𝑀𝑏𝑀𝐼) =

= (−1)
𝑚(𝑚+1)

2 +|𝐼|
∑
𝐽𝑀

𝑎𝐽𝐼 ⋅ 𝑏𝑀𝐼 ⋅ 𝜉𝐽 ∧ 𝜉𝑀 = (∑
𝐽

(−1)|𝐼|+|𝐽|𝑎𝐽𝐼 ⋅ 𝑏𝐽𝐼) ⋅ 𝜉1 ∧ … ∧ 𝜉𝑛.

Коэффициент при 𝑥𝑚𝑦𝑛−𝑚 в det(𝑥 𝐴 + 𝑦 𝐵) равен сумме этих вкладов по всем наборам 𝐼 из 𝑚
возрастающих номеров, что и даёт формулу (8-21).
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8.4. Присоединённая матрица. При𝑚 = 1 в вычислениях из n∘ 8.3.3 на стр. 134 наборы 𝐼 = (𝑖),
𝐽 = (𝑗) содержат по одному индексу и миноры 𝑎𝐼𝐽 = 𝑎𝑖𝑗 превращаются в матричные элементы,
так что𝛬1𝐴 = 𝐴. Присоединённая матрица 𝛬1𝐴∨ в этом случае обозначается просто𝐴∨ = (𝑎∨

𝑖𝑗) и
называется присоединённой к матрице 𝐴. Она имеет в клетке (𝑖, 𝑗) определитель (𝑛−1) × (𝑛−1)-
подматрицы, получающейся из 𝐴 выкидыванием креста с центром в клетке (𝑗, 𝑖), т. е.

𝑎∨
𝑖𝑗 = (−1)𝑖+𝑗𝑎𝑗𝑖 .

Соотношения Лапласа из форм. (8-19) на стр. 135 в этом случае превращаются в равенства

𝐴𝐴∨ = 𝐴∨𝐴 = det(𝐴) ⋅ 𝐸 (8-22)

в алгебре матриц Mat𝑛(𝐾).
8.4.1. Формула для обратной матрицы. Если определитель матрицы 𝐴 ∈ Mat𝑛(𝐾) обра-

тим в 𝐾, то по (8-22) матрица 𝐴 тоже обратима, и 𝐴−1 = 𝐴∨ ∕det𝐴. Наоборот, если матрица 𝐴
обратима, то 1 = det𝐸 = det(𝐴𝐴−1) = det(𝐴) det(𝐴−1), и det𝐴 обратим в 𝐾. Мы получаем

Предложение 8.3

Квадратная матрица 𝐴 ∈ Mat𝑛(𝐾) с элементами из произвольного коммутативного кольца 𝐾 с
единицей обратима если и только если det𝐴 обратим в 𝐾, и в этом случае 𝐴−1 = 𝐴∨∕det𝐴. □

Пример 8.7

Для матриц размера 2 × 2 и 3 × 3 с определителем 1

(
𝑎 𝑏
𝑐 𝑑)

−1
= (

𝑑 −𝑏
−𝑐 𝑎 )

⎛
⎜
⎜
⎝

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

⎞
⎟
⎟
⎠

−1

=
⎛
⎜
⎜
⎝

(𝑎22𝑎33 − 𝑎23𝑎32) −(𝑎12𝑎33 − 𝑎13𝑎31) (𝑎12𝑎23 − 𝑎13𝑎22)
−(𝑎21𝑎33 − 𝑎23𝑎31) (𝑎11𝑎33 − 𝑎13𝑎31) −(𝑎11𝑎23 − 𝑎13𝑎21)

(𝑎21𝑎32 − 𝑎22𝑎31) −(𝑎11𝑎32 − 𝑎12𝑎32) (𝑎11𝑎22 − 𝑎12𝑎21)

⎞
⎟
⎟
⎠

.

В общем случае все элементы матриц в правых частях надо поделить на det𝐴.

8.4.2. Разложение определителя по строке или столбцу. Вычисляя элемент в позиции 𝑖𝑖
первого произведения в (8-22), получаем равенство

det𝐴 = ∑
𝑛
𝑗=1(−1)𝑖+𝑗𝑎𝑖𝑗𝐴𝑖𝑗 (8-23)

которое называется разложением определителя по 𝑖-той строке. Симметричным образом, вы-
числение 𝑗𝑗-того элемента второго произведения в (8-22) даёт разложение по 𝑗-му столбцу

det𝐴 = ∑
𝑛
𝑖=1(−1)𝑖+𝑗𝑎𝑖𝑗𝐴𝑖𝑗 . (8-24)

Например, разложение определителя 3 × 3 по первому столбцу имеет вид:

det
⎛
⎜
⎜
⎝

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

⎞
⎟
⎟
⎠

=

= 𝑎11 (𝑎22𝑎33 − 𝑎23𝑎32) − 𝑎21 (𝑎12𝑎33 − 𝑎13𝑎32) + 𝑎31 (𝑎12𝑎23 − 𝑎13𝑎22) .



138 §8 Грассмановы многочлены и определители

8.4.3. Правило Крамера для систем однородных линейных уравнений. Рассмотрим си-
стему 𝑛 линейных однородных уравнений на 𝑛 + 1 неизвестных

⎧⎪
⎪
⎨
⎪
⎪⎩

𝑎10𝑥0 + 𝑎11𝑥1 + … + 𝑎1𝑛𝑥𝑛 = 0
𝑎20𝑥0 + 𝑎21𝑥1 + … + 𝑎2𝑛𝑥𝑛 = 0

… … … … …
𝑎𝑛0𝑥1 + 𝑎𝑛1𝑥1 + … + 𝑎𝑛𝑛𝑥𝑛 = 0

(8-25)

и построим по матрице 𝐴 = (𝑎𝑖𝑗) её коэффициентов вектор 𝛼 = (𝐴0,𝐴1, … ,𝐴𝑛) ∈ 𝐾𝑛+1, у

которого 𝑖-я координата равна умноженному на (−1)𝑖 определителю квадратной𝑛×𝑛-матрицы,
получающейся из 𝑛 × (𝑛 + 1)-матрицы 𝐴 выкидыванием 𝑖-того столбца:

𝐴𝑖 = (−1)𝑖 det

⎛
⎜
⎜
⎜
⎝

𝑎1,0 … 𝑎1,𝑖−1 𝑎1,𝑖+1 … 𝑎1,𝑛
𝑎2,0 … 𝑎2,𝑖−1 𝑎2,𝑖+1 … 𝑎2,𝑛

⋮ … ⋮ ⋮ … ⋮
𝑎𝑛,0 … 𝑎𝑛,𝑖−1 𝑎𝑛,𝑖+1 … 𝑎𝑛,𝑛

⎞
⎟
⎟
⎟
⎠

(8-26)

Покажем, что вектор 𝛼 является решением системы (8-25). Дописывая к матрице 𝐴 сверху ещё
один экземпляр её 𝑖-той строки, мы получим квадратную матрицу размера (𝑛+1) × (𝑛+1) с ну-
левым определителем. Раскладывая этот определитель по верхней строке, получаем равенство
𝑎𝑖0𝐴0 + … + 𝑎𝑖𝑛𝐴𝑛 = 0, справедливое при каждом 𝑖.

Упражнение 8.11. Проверьте, что если кольцо 𝐾 = 𝕜 является полем, то уравнения (8-25) ли-
нейно независимы если и только если 𝛼 ≠ 0, и в этом случае решения системы (8-25) обра-
зуют в 𝕜𝑛+1 одномерное векторное подпространство, порождённое вектором 𝛼.

Например, в векторном пространстве 𝕜3 пересечение не совпадающих плоскостей

{
𝑎1𝑥 + 𝑎2𝑦 + 𝑎3𝑧 = 0
𝑏1𝑥 + 𝑏2𝑦 + 𝑏3𝑧 = 0

является прямой с направляющим вектором (𝑎2𝑏3 − 𝑎3𝑏2, −𝑎1𝑏3 + 𝑎3𝑏1, 𝑎1𝑏2 − 𝑎2𝑏1).
8.4.4. Правило Крамера для систем неоднородных уравнений. По предл. 5.6 на стр. 97

столбцы 𝑣1, … , 𝑣𝑛 квадратной матрицы 𝐶 ∈ Mat𝑛(𝐾) образуют базис модуля 𝐾𝑛 если и толь-
ко если матрица 𝐶 обратима, что по предл. 8.3 равносильно обратимости в 𝐾 её определителя
det(𝑣1, … , 𝑣𝑛) = det𝐶. Если это так, то коэффициенты разложения

𝑤 = 𝑥1𝑣1 + … + 𝑥𝑛𝑣𝑛

произвольного вектора 𝑤 ∈ 𝐾𝑛 по базису 𝑣1, … , 𝑣𝑛 вычисляются по правилу Крамера

𝑥𝑖 =
det (𝑣1, … , 𝑣𝑖−1, 𝑤, 𝑣𝑖+1, … , 𝑣𝑛)

det(𝑣1, … , 𝑣𝑛) , (8-27)

так как

det (𝑣1, … , 𝑣𝑖−1,𝑤, 𝑣𝑖+1, … , 𝑣𝑛) = det(𝑣1, … , 𝑣𝑖−1, ∑𝜈 𝑥𝜈𝑣𝜈, 𝑣𝑖+1, … , 𝑣𝑛) =

= ∑𝜈 𝑥𝜈 det (𝑣1, … , 𝑣𝑖−1, 𝑣𝜈, 𝑣𝑖+1, … , 𝑣𝑛) = 𝑥𝑖 det (𝑣1, … , 𝑣𝑖−1, 𝑣𝑖, 𝑣𝑖+1, … , 𝑣𝑛) .
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8.4.5. Тождество Гамильтона – Кэли. Для любого коммутативного кольца 𝐾 с единицей
кольцо квадратных матриц Mat𝑛(𝐾[𝑡]) с элементами из кольца многочленов 𝐾[𝑡] совпадает с
кольцом многочленов Mat𝑛(𝐾)[𝑡] от переменной 𝑡 с коэффициентами в Mat𝑛(𝐾), поскольку каж-
дую матрицу, в клетках которой стоят многочлены от 𝑡, можно записать как многочлен от 𝑡 с
матричными коэффициентами и наоборот. Например,

(
3𝑡2 + 2𝑡 𝑡3 − 1
2𝑡 + 3 𝑡3 + 𝑡 − 1) = 𝑡3 (

0 1
0 1) + 𝑡2 (

3 0
0 0) + 𝑡(

2 0
2 1) + (

0 −1
3 −1) .

Определение 8.1 (характеристический многочлен)

Для матрицы 𝐴 = (𝑎𝑖𝑗) ∈ Mat𝑛(𝐾) многочлен

𝜒𝐴(𝑡) ≝ det(𝑡𝐸 − 𝐴) = 𝑡𝑛 − 𝜎1(𝐴) ⋅ 𝑡𝑛−1 + … + (−1)𝑛−1𝜎𝑛−1(𝐴) ⋅ 𝑡 + (−1)𝑛𝜎𝑛(𝐴) ∈ 𝐾[𝑡]

называется характеристическим многочленом матрицы 𝐴. Коэффициент при 𝑡𝑛−𝑘 в характери-
стическом многочлене обозначается через (−1)𝑘𝜎𝑘(𝐴).

Упражнение 8.12. Убедитесь, что число 𝜎𝑘(𝐴) ∈ 𝐾 равно сумме главных 𝑘 × 𝑘 миноров1 мат-
рицы 𝐴. В частности, 𝜎1(𝐴) = tr(𝐴) и 𝜎𝑛(𝐴) = det𝐴 суть след и определитель матрицы 𝐴.

Теорема 8.1 (тождество Гамильтона – Кэли)

Рассмотрим кольцо 𝐾 = ℤ[𝑎𝑖𝑗] многочленов с целыми коэффициентами от 𝑛2 переменных 𝑎𝑖𝑗,
где 1 ⩽ 𝑖, 𝑗 ⩽ 𝑛. Матрица𝐴 = (𝑎𝑖𝑗) ∈ Mat𝑛(𝐾) удовлетворяет в Mat𝑛(𝐾) соотношению 𝜒𝐴(𝐴) = 0.

Доказательство. Согласно форм. (8-22) на стр. 137, в кольце Mat𝑛(𝐾[𝑡]) выполняется соотноше-
ние det(𝑡𝐸−𝐴) ⋅𝐸 = (𝑡𝐸−𝐴)(𝑡𝐸−𝐴)∨, где (𝑡𝐸−𝐴)∨ ∈ Mat𝑛(𝐾[𝑡]) — матрица, присоединённая2

к (𝑡𝐸 − 𝐴). Перепишем это равенство в виде равенства между многочленами от 𝑡 с коэффици-
ентами в кольце матриц Mat𝑛(𝐾):

𝑡𝑛𝐸 − 𝜎1(𝐴) 𝑡𝑛−1𝐸 + … + (−1)𝑛𝜎𝑛(𝐴)𝐸 = (𝑡𝐸 − 𝐴)(𝑡𝑚𝐴𝑚 + … + 𝑡 𝐴1 + 𝐴0) ,

где𝐴0,𝐴1, … ,𝐴𝑚 ∈ Mat𝑛(𝐾) — некоторые матрицы. Подставляя в него 𝑡 = 𝐴, получаем в кольце
Mat𝑛(𝐾) равенство 𝜒𝐴(𝐴) ⋅ 𝐸 = 0, откуда 𝜒𝐴(𝐴) = 0. □

Упражнение 8.13. Пусть 𝑓(𝑡) = ∑𝑚
𝑖=0 𝑡𝑖𝐴𝑖, 𝑔(𝑡) = ∑𝑛

𝑗=0 𝑡𝑗𝐵𝑗 ∈ Mat𝑟(𝐾)[𝑡] и

ℎ(𝑡) = 𝑓(𝑡)𝑔(𝑡) = ∑
𝑚+𝑛
𝑘=0 𝑡𝑘𝐻𝑘 ∈ Mat𝑟(𝐾)[𝑡] , где 𝐻𝑘 = ∑

𝑖+𝑗=𝑘
𝐴𝑖𝐵𝑗 ,

а матрица 𝐶 ∈ Mat𝑟(𝐾) такова, что 𝐶𝐴𝑖 = 𝐴𝑖𝐶 при всех 𝑖. Убедитесь, что 𝑓(𝐶)𝑔(𝐶) = ℎ(𝐶)
в Mat𝑟(𝐾).

1Т. е. определителей таких 𝑘×𝑘 подматриц в 𝐴, главная диагональ которых является подмножеством
главной диагонали матрицы 𝐴.

2См. n∘ 8.4 на стр. 137.
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8.5. Результант. Пусть многочлены 𝑓(𝑥) = 𝑎0 + 𝑎1𝑥 + … + 𝑎𝑛𝑥𝑛 и 𝑔(𝑥) = 𝑏0 + 𝑏1𝑥 + … + 𝑏𝑚𝑥𝑚
имеют коэффициенты в произвольном поле 𝕜 и 𝑎𝑛𝑏𝑚 ≠ 0. Обозначим через 𝑉𝑘 ⊂ 𝕜[𝑥] век-
торное пространство многочленов степени строго меньше 𝑘. Наличие у 𝑓 и 𝑔 общего корня в
каком-нибудь поле 𝔽 ⊃ 𝕜 равносильно тому, что deg нод(𝑓,𝑔) ⩾ 1, а это в свою очередь эквива-
лентно существованию таких не равных одновременно нулю многочленов ℎ1 ∈ 𝑉𝑚 и ℎ2 ∈ 𝑉𝑛,
что 𝑓ℎ1 + 𝑔ℎ2 = 0.

Упражнение 8.14. Убедитесь в этом.

Мы заключаем, что многочлены 𝑓 и𝑔 тогда и только тогда имеют общий корень в каком-нибудь
расширении 𝔽 ⊃ 𝕜, когда 𝕜-линейное отображение

𝑉𝑚 ⊕ 𝑉𝑛 → 𝑉𝑚+𝑛 , (ℎ1, ℎ2) ↦ 𝑓ℎ1 + 𝑔ℎ2 , (8-28)

имеет ненулевое ядро. Поскольку dim(𝑉𝑚 ⊕ 𝑉𝑛) = 𝑚 + 𝑛 = dim𝑉𝑚+𝑛, это условие выражается
равенством нулю определителя матрицы отображения (8-28) в каких-нибудь базисах. В стан-
дартных базисах (1, 0), (𝑥, 0), … , (𝑥𝑚−1, 0), (0, 1), (0, 𝑥), … , (0, 𝑥𝑛−1) в 𝑉𝑚 ⊕ 𝑉𝑛 и 1, 𝑥, … , 𝑥𝑚+𝑛−1

в 𝑉𝑚+𝑛 отображение (8-28) имеет матрицу

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑚

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝑎0 𝑏0
𝑎1 ⋱ ⋮ ⋱
⋮ ⋱ 𝑎0 𝑏𝑚−1 ⋱ 𝑏0
𝑎𝑛 ⋱ 𝑎1 𝑏𝑚 ⋱ ⋮

⋱ ⋮ ⋱ 𝑏𝑚−1
𝑎𝑛 𝑏𝑚

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎫⎪
⎪
⎪
⎬
⎪
⎪
⎪⎭

𝑚+𝑛 (8-29)

(в столбцах записаны коэффициентов многочленов 𝑓 и 𝑔, последовательно сдвигаемые на одну
клетку вниз при движении слева направо, все остальные элементы матрицы нулевые). Опреде-
литель матрицы (8-29) называется детерминантом Сильвестра многочленов 𝑓, 𝑔. Таким обра-
зом, многочлены 𝑓,𝑔 ∈ 𝕜[𝑥] имеют общий корень в некотором расширении 𝔽 ⊃ 𝕜 поля 𝕜, если
и только если их детерминант Сильвестра обращается в нуль.

Рассмотрим теперь кольцо 𝐾 = ℤ[𝑎𝑛, 𝑏𝑚,𝛼1, … ,𝛼𝑛,𝛽1, … ,𝛽𝑚] и многочлены

𝐴(𝑥) = 𝑎0 + 𝑎1𝑥 + … + 𝑎𝑛𝑥𝑛 ≝ 𝑎𝑛
𝑛

∏
𝑖=1

(𝑥 − 𝛼𝑖)

𝐵(𝑥) = 𝑏0 + 𝑏1𝑥 + … + 𝑏𝑚𝑥𝑚 ≝ 𝑏𝑚
𝑛

∏
𝑗=1

(𝑥 − 𝛽𝑗) ,

(8-30)

лежащие в кольце 𝐾[𝑥]. Элемент 𝑅𝐴,𝐵 кольца 𝐾, задаваемый равенствами

𝑅𝐴,𝐵 ≝ 𝑎𝑚𝑛 𝑏𝑛𝑚 ∏
𝑖𝑗

(𝛼𝑖 − 𝛽𝑗) = 𝑎𝑚𝑛
𝑛

∏
𝑖=1

𝐵(𝛼𝑖) = (−1)𝑚𝑛𝑏𝑛𝑚
𝑚

∏
𝑗=1

𝐴(𝛽𝑗) (8-31)

называется результантом многочленов (8-30). Будучи симметрическим как по переменным𝛼𝑖,
так и по переменным 𝛽𝑗, результант лежит в подкольце кольца 𝐾, состоящем из многочленов
от 𝑎𝑛, 𝑏𝑚 и от элементарных симметрических многочленов 𝑒𝑘(𝛼1, … ,𝛼𝑛) и 𝑒𝓁(𝛽1, … ,𝛽𝑚).
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Предложение 8.4

Результант 𝑅𝐴,𝐵 равен в кольце 𝐾 детерминанту Сильвестра многочленов (8-30). Кроме того,
существуют такие многочлены 𝜑,𝜓 ∈ 𝐾[𝑥], что 𝐴(𝑥) ⋅ 𝜑(𝑥) + 𝐵(𝑥) ⋅ 𝜓(𝑥) = 𝑅𝐴,𝐵.

Доказательство. Обозначим матрицу (8-29) через 𝑆. По предыдущему для любых многочленов
𝜑(𝑥) = 𝜑0 + 𝜑1𝑥 + … + 𝜑𝑛−1𝑥𝑛−1 и 𝜓(𝑥) = 𝜓0 + 𝜓1𝑥 + … + 𝜓𝑚−1𝑥𝑚−1 столбец коэффициен-
тов многочлена𝐴𝜑+𝐵𝜓 является результатом умножения столбца (𝜑0, … ,𝜑𝑚−1,𝜓0, … ,𝜓𝑛−1)𝑡
слева на матрицу 𝑆. Из равенства 𝑆 ⋅ 𝑆∨ = det(𝑆) ⋅𝐸 вытекает, что в первом столбце матрицы 𝑆∨

выписаны друг под другом коэффициенты таких многочленов 𝜑,𝜓 ∈ 𝐾[𝑥], что

𝐴(𝑥) ⋅ 𝜑(𝑥) + 𝐵(𝑥) ⋅ 𝜓(𝑥) = det 𝑆 ∈ 𝐾 . (8-32)

Рассмотрим det 𝑆 ∈ ℤ[𝑎𝑛, 𝑏𝑚,𝛼1, … ,𝛼𝑛,𝛽1, … ,𝛽𝑚] как многочлен от 𝛼𝑖 с коэффициентами в
кольце многочленов от всех остальных переменных. Полагая 𝛼𝑖 = 𝛽𝑗 и подставляя в равен-
ство (8-32) 𝑥 = 𝛼𝑖 = 𝛽𝑗 получаем в левой части нуль, поскольку при 𝛼𝑖 = 𝛽𝑗 оба многочлена
𝐴(𝑥) и𝐵(𝑥) обращаются в нуль при 𝑥 = 𝛼𝑖 = 𝛽𝑗. Поэтому det 𝑆 делится в кольце𝐾 на все разности
𝑎𝑖 − 𝛽𝑗. Так как кольцо 𝐾 = ℤ[𝑎𝑛, 𝑏𝑚,𝛼1, … ,𝛼𝑛,𝛽1, … ,𝛽𝑚] факториально, а все эти разности
неприводимы и попарно не ассоциированы, det 𝑆 делится на ∏𝑖𝑗(𝛼𝑖 −𝛽𝑗). С другой стороны, по

формулам Виета 𝑎𝑘 = (−1)𝑛−𝑘𝑎𝑛𝑒𝑛−𝑘(𝛼1, … ,𝛼𝑛) и 𝑏𝑘 = (−1)𝑚−𝑘𝑏𝑚𝑒𝑚−𝑘(𝛽1, … ,𝛽𝑚), где 𝑒𝑖 —
элементарные симметрические многочлены. Поэтому первые 𝑚 столбцов матрицы 𝑆 делятся
на 𝑎𝑛, а последние 𝑛 — на 𝑏𝑚. Тем самым det 𝑆 делится на 𝑎𝑚𝑛 𝑏𝑛𝑚 ∏𝑖𝑗(𝛼𝑖 −𝛽𝑗) = 𝑅𝐴,𝐵. Поскольку
лексикографически старшие члены у det 𝑆 и 𝑅𝐴,𝐵 оба равны 𝑎𝑚𝑛 𝑏𝑛𝑚(𝛼1 …𝛼𝑛)𝑚, мы заключаем,
что частное от деления равно 1. □

Пример 8.8 (исключение переменных)

Над алгебраически замкнутым полем 𝕜 пара чисел (𝑥0, 𝑦0) ∈ 𝕜2 тогда и только тогда является
решением системы полиномиальных уравнений 𝑓(𝑥, 𝑦) = 𝑔(𝑥, 𝑦) = 0, где 𝑓,𝑔 ∈ 𝕜[𝑥, 𝑦], когда
многочлены 𝑓(𝑥, 𝑦) = 𝑓𝑥(𝑦) и 𝑔(𝑥, 𝑦) = 𝑔𝑥(𝑦), рассматриваемые как многочлены от 𝑦 с коэффи-
циентами в кольце 𝕜[𝑥], имеют при 𝑥 = 𝑥0 общий корень 𝑦 = 𝑦0, что равносильно обращению
в нуль при 𝑥 = 𝑥0 результанта 𝑅𝑓𝑥,𝑔𝑥 ∈ 𝕜[𝑥] этих двух многочленов от 𝑦. Таким образом каждая
система из двух полиномиальных уравнений на 𝑥, 𝑦 сводится к одному полиномиальному урав-
нению на 𝑥 — обращению в нуль детерминанта Сильвестра, составленного из лежащих в 𝕜[𝑥]
коэффициентов многочленов 𝑓𝑥,𝑔𝑥 ∈ 𝕜[𝑥][𝑦]. Эта процедура называется исключением перемен-
ной 𝑦 из уравнений 𝑓(𝑥, 𝑦) = 𝑔(𝑥, 𝑦) = 0.
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Упр. 8.1. max 𝓁(𝑔) = 𝑛(𝑛 − 1)/2 достигается на единственной перестановке (𝑛, 𝑛 − 1, … , 1).
Упр. 8.2. Индукция по 𝑛. Каждая перестановка 𝑔 = (𝑔1, … ,𝑔𝑛) является композицией 𝑔 = 𝜎 ∘ 𝑔′

транспозиции 𝜎, переставляющей между собою элементы 𝑛 и 𝑔𝑛, и перестановки 𝑔′ = 𝜎 ∘ 𝑔,
оставляющей элемент 𝑛 на месте. По индукции, 𝑔′ раскладывается в композицию транспози-
ций, не затрагивающих элемент 𝑛.

Упр. 8.3. Когда все точки пересечения двойные и трансверсальные, две нити, идущие из 𝑖 и из 𝑗
пересекаются между собою нечётное число раз, если пара (𝑖, 𝑗) инверсна, и чётное, если не ин-
версна1. Для тасующей перестановки (𝑖1, … , 𝑖𝑘, 𝑗1, … , 𝑗𝑚) нити, выходящие из 𝑖1, … , 𝑖𝑘 верх-
ней строки не пересекаются между собою и пересекают, соответственно, 𝑖1 −1, 𝑖2 −2, … , 𝑖𝑘 −𝑘
начинающихся левее нитей, выходящих из 𝑗-точек верхней строки, причём все эти нити не пе-
ресекаются между собою.

Упр. 8.4. Если 𝑔 является композицией транспозиций 𝜎𝑘𝜎𝑘−1 …𝜎1, то 𝑔−1 = 𝜎1 …𝜎𝑘 является
произведением тех же транспозиций в противоположном порядке.

Упр. 8.6. При чётном 𝑛 центр алгебры 𝐾 ⟨𝜉1, … , 𝜉𝑛⟩ линейно порождается мономами чётных сте-
пеней, при нечётном𝑛— мономами чётных степеней и старшим мономом 𝜉1∧…∧𝜉𝑛, имеющим
в этом случае нечётную степень.

Упр. 8.8. Беря определители в равенстве 𝐶 ⋅ 𝐶−1 = 𝐸, получаем det(𝐶) ⋅ det(𝐶−1) = det𝐸 = 1.

Упр. 8.9. Это следует из равенств det𝐴 = det𝐴𝑡 и (𝐴𝐵)𝑡 = 𝐵𝑡𝐴𝑡.

Упр. 8.10. Если все 𝐴𝑖𝑗 = 0, положим 𝐴 = 0, если, скажем, 𝐴12 ≠ 0, положим

𝐴 = (
1 0 −𝐴23∕𝐴12 −𝐴24∕𝐴12
0 𝐴12 𝐴13 𝐴14 ) .

Обратите внимание, что равенство

𝐴34 = det (
−𝐴23∕𝐴12 −𝐴24∕𝐴12

𝐴13 𝐴14 )

эквивалентно соотношению Плюккера из форм. (8-20) на стр. 136.

Упр. 8.11. Если стоящие в левых частях уравнений (8-25) линейные формы

𝛼𝑖 = (𝑎𝑖,0, 𝑎𝑖,1, … , 𝑎𝑖,𝑛) ∈ 𝕜𝑛+1∗

линейно независимы, то по лемме о замене2 ими можно заменить подходящие 𝑛 ковекторов
стандартного базиса в 𝕜𝑛+1∗

. Пусть это будут последние 𝑛 базисных ковекторов. Коль скоро
ковектор (1, 0, … , 0) и ковекторы 𝛼1, … ,𝛼𝑛 образуют базис, определитель, составленный из
строк их координат, отличен от нуля. Раскладывая его по строке (1, 0, … , 0), видим, что он ра-
вен 𝐴0, откуда 𝐴0 ≠ 0. Если же строки матрицы 𝐴 линейно зависимы, то все 𝐴𝑖 = 0.

1На самом деле картинку всегда можно нарисовать так, чтобы количества точек пересечения в этих
двух случаях равнялись 1 и 0 соответственно

2См. лемму 4.2 на стр. 48 лекции http://gorod.bogomolov-lab.ru/ps/stud/geom_ru/2122/lec_04.pdf.
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Упр. 8.12. Это вытекает из прим. 8.6 на стр. 136. Полагая в форм. (8-21) на стр. 136 𝑥 = 1, 𝑦 = 𝑡 и
𝐵 = 𝐸, получаем разложение

det(𝑡𝐸 + 𝐴) = 𝑡𝑛 +
𝑛

∑
𝑚=1

𝑡𝑛−𝑚
∑#𝐼=𝑚 𝑎𝐼𝐼 =

= 𝑡𝑛 + 𝑡𝑛−1
∑𝑖 𝑎𝑖𝑖 + 𝑡𝑛−1

∑𝑖<𝑗(𝑎𝑖𝑖𝑎𝑗𝑗 − 𝑎𝑖𝑗𝑎𝑗𝑖) + … + 𝑡∑𝑖 𝑎𝑖𝑖 + det𝐴 ,

где коэффициент при 𝑡𝑛−𝑘 равен сумме определителей всех 𝑘 × 𝑘 подматриц в 𝐴 с главной диа-
гональю, содержащейся в главной диагонали матрицы 𝐴.

Упр. 8.13. 𝑓(𝐶)𝑔(𝐶) = ∑𝑚+𝑛
𝑘=0 ∑𝑖+𝑗=𝑘 𝐶𝑖𝐴𝑖𝐶𝑗𝐵𝑗 = ∑𝑚+𝑛

𝑘=0 ∑𝑖+𝑗=𝑘 𝐶𝑖+𝑗𝐴𝑖𝐵𝑗 = ∑𝑚+𝑛
𝑘=0 𝐶𝑘 ∑𝑖+𝑗=𝑘 𝐴𝑖𝐵𝑗 =

= ∑𝑚+𝑛
𝑘=0 𝐶𝑘𝐻𝑘 = ℎ(𝐶).

Упр. 8.14. Если 𝑓 = ℎ𝜑, 𝑔 = ℎ𝜓, где deg ℎ > 0, то deg𝜑 < 𝑛, deg𝜓 < 𝑚 и 𝑓𝜓 − 𝑔𝜑 = 0. Если же 𝑓
и 𝑔 взаимно просты, то из равенства 𝑓ℎ1 = −𝑔ℎ2 вытекает, что 𝑔 ∣ ℎ1, а 𝑓 ∣ ℎ2, что невозможно
для ненулевых ℎ1, ℎ2 с deg ℎ1 < 𝑚 и deg ℎ2 < 𝑛.
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