
§9. Пространство с оператором

9.1. Классификация пространств с оператором.Пусть𝕜—произвольное поле, 𝑉—конечно-
мерное векторное пространство над𝕜, а 𝐹∶ 𝑉 → 𝑉—линейный эндоморфизм пространства 𝑉.
Мы будем называть пару (𝐹,𝑉) пространством с оператором или просто оператором над 𝕜.
Линейное отображение 𝐶∶ 𝑈1 → 𝑈2 между пространствами с операторами (𝐹1,𝑈1) и (𝐹2,𝑈2)
называется гомоморфизмом, если 𝐹2 ∘ 𝐶 = 𝐶 ∘ 𝐹1 . В этом случае говорят, что диаграмма
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коммутативна1. Если гомоморфизм 𝐶 биективен, операторы 𝐹1 ∶ 𝑈1 → 𝑈1 и 𝐹2 ∶ 𝑈2 → 𝑈2 на-
зываются изоморфными или подобными. Поскольку в этом случае 𝐹2 = 𝐶𝐹1𝐶−1, то говорят, что
оператор 𝐹2 получается из 𝐹1 сопряжением посредством изоморфизма 𝐶.

Подпространство 𝑈 ⊂ 𝑉 называется 𝐹-инвариантным, если 𝐹(𝑈) ⊂ 𝑈 . В этом случае па-
ра (𝐹|𝑈,𝑈) тоже является пространством с оператором и вложение 𝑈 ↪ 𝑉 представляет собою
гомоморфизмом пространств с операторами. Оператор, не имеющий инвариантных подпро-
странств, отличных от нуля и всего пространства, называется неприводимым или простым.

Упражнение 9.1. Покажите, что оператор умножения на класс [𝑡] в факторкольцеℝ[𝑡]∕(𝑡2+1)
неприводим.

Оператор 𝐹∶ 𝑉 → 𝑉 называется разложимым, если 𝑉 раскладывается в прямую сумму двух
ненулевых 𝐹-инвариантных подпространств, и неразложимым —в противном случае. Все про-
стые операторы неразложимы.

Упражнение 9.2. Покажите, что оператор умножения на класс [𝑡] в факторкольце 𝕜[𝑡]∕ (𝑡𝑛)
при всех 𝑛 > 1 приводим, но неразложим.

Таким образом, над любым полем 𝕜 имеются неразложимые пространства с оператором лю-
бой размерности. Очевидно, что всякое пространство с оператором является прямой суммой
неразложимых.

9.1.1. Пространство с оператором как 𝕜[𝒕]-модуль. Задание на пространстве 𝑉 линейно-
го оператора 𝐹∶ 𝑉 → 𝑉 эквивалентно заданию на 𝑉 структуры модуля над кольцом многочле-
нов 𝕜[𝑡]. В самом деле, структура 𝕜[𝑡]-модуля включает в себя операцию умножения векторов
на переменную 𝑡: 𝑣 ↦ 𝑡𝑣, которая является линейным отображением 𝑉 → 𝑉. Если обозначить
его буквой 𝐹, то умножение векторов на произвольный многочлен 𝑓(𝑡) = 𝑎0 + 𝑎1𝑡+ … + 𝑎𝑚𝑡𝑚
происходит по правилу 𝑓(𝑡) 𝑣 = 𝑎0𝑣 + 𝑎1𝐹𝑣 + … + 𝑎𝑚𝐹𝑚𝑣 = 𝑓(𝐹) 𝑣, где

𝑓(𝐹) = 𝑎0Id𝑉 + 𝑎1𝐹 + … + 𝑎𝑚𝐹𝑚

есть результат вычисления многочлена 𝑓 на элементе 𝐹 в 𝕜-алгебре End(𝑉). Наоборот, каждый
линейный оператор 𝐹∶ 𝑉 → 𝑉 задаёт на 𝑉 структуру 𝕜[𝑡]-модуля, в котором умножение векто-
ра 𝑣 ∈ 𝑉 на многочлен 𝑓(𝑡) ∈ 𝕜[𝑡] происходит по формуле 𝑓(𝑡) 𝑣 ≝ 𝑓(𝐹) 𝑣. Мы будем обозначать
такой 𝕜[𝑡]-модуль через 𝑉𝐹.

1Произвольная диаграмма отображений называется коммутативной, если композиции отображе-
ний вдоль любых двух путей с общим началом и концом одинаковы.
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Гомоморфизм 𝐶∶ 𝑉𝐹 → 𝑊𝐺 между 𝕜[𝑡]-модулями, которые задаются линейными операто-
рами 𝐹∶ 𝑉 → 𝑉 и 𝐺 ∶ 𝑊 → 𝑊, представляет собою 𝕜-линейное отображение 𝐶∶ 𝑉 → 𝑊,
перестановочное с умножением векторов на 𝑡, т. е. такое что 𝐶 ∘ 𝐹 = 𝐺 ∘ 𝐶. Мы заключаем, что
гомоморфизмы пространств с операторами— это то же самое, что𝕜[𝑡]-линейные отображения
между задаваемыми этими операторами 𝕜[𝑡]-модулями. В частности, операторы 𝐹∶ 𝑉 → 𝑉
и 𝐺 ∶ 𝑊 → 𝑊 изоморфны, если и только если изоморфны 𝕜[𝑡]-модули 𝑉𝐹 и𝑊𝐺.

Векторное подпространство 𝑈 ⊂ 𝑉 является 𝕜[𝑡]-подмодулем в модуле 𝑉𝐹, если и только
если оператор умножения на 𝑡 переводит 𝑈 в себя, т. е. тогда и только тогда, когда это подпро-
странство 𝐹-инвариантно. Аналогично, разложимость 𝑉 в прямую сумму инвариантных под-
пространств означает разложимость 𝕜[𝑡]-модуля 𝑉𝐹 в прямую сумму 𝕜[𝑡]-подмодулей.

Если векторное пространство 𝑉 конечномерно над 𝕜, то 𝕜[𝑡]-модуль 𝑉𝐹 конечно порож-
дён, поскольку любой набор векторов, линейно порождающих 𝑉 над 𝕜, порождает и модуль 𝑉𝐹
над 𝕜[𝑡]. В каноническом разложении конечномерного над 𝕜 модуля 𝑉𝐹 в прямую сумму сво-
бодного модуля и подмодуля кручения1 свободное слагаемое отсутствует, так как оно беско-
нечномерно над𝕜. Таким образом, из теоремы об элементарных делителях2 и теоремы об инва-
риантных множителях3 мы получаем следующие два эквивалентных друг другу описания про-
странств с оператором над произвольным полем 𝕜.

Теорема 9.1 (жорданово описание в терминах элементарных делителей)

Любой линейный оператор в конечномерном векторном пространстве над произвольным по-
лем 𝕜 подобен оператору умножения на класс [𝑡] в прямой сумме факторколец

𝕜[𝑡]∕(𝑝𝑚1
1 (𝑡)) ⊕ … ⊕ 𝕜[𝑡]∕(𝑝𝑚𝑘

𝑘 (𝑡)) , (9-1)

где все многочлены 𝑝𝜈(𝑡) ∈ 𝕜[𝑡] приведены и неприводимы, и слагаемые могут повторяться.
Операторы умножения на класс [𝑡], действующие в суммах

𝕜[𝑡]∕(𝑝𝑚1
1 (𝑡)) ⊕ … ⊕ 𝕜[𝑡]∕(𝑝𝑚𝑘

𝑘 (𝑡)) и 𝕜[𝑡]∕(𝑞𝑛1𝑖 (𝑡)) ⊕ … ⊕ 𝕜[𝑡]∕(𝑞𝑛𝓁𝓁 (𝑡))

изоморфны, если и только если 𝑘 = 𝓁 и прямые слагаемые можно переставить так, что 𝑝𝜈 = 𝑞𝜈
и𝑚𝜈 = 𝑛𝜈 при всех 𝜈. □

Теорема 9.2 (фробениусово описание в терминах инвариантных множителей)

Любой линейный оператор в конечномерном векторном пространстве над произвольным по-
лем 𝕜 подобен оператору умножения на класс [𝑡] в прямой сумме факторколец

𝕜[𝑡]∕(𝑓1) ⊕ … ⊕ 𝕜[𝑡]∕(𝑓𝑟) , (9-2)

где 𝑟 ∈ ℕ, а 𝑓1, … , 𝑓𝑟 ∈ 𝕜[𝑡] — такие приведённые многочлены, что 𝑓𝑖 ∣ 𝑓𝑗 при 𝑖 < 𝑗. Два таких
оператора на пространствах 𝕜[𝑡]∕(𝑓1) ⊕ … ⊕ 𝕜[𝑡]∕(𝑓𝑟) и 𝕜[𝑡]∕(𝑔1) ⊕ … ⊕ 𝕜[𝑡]∕(𝑔𝑠) подобны,
если и только если 𝑟 = 𝑠 и 𝑓𝑖 = 𝑔𝑖 при всех 𝑖. □

1См. теор. 6.5 на стр. 115.
2См. теор. 6.4 на стр. 114.
3См. 6-12 на стр. 117.
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9.1.2. Элементарныеделителииинвариантныемножители.Многочлены𝑓1, … , 𝑓𝑟 ∈ 𝕜[𝑡]
из теор. 9.2 называются инвариантными множителями оператора 𝐹∶ 𝑉 → 𝑉, а дизъюнктное
объединение1 всех многочленов 𝑝𝑚𝜈𝜈 из теор. 9.1 называется набором элементарных делителей
и обозначается через ℰ𝓁(𝐹). Инвариантные множители и элементарные делители связаны ки-
тайской теоремой об остатках: 𝕜[𝑡]∕(𝑓1) ⊕ … ⊕ 𝕜[𝑡]∕(𝑓𝑟) ≃ ⨁𝑝𝑚∈ℰ𝓁(𝐹) 𝕜[𝑡]∕(𝑝𝑚) и однозначно
определяют друг друга, как это объяснялось в n∘ 6.3 на стр. 113.

Следствие 9.1

Линейные операторы 𝐹 и 𝐺 подобны тогда и только тогда, когда ℰ𝓁(𝐹) = ℰ𝓁(𝐺). □

Следствие 9.2

Линейный оператор неразложим тогда и только тогда, когда он подобен оператору умножения
на класс [𝑡] в факторкольце 𝕜[𝑡]∕ (𝑝𝑚), где 𝑝 ∈ 𝕜[𝑡] неприводим и приведён. Неразложимый
оператор неприводим, если и только если𝑚 = 1. □

Следствие 9.3

Многочлен 𝑓 ∈ 𝕜[𝑡] тогда и только тогда аннулирует оператор 𝐹∶ 𝑉 → 𝑉, когда он делится на
все элементарные делители оператора 𝐹. Аннулирующий оператор 𝐹 приведённый многочлен
наименьшей степени равен последнему инвариантному множителю 𝑓𝑟 из разложения (9-2). □

Упражнение 9.3. Пусть пространство с оператором (𝐹,𝑉) разлагается в прямую сумму 𝐹-ин-
вариантных подпространств 𝑈𝑖. Покажите, что ℰ𝓁(𝐹) = ⨆𝑖 ℰ𝓁(𝐹|𝑈𝑖

).

9.1.3. Отыскание элементарных делителей. Фиксируем в пространстве 𝑉 какой-либо ба-
зис𝒗 = (𝑣1, … , 𝑣𝑛) над полем𝕜 и обозначим через𝐹𝒗 ∈ Mat𝑛(𝕜)матрицу оператора𝐹∶ 𝑉 → 𝑉 в
этом базисе. Напомню2, что она однозначно определяется тем, что 𝐹(𝒗) = 𝒗𝐹𝒗 или, подробнее,

(𝐹(𝑣1), … ,𝐹(𝑣𝑛)) = (𝑣1, … , 𝑣𝑛)𝐹𝒗 .

Так как векторы 𝑣𝑖 линейно порождают пространство 𝑉 над 𝕜, они тем более порождают мо-
дуль𝑉𝐹 над𝕜[𝑡], и𝑉𝐹 = 𝕜[𝑡]𝑛∕𝑅𝒗, где подмодуль𝑅𝒗 = ker𝜋𝒗 ⊂ 𝕜[𝑡]𝑛 является ядром эпиморфиз-
ма3 𝜋𝒗 ∶ 𝕜[𝑡]𝑛 → 𝑉𝐹, переводящего стандартный базисный вектор 𝑒𝑖 ∈ 𝕜[𝑡]𝑛 в вектор 𝑣𝑖 ∈ 𝑉, и
состоит из всех 𝕜[𝑡]-линейных соотношений между векторами 𝒗 в 𝑉𝐹. Таким образом, инвари-
антные множители оператора 𝐹 суть отличные от единицы инвариантные множители подмо-
дуля 𝑅𝒗 ⊂ 𝕜[𝑡]𝑛.

Лемма 9.1

Если записывать элементы свободного модуля 𝕜[𝑡]𝑛 в виде координатных столбцов с элемента-
ми из 𝕜[𝑡], то подмодуль соотношений ker𝜋𝒗 ⊂ 𝕜[𝑡]𝑛 линейно порождается над 𝕜[𝑡] столбцами
матрицы 𝑡𝐸 − 𝐹𝒗.

Доказательство. Пусть 𝐹𝒗 = (𝑓𝑖𝑗). Тогда 𝑗-й столбец матрицы 𝑡𝐸 − 𝐹𝒗 выражается через стан-
дартный базис 𝒆 модуля 𝕜[𝑡]𝑛 как 𝑡𝑒𝑗 − ∑𝑛

𝑖=1 𝑒𝑖𝑓𝑖𝑗. Применяя к этому вектору гомоморфизм 𝜋𝒗,

1Каждый элементарный делитель 𝑝𝑚 входит в него ровно столько раз, сколько прямых слагаемых
вида 𝕜[𝑡]∕(𝑝𝑚) имеется в разложении (9-1).

2См. n∘ 5.3.3 на стр. 99.
3См. n∘ 6.2 на стр. 110.
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получаем 𝜋𝒗(𝑡𝑒𝑗 − ∑𝑛
𝑖=1 𝑒𝑖𝑓𝑖𝑗) = 𝑡𝑣𝑗 − ∑𝑛

𝑖=1 𝑣𝑖𝑓𝑖𝑗 = 𝐹𝑣𝑗 − ∑𝑛
𝑖=1 𝑣𝑖𝑓𝑖𝑗 = 0. Тем самым все столб-

цы матрицы 𝑡𝐸 − 𝐹𝒗 лежат в ker𝜋𝒗. Рассмотрим теперь произвольный вектор ℎ(𝑡) ∈ 𝕜[𝑡]𝑛 и
запишем его в виде многочлена от 𝑡 с коэффициентами в 𝕜𝑛 (ср. с n∘ 8.4.5 на стр. 139):

ℎ(𝑡) = 𝑡𝑚ℎ𝑚 + 𝑡𝑚−1ℎ𝑚−1 + … + 𝑡ℎ1 + ℎ0 , где ℎ𝑖 ∈ 𝕜𝑛 .

Этот многочлен можно поделить слева с остатком на многочлен 𝑡𝐸 − 𝐹𝒗 точно также, как делят
«уголком» обычные полиномы с постоянными коэффициентами1. В результате получим равен-
ство вида 𝑡𝑚ℎ𝑚 + … + 𝑡ℎ1 + ℎ0 = (𝑡𝐸 − 𝐹𝒗) ⋅ (𝑡𝑚−1𝑔𝑚−1 + … + 𝑡𝑔1 + 𝑔0) + 𝑟, где 𝑔𝑖, 𝑟 ∈ 𝕜𝑛.

Упражнение 9.4. Убедитесь в этом и проверьте, что остаток от деления ℎ(𝑡) на 𝑡𝐸 − 𝐴, где
𝐴 ∈ Mat𝑛(𝕜), равен 𝐴(…𝐴(𝐴ℎ𝑚 + ℎ𝑚−1) + … + ℎ1) + ℎ0 = 𝐴𝑚ℎ𝑚 + … + 𝐴ℎ1 + ℎ0 = ℎ(𝐴).

Иными словами, вычитая из любого столбца ℎ(𝑡) ∈ 𝕜[𝑡]𝑛 подходящую𝕜[𝑡]-линейную комбина-
цию столбцов матрицы 𝑡𝐸 − 𝐹𝒗, можно получить вектор 𝑟 ∈ 𝕜𝑛, т. е. 𝕜-линейную комбинацию
𝑟 = ∑ 𝜆𝑖𝑒𝑖 стандартных базисных векторов 𝑒𝑖 ∈ 𝕜[𝑡]𝑛. Так как столбцыматрицы 𝑡𝐸−𝐹𝒗 лежат в
ker𝜋𝒗, мы заключаем, что 𝜋𝒗(ℎ(𝑡)) = 𝜋𝒗(𝑟) = ∑ 𝜆𝑖𝑣𝑖. Если ℎ ∈ ker𝜋𝒗, то ∑ 𝜆𝑖𝑣𝑖 = 0, что возмож-
но только когда все 𝜆𝑖 = 0, ибо векторы 𝑣𝑖 ∈ 𝑉 линейно независимы над𝕜. Тем самым 𝑟 = 0 для
всех ℎ ∈ ker𝜋𝒗, т. е. ker𝜋𝒗 содержится в 𝕜[𝑡]-линейной оболочке столбцов матрицы 𝑡𝐸 − 𝐹𝒗. □

Следствие 9.4

Множество ℰ𝓁(𝐹) является дизъюнктным объединением степеней 𝑝𝑚 неприводимых приведён-
ных многочленов из разложений инвариантных множителей 𝑓𝑖(𝑡) матрицы 𝑡𝐸 − 𝐹𝒗. Последние
равныдиагональнымэлементам𝑑𝑖𝑖(𝑡)нормальнойформыСмита2 матрицы 𝑡𝐸−𝐹𝒗 имогут быть
вычислены по формулам3 𝑓𝑖(𝑡) = 𝛥𝑖(𝑡𝐸 − 𝐹𝒗)∕𝛥𝑖−1(𝑡𝐸 − 𝐹𝒗), где 𝛥𝑖(𝑡𝐸 − 𝐹𝒗) означает нод всех
𝑘 × 𝑘 миноров матрицы 𝑡𝐸 − 𝐹𝒗. □

9.1.4. Характеристический многочлен. Произведение всех элементарных делителей ли-
нейного оператора 𝐹∶ 𝑉 → 𝑉, по сл. 9.4 равное определителю 𝛥𝑛 = det(𝑡𝐸 − 𝐹𝑣), где 𝐹𝑣 —
матрица оператора 𝐹 в каком-либо базисе 𝒗 пространства 𝑉, называется характеристическим
многочленом оператора 𝐹 и обозначается

𝜒𝐹(𝑡) ≝ det(𝑡𝐸 − 𝐹𝒗) = ∏
𝑝𝑚∈ℰ𝓁(𝐹)

𝑝𝑚 .

Из предыдущего вытекает, что характеристический многочлен не зависит от выбора базиса и
что подобные операторы имеют одинаковые характеристические многочлены.

Упражнение 9.5. Убедитесь прямым вычислением, что для всех 𝐴 ∈ Mat𝑛(𝕜), 𝐶 ∈ GL𝑛(𝕜)
выполняется равенство det(𝑡𝐸 − 𝐶𝐴𝐶−1) = det(𝑡𝐸 − 𝐴).

Пример 9.1 (характеристический многочлен разложимого оператора)

Если пространство с оператором (𝐹,𝑉) распадается в прямую сумму пространств с операторами
(𝐺,𝑈) и (𝐻,𝑊), то в базисе пространства 𝑉 = 𝑈 ⊕ 𝑊, который получен объединением базиса
в 𝑈 и базиса в𝑊, матрица 𝑡𝐸 − 𝐹 имеет блочно диагональный вид

𝑡𝐸 − 𝐹 = (
𝑡𝐸 − 𝐺 0
0 𝑡𝐸 − 𝐻) .

1См. n∘ 2.2 на стр. 40.
2См. n∘ 6.1.1 на стр. 103.
3См. прим. 8.3 на стр. 133.
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Раскладывая её определитель по первым dim𝑈 столбцам1, заключаем, что 𝜒𝐹(𝑡) = 𝜒𝐺(𝑡)𝜒𝐻(𝑡).
Это вполне согласуется с упр. 9.3 на стр. 144.

Упражнение 9.6. Убедитесь, что для любого приведённого многочлена 𝑓 ∈ 𝕜[𝑡] характери-
стический многочлен оператора умножения на класс [𝑡] в факторкольце 𝕜[𝑡]∕(𝑓) равен 𝑓.
9.1.5. Минимальный многочлен. Для каждого неприводимого приведённого многочлена

𝑝 ∈ 𝕜[𝑡] обозначим через 𝑚𝑝(𝐹) максимальный показатель 𝑚, с которым 𝑝𝑚 присутствует в
наборе ℰ𝓁(𝐹) элементарных делителей оператора 𝐹, а для тех неприводимых приведённых мно-
гочленов 𝑝 ∈ 𝕜[𝑥], степени которых не представлены в ℰ𝓁𝐹, положим 𝑚𝑝(𝐹) = 0. Таким об-
разом, 𝑚𝑝(𝐹) = 0 для всех неприводимых приведённых 𝑝 ∈ 𝕜[𝑥] кроме конечного числа. В
этих обозначениях сл. 9.3 на стр. 144 можно переформулировать следующим образом: аннули-
рующий оператор 𝐹 приведённый многочлен 𝜇𝐹(𝑡) наименьшей возможной степени совпадает
с инвариантным множителем оператора 𝐹 наибольшей степени и равен

𝜇𝐹(𝑡) = 𝑓𝑟 = ∏
𝑝
𝑝𝑚𝑝(𝐹) , (9-3)

где произведение берётся по всем приведённым неприводимым 𝑝 ∈ 𝕜[𝑡]. Многочлен 𝜇𝐹(𝑡) на-
зывается минимальным многочленом оператора 𝐹∶ 𝑉 → 𝑉. Он порождает ядро гомоморфизма

ev𝐹 ∶ 𝕜[𝑡] → End𝕜(𝑉) , 𝑓(𝑡) ↦ 𝑓(𝐹) ,

вычисления многочленов на операторе 𝐹 и делит в 𝕜[𝑡] все аннулирующие оператор 𝐹 много-
члены, включая характеристическиймногочлен 𝜒𝐹(𝑡) = det(𝑡𝐸−𝐹). Согласно сл. 9.4 на стр. 145
инвариантныймножительнаибольшей степениоператора𝐹 равен отношениюdet(𝑡𝐸−𝐹) кнод

всех миноров порядка 𝑛−1матрицы 𝑡𝐸−𝐹, где 𝑛 = dim𝑉. Таким образом, 𝜒𝐹∕𝜇𝐹 = 𝛥𝑛−1(𝑡𝐸−𝐹)
для любого ненулевого линейного оператора 𝐹 на 𝑛-мерном векторном пространстве.

Пример 9.2 (отыскание минимального многочлена)

Вычислениеминимальногомногочлена оператора𝐹∶ 𝑉 → 𝑉 по явной детерминантнойформу-
ле довольно трудоёмко, и на практике обычно используют следующие соображения. Для каж-
дого вектора 𝑣 ∈ 𝑉 существует такой приведённый многочлен 𝜇𝑣,𝐹(𝑡) наименьшей степени,
что 𝜇𝑣,𝐹(𝐹)𝑣 = 0. Чтобы написать его явно, надо найти наименьшее такое 𝑘 ∈ ℕ, что век-
тор 𝐹𝑘𝑣 линейно выражается через векторы 𝑣,𝐹𝑣, … ,𝐹𝑘−1𝑣. Если это выражение имеет вид
𝐹𝑘𝑣 = 𝜇1𝐹𝑘−1𝑣 + … + 𝜇𝑘−1𝐹𝑣 + 𝜇𝑘𝑣, то 𝜇𝑣,𝐹(𝑡) = 𝑡𝑘 − 𝜇1𝑡𝑘−1 − … − 𝜇𝑘−1𝑡 − 𝜇𝑘.

Упражнение 9.7. Убедитесь, что любой аннулирующий оператор 𝐹 многочлен делится на все
многочлены 𝜇𝑣,𝐹, где 𝑣 ∈ 𝑉.

Мы заключаем, что минимальный многочлен 𝜇𝐹 оператора 𝐹 равен нок многочленов 𝜇𝑣𝑖,𝐹 ка-
ких-нибудь векторов 𝑣 = 𝑣1, … , 𝑣𝑚, линейно порождающих пространство 𝑉 над 𝕜.

Упражнение 9.8. Убедитесь в этом.

Вычислим, к примеру, минимальныймногочлен оператора 𝐹∶ ℚ4 → ℚ4, заданного в стандарт-
ном базисе 𝑒1, … , 𝑒4 матрицей

𝐴 =
⎛
⎜
⎜
⎜
⎝

−2 −3 3 3
4 6 −4 −4
1 2 0 −1
3 3 −3 −2

⎞
⎟
⎟
⎟
⎠

1См. формулу (8-16) на стр. 135.
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Векторы1

𝑒1 =
⎛
⎜
⎜
⎜
⎝

1
0
0
0

⎞
⎟
⎟
⎟
⎠

, 𝐹𝑒1 =
⎛
⎜
⎜
⎜
⎝

−2
4
1
3

⎞
⎟
⎟
⎟
⎠

, 𝐹2𝑒1 =
⎛
⎜
⎜
⎜
⎝

4
0
3

−3

⎞
⎟
⎟
⎟
⎠

линейно независимы. Чтобы выяснить, выражается ли через них вектор2

𝐹3𝑒1 =
⎛
⎜
⎜
⎜
⎝

−8
16
7
9

⎞
⎟
⎟
⎟
⎠

,

необходимо решить неоднородную систему с расширенной матрицей

⎛
⎜
⎜
⎜
⎝

1 −2 4 −8
0 4 0 16
0 1 3 7
0 3 −3 9

⎞
⎟
⎟
⎟
⎠

.

Методом Гаусса преобразуем эту матрицу к приведённому ступенчатому виду

⎛
⎜
⎜
⎝

1 0 0 −4
0 1 0 4
0 0 1 1

⎞
⎟
⎟
⎠

и получаем решение (−4, 4, 1), т. е. 𝐹3𝑒1 = −4𝑒1 + 4𝐹𝑒1 + 𝐹2𝑒1. Таким образом, минимальный
многочлен от оператора 𝐹, аннулирующий вектор 𝑒1, равен 𝐹3 − 𝐹2 − 4𝐹 + 4𝐸. Вычисляя

𝐴2 =
⎛
⎜
⎜
⎜
⎝

4 3 −3 −3
0 4 0 0
3 6 −2 −3

−3 −3 3 4

⎞
⎟
⎟
⎟
⎠

и 𝐴3 =
⎛
⎜
⎜
⎜
⎝

−8 −9 9 9
16 24 −16 −16
7 14 −6 −7
9 9 −9 −8

⎞
⎟
⎟
⎟
⎠

,

убеждаемся, что 𝐴3 − 𝐴2 − 4𝐴 + 4𝐸 = 0. Тем самым, 𝜇𝐹 = 𝑡3 − 𝑡2 − 4𝑡 + 4.

Упражнение 9.9. Как действует умножение на класс [𝑡] в факторкольце𝕜[𝑡]∕(𝑡−𝜆) и в прямой
сумме конечного множества таких факторколец?

9.1.6. Линейные операторынад алгебраически замкнутымполем. Если основное поле𝕜
алгебраически замкнуто, то неприводимыеприведённыемногочленыв𝕜[𝑡]исчерпываются ли-
нейными двучленами (𝑡−𝜆), где 𝜆 ∈ 𝕜. Оператор умножения на класс [𝑡] = [𝜆]+[𝑡−𝜆] в фактор-
кольце 𝕜[𝑡]∕((𝑡− 𝜆)𝑚) является суммой скалярного оператора 𝜆 Id∶ [𝑔] ↦ 𝜆[𝑔], умножающего
все векторы на 𝜆, и оператора умножения на класс [𝑡 − 𝜆], который действует на состоящий из
векторов 𝑒𝑖 = [(𝑡 − 𝜆)𝑚−𝑖], 1 ⩽ 𝑖 ⩽ 𝑚, базис пространства 𝕜[𝑡]∕((𝑡 − 𝜆)𝑚) по правилу

0 ↤ 𝑒1 ↤ 𝑒2 ↤ 𝑒3 ↤ … ↤ 𝑒𝑚−1 ↤ 𝑒𝑚 . (9-4)

1Векторы 𝐹𝑒1 и 𝐹2𝑒1 суть первые столбцы матриц 𝐴 и 𝐴2.
2Это первый столбец матрицы 𝐴3.
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Таким образом, умножение на класс [𝑡] задаётся в базисе 𝑒1, … , 𝑒𝑛 матрицей

𝐽𝑚(𝜆) ≝

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝜆 1 0 … 0
0 𝜆 1 ⋱ ⋮
⋮ ⋱ ⋱ ⋱ 0
0 ⋱ ⋱ 1
0 0 … 0 𝜆

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, (9-5)

которая называется жордановой клеткой размера𝑚 c собственным числом 𝜆. По теор. 9.1 каж-
дый линейный оператор𝐹 над алгебраически замкнутым полем подобен оператору умножения
на класс [𝑡] в прямой сумме факторколец вида 𝕜[𝑡]∕((𝑡− 𝜆)𝑚), и два таких оператора подобны,
если и только если прямые суммыотличаются друг от друга перестановкой слагаемых.На языке
матриц сказанное означает, что любая квадратнаяматрица𝐴над алгебраически замкнутымпо-
лем 𝕜 сопряжена блочно диагональной матрице, по главной диагонали которой располагаются
жордановы клетки (9-5), причём эта блочно диагональная матрица однозначно с точностью до
перестановки клеток определяется матрицей 𝐴. Она называется жордановой нормальной фор-
мой матрицы 𝐴. Две матрицы сопряжены, если и только если у них одинаковые с точностью до
перестановки клеток жордановы нормальные формы.

Объединение всех жордановых клеток оператора 𝐹∶ 𝑉 → 𝑉 с заданным собственным чис-
лом 𝜆 ∈ 𝕜 представляет собою матрицу, описывающую действие оператора 𝐹 на подмодуле
(𝑡 − 𝜆)-кручения, который обозначается 𝐾𝜆 ≝ {𝑣 ∈ 𝑉 | ∃𝑚 ∈ ℕ∶ (𝜆 Id − 𝐹)𝑚𝑣 = 0} и назы-
вается корневым подпространством оператора 𝐹, отвечающим собственному числу 𝜆. Как𝕜[𝑡]-
модуль он изоморфен прямой сумме 𝕜[𝑡]∕((𝑡 − 𝑙)𝑚1) ⊕ … ⊕𝕜[𝑡]∕((𝑡 − 𝑙)𝑚𝓁), в которой собраны
все элементарные делители оператора 𝐹 вида (𝑡 − 𝜆)𝑚. Упорядоченный по нестрогому убыва-
нию 𝑚1 ⩾ … ⩾ 𝑚𝓁 набор показателей (𝑚1, … ,𝑚𝓁) называется цикловым типом корневого
подпространства 𝐾𝜆. Его удобно изображать диаграммойЮнга из строк длины𝑚1, … ,𝑚𝓁. Эти
показатели в точности равны размерам жордановых клеток с оператора 𝐹 с собственным чис-
лом 𝜆. Наибольший из них 𝑚1 равен кратности корня 𝑡 = 𝜆 в минимальном многочлене 𝜇𝐹(𝑡)
оператора𝐹 ии обозначается𝑚𝜆. Сумма𝑚1+…+𝑚𝓁 всех показателей равна кратности тогоже
корня 𝑡 = 𝜆 в характеристическом многочлене 𝜒𝐹(𝑡). Обратите внимание, что характеристиче-
ский и минимальный многочлены имеют одинаковый набор корней. Он называется спектром
оператора𝐹 и обозначается Spec𝐹, а сами корни 𝜆 ∈ Spec𝐹 называются собственными числами
или собственными значениями оператора 𝐹.

По лем. 6.3 на стр. 117 высота𝕜-го столбца диаграммы (𝑚1, … ,𝑚𝓁) равна размерности век-
торного пространства ker(𝐹 − 𝜆𝐸)𝑘∕ker(𝐹 − 𝜆𝐸)𝑘−1 над полем 𝕜[𝑡]∕(𝑡 − 𝜆) ≃ 𝕜, т. е. разности
dim ker(𝐹 − 𝜆𝐸)𝑘 − dim ker(𝐹 − 𝜆𝐸)𝑘−1. Таким образом, для отыскания жордановой нормаль-
ной формы оператора 𝐹 над алгебраически замкнутым полем достаточно взять какой-нибудь
аннулирующий оператор 𝐹 многочлен1 𝑓 ∈ 𝕜[𝑡], разложить его на линейные множители:

𝑓(𝑡) = ∏
𝜆

(𝑡 − 𝜆)𝑚(𝜆)

и для каждого корня 𝜆 многочлена 𝑓 вычислить размерности 𝑑𝑘 = dim ker(𝐹 − 𝜆𝐸)𝑘 для всех та-
ких 𝑘 ⩾ 1, что 𝑑𝑘 > 𝑑𝑘−1, где мы полагаем 𝑑0 = 0. При наступлении равенства2 𝑑𝑘+1 = 𝑑𝑘,

1Например, характеристический многочлен 𝜒𝐹(𝑡) = det(𝑡𝐸 − 𝐹).
2А оно заведомо наступит при некотором 𝑘 ⩽ 𝑚(𝜆).
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вычисление прекращается. Размеры 𝑚1 ⩾ … ⩾ 𝑚𝓁 жордановых клеток оператора 𝐹 с соб-
ственным числом 𝜆 равны длинам строк диаграммыЮнга, 𝑘-тый столбец которой имеет длину
𝑑𝑘 − 𝑑𝑘−1.

Пример 9.3 (отыскание жордановой нормальной формы)

Найдём жордановы нормальные формы матриц

𝐴 =
⎛
⎜
⎜
⎜
⎝

2 −1 −3 1
−9 −1 8 −1
−1 −1 0 1
−1 2 2 −2

⎞
⎟
⎟
⎟
⎠

, 𝐵 =
⎛
⎜
⎜
⎜
⎝

5 5 7 1
6 4 7 1

−6 −5 −8 −1
3 1 5 1

⎞
⎟
⎟
⎟
⎠

, 𝐶 =
⎛
⎜
⎜
⎜
⎝

−2 3 5 1
3 1 7 2

−6 3 −1 −1
−9 5 2 −3

⎞
⎟
⎟
⎟
⎠

.

Вычисляя след, сумму главных 2 × 2-миноров, сумму главных 3 × 3-миноров и определитель
каждой из матриц, находим характеристические многочлены, после чего раскладываем их на
линейные множители:

𝜒𝐴(𝑡) = 𝑡4 + 𝑡3 − 7𝑡2 − 13𝑡 − 6 = (𝑥 + 1)2(𝑥 + 2)(𝑥 − 3) ,
𝜒𝐵(𝑡) = 𝑡4 − 2𝑡3 − 3𝑡2 + 4𝑡 + 4 = (𝑥 + 1)2(𝑥 − 2)2 ,
𝜒𝐶(𝑡) = 𝑡4 + 5𝑡3 + 6𝑡2 − 4𝑡 − 8 = (𝑡 − 1)(𝑡 + 2)3 .

Таким образом, матрица 𝐴 имеет два одномерных корневых подпространства с собственными
числами −2 и 3 и двумерное корневое подпространство с собственным числом −1, цикловой
типа которого (2) или (1, 1). Первому случаю отвечает dim ker(𝐴 + 𝐸) = 1, или rk(𝐴 + 𝐸) = 3, а
второму — dim ker(𝐴 + 𝐸) = 2, или rk(𝐴 + 𝐸) = 2. Так как левый верхний угловой 3 × 3 минор
матрицы 𝐴 + 𝐸 равен

det
⎛
⎜
⎜
⎝

3 −1 −3
−9 0 8
−1 −1 1

⎞
⎟
⎟
⎠

= 8 − 3 − 9 = −4 ,

мы заключаем, что имеет место первое, т. е. у𝐴 однажорданова клетка размера 2×2 с собствен-
ным числом −1, и жорданова нормальная форма матрицы 𝐴 такова:

⎛
⎜
⎜
⎜
⎝

−1 1 0 0
0 −1 0 0
0 0 −2 0
0 0 0 3

⎞
⎟
⎟
⎟
⎠

.

Матрица𝐵 имеет два двумерныхкорневыхподпространства с собственнымичислами𝜆 = −1, 2.
Их цикловые типы, как и выше, определяются размерностями ядер матриц

(𝐵 + 𝐸) =
⎛
⎜
⎜
⎜
⎝

6 5 7 1
6 5 7 1

−6 −5 −7 −1
3 1 5 2

⎞
⎟
⎟
⎟
⎠

и (𝐵 − 2𝐸) =
⎛
⎜
⎜
⎜
⎝

3 5 7 1
6 2 7 1

−6 −5 −10 −1
3 1 5 −1

⎞
⎟
⎟
⎟
⎠

.

Поскольку первая матрица имеет ранг 2, а вторая — 3, мы заключаем, что 𝐵 имеет две клетки
1 × 1 с собственным числом −1 и одну клетку 2 × 2 с собственным числом 2, т. е. жорданова
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нормальная форма матрицы 𝐵 такова:

⎛
⎜
⎜
⎜
⎝

−1 0 0 0
0 −1 0 0
0 0 2 1
0 0 0 2

⎞
⎟
⎟
⎟
⎠

.

Матрица 𝐶 имеет одну жорданову клетку 1× 1 с собственным числом 1 и трёхмерное корневое
подпространство с собственным числом −2, цикловой тип которого может быть (3), или (2, 1),
или (1, 1, 1). Эти случаи тоже отличаются друг от друга размерностью ядра оператора 𝐶 + 2𝐸,
которая равна для них соответственно 1, 2, или 3. Так как ранг матрицы

𝐶 + 2𝐸 =
⎛
⎜
⎜
⎜
⎝

0 3 5 1
3 3 7 2

−6 3 1 −1
−9 5 2 −1

⎞
⎟
⎟
⎟
⎠

равен 3, мы заключаем, что имеет место первый случай, и жорданова нормальная форма мат-
рицы 𝐶 такова:

⎛
⎜
⎜
⎜
⎝

−2 1 0 0
0 −2 1 0
0 0 −2 0
0 0 0 1

⎞
⎟
⎟
⎟
⎠

.

9.1.7. Нормальные формыматриц над незамкнутыми полями. Так как матрица умноже-
ния на 𝑡 в факторкольце 𝑘[𝑥]∕(𝑓), где 𝑓 = 𝑡𝑚 + 𝑎1𝑡𝑚−1 + … + 𝑎𝑚, имеет в базисе из классов
многочленов 𝑡𝑚−1, … , 𝑡, 1 вид

𝐹(𝑓) ≝

⎛
⎜
⎜
⎜
⎜
⎜
⎝

−𝑎1 1
−𝑎2 0 1

⋮ ⋮ ⋱ ⋱
−𝑎𝑑−1 0 … 0 1
−𝑎𝑑 0 … 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, (9-6)

из теор. 9.2 на стр. 143 вытекает, что каждаяматрица над произвольнымполем𝕜 подобна един-
ственной блочно диагональной матрице, составленной из блоков 𝐹(𝑓1), … ,𝐹(𝑓𝑟) вида (9-6), где
𝑓𝑖 ∣ 𝑓𝑗 при 𝑖 < 𝑗. Такая блочно диагональная матрица называется фробениусовой нормальной
формой. Обратите внимание, что последний многочлен 𝑓𝑟 в нормальной форме Фробениуса ра-
вен минимальному многочлену 𝜇𝐹 оператора 𝐹.

Аналогом жордановой клетки (9-5) над произвольным полем 𝕜 является матрица умноже-
ния на класс [𝑡] в факторкольце𝕜[𝑡]∕(𝑝𝑚), где 𝑝 = 𝑡𝑑+𝑎1𝑡𝑑−1+…+𝑎𝑑 ∈ 𝕜[𝑡] —неприводимый
приведённый многочлен, записанная в базисе

𝑝𝑚−1𝑡𝑑−1, … , 𝑝𝑚−1𝑡, 𝑝𝑚−1, 𝑝𝑚−2𝑡𝑑−1, … , 𝑝𝑚−2𝑡, 𝑝𝑚−2, … , … , … , 𝑡𝑑−1, … , 𝑡, 1 , (9-7)

который состоит из𝑚 последовательных фрагментов вида 𝑝𝑘𝑡𝑚−1, … , 𝑝𝑘𝑡, 𝑝𝑘 длины 𝑑, получа-
ющихся из самого правого фрагмента 𝑡𝑑−1, … , 𝑡, 1 умножением на 𝑝𝑘, где 𝑘 = 0, 1, … ,𝑚 − 1.

Упражнение 9.10. Убедитесь, что классы многочленов (9-7) действительно образуют базис
в 𝕜[𝑡]∕(𝑝𝑚).
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Так как умножение на 𝑡 переводит класс 𝑝𝑘𝑡𝓁 в классы многочленов

𝑝𝑘𝑡𝓁+1, при 0 ⩽ 𝓁 ⩽ 𝑑 − 2,
𝑝𝑘+1 − 𝑎1𝑝𝑘𝑡𝑑−1 + … + 𝑎𝑑𝑝𝑘, при 𝓁 = 𝑑 − 1, 𝑘 ⩽ 𝑚 − 2,
−𝑎1𝑝𝑚−1𝑡𝑑−1 + … + 𝑎𝑑𝑝𝑚−1, при 𝓁 = 𝑑 − 1, 𝑘 = 𝑚 − 1,

эта матрица имеет вид

𝐽𝑚(𝑝) ≝

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−𝑎1 1
−𝑎2 0 1

⋮ 0 ⋱ 1
−𝑎𝑑 ⋮ ⋱ 0 1

0 ⋱ 0 −𝑎1 1
⋱ ⋮ −𝑎2 0 ⋱

0 ⋮ 0 ⋱ ⋱
−𝑎𝑑 ⋮ ⋱ ⋱ 1

0 ⋱ ⋱ 0 1
⋱ ⋱ 0 −𝑎1 1

⋱ ⋮ −𝑎2 0 ⋱
0 ⋮ ⋮ ⋱ 1

−𝑎𝑑 0 … 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(9-8)

где расположеннаянад главной диагональ заполнена единицами, а на главной диагоналии𝑑−1
диагоналях под нею стоят последовательности вида

−𝑎𝑖, 0, … , 0⏟
𝑑−1

, −𝑎𝑖, 0, … , 0⏟
𝑑−1

, … , −𝑎𝑖 0, … , 0⏟
𝑑−𝑖

,

где 𝑖 = 1, … ,𝑑, а все остальные клетки матрицы нулевые.

Упражнение 9.11.Убедитесь, чтопри𝑑 = 1и𝑝 = 𝑡−𝜆матрица (9-8) превращается вжорданову
клетку (9-5).

Из теор. 9.1 на стр. 143 вытекает, что каждаяматрица над произвольнымполем𝕜подобна блоч-
но диагональной матрице, состоящей из обобщённых жордановых клеток (9-8), и две такие
матрицы подобны, если и только если они получаются друг из друга перестановкой клеток.

Например, умножение на 𝑡 в вещественном векторном пространстве

𝑉 = ℝ[𝑡]∕((𝑡2 + 1)2) ⊕ ℝ[𝑡]∕((𝑡 + 1)2) ⊕ ℝ[𝑡]∕(𝑡 + 1)

имеет над полем ℝ жорданову нормальную форму из трёх клеток размеров 4, 2, 1:

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 0 0 0 0
−1 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 −1 0 0 0 0
0 0 0 0 −1 1 0
0 0 0 0 0 −1 0
0 0 0 0 0 0 −1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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а его фробениусова нормальна форма получается из разложения 𝑉 = ℝ[𝑡]∕(𝑓1) ⊕ ℝ[𝑡]∕(𝑓2), где
𝑓1 = 𝑡 + 1, 𝑓2 = (𝑡2 + 1)2(𝑡 + 1)2 = 𝑡6 + 2𝑡5 + 3𝑡4 + 4𝑡3 + 3𝑡2 + 2𝑡 + 1, и содержит две клетки:

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−2 1 0 0 0 0 0
−3 0 1 0 0 0 0
−4 0 0 1 0 0 0
−3 0 0 0 1 0 0
−2 0 0 0 0 1 0
−1 0 0 0 0 0 0
0 0 0 0 0 0 −1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (9-9)

Умножение на 𝑡 в аналогичном комплексном векторном пространстве

𝑊 = ℂ[𝑡]∕((𝑡2 + 1)2) ⊕ ℂ[𝑡]∕((𝑡 + 1)2) ⊕ ℂ[𝑡]∕(𝑡 + 1) ≃
≃ ℂ[𝑡]∕((𝑡 − 𝑖)2) ⊕ ℂ[𝑡]∕((𝑡 + 𝑖)2) ⊕ ℂ[𝑡]∕((𝑡 + 1)2) ⊕ ℂ[𝑡]∕(𝑡 + 1)

имеет над полем ℂ жорданову нормальную форму из 4-х клеток размеров 2, 2, 2, 1:

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−𝑖 1 0 0 0 0 0
0 −𝑖 0 0 0 0 0
0 0 𝑖 1 0 0 0
0 0 0 𝑖 0 0 0
0 0 0 0 −1 1 0
0 0 0 0 0 −1 0
0 0 0 0 0 0 −1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

а его фробениусова нормальная форма совпадает с (9-9).
В общем случае объединение всех жордановых клеток (9-8), отвечающих данному непри-

водимому приведённому многочлену 𝑝 ∈ 𝕜[𝑡], описывает действие оператора 𝐹∶ 𝑉 → 𝑉 на
подмодуле 𝑝(𝐹)-кручения

𝐾𝑝 ≝ {𝑣 ∈ 𝑉 | ∃𝑚 ∈ ℕ∶ 𝑝(𝐹)𝑚𝑣 = 0} ≃ 𝕜[𝑡]∕(𝑝𝑚1) ⊕ … ⊕ 𝕜[𝑡]∕(𝑝𝑚𝓁)
(в правой части собраны все элементарные делители оператора 𝐹 вида 𝑝𝑚). Упорядоченный
по нестрогому убыванию𝑚1 ⩾ … ⩾ 𝑚𝓁 набор показателей (𝑚1, … ,𝑚𝓁) называется цикловым
типом подпространства 𝐾𝑝. Наибольший из них𝑚1 равен степени, в которой 𝑝 входит в разло-
жение минимального многочлена 𝜇𝐹(𝑡) на неприводимые множители в кольце 𝕜[𝑡] и обознача-
ется𝑚𝑝. Сумма𝑚1 + … +𝑚𝓁 всех показателей равна степени, в которой 𝑝 входит в разложение
характеристического многочлена 𝜒𝐹(𝑡). По лем. 6.3 на стр. 117 высота 𝕜-го столбца диаграм-
мы Юнга (𝑚1, … ,𝑚𝓁) равна размерности векторного пространства ker 𝑝(𝐹)𝑘 ∕ker 𝑝(𝐹)𝑘−1 над
полем 𝕜[𝑡]∕(𝑝), которое в свою очередь является векторным пространством размерности deg 𝑝
над полем 𝕜. Поэтому высота 𝑘-того столбца диаграммы (𝑚1, … ,𝑚𝓁) равна отношению

(dim𝕜 ker 𝑝(𝐹)𝑘 − dim𝕜 ker 𝑝(𝐹)𝑘−1)∕deg 𝑝 .
Пример 9.4

Выясним, подобны ли друг другу над полем 𝔽5 матрицы

𝐴 =
⎛
⎜
⎜
⎜
⎝

2 4 0 2
4 1 4 3
4 0 4 2
2 4 3 1

⎞
⎟
⎟
⎟
⎠

и 𝐵 =
⎛
⎜
⎜
⎜
⎝

4 2 4 2
3 3 3 2
2 3 3 0
0 1 1 3

⎞
⎟
⎟
⎟
⎠

.
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Обе матрицы имеют один и тот же характеристический многочлен

det(𝑡𝐸 − 𝐴) = det(𝑡𝐸 − 𝐵) = 𝑡4 + 2𝑡3 + 3𝑡2 + 2𝑡 + 1 = (𝑡2 + 𝑡 + 1)2 ,

где 𝑝(𝑡) = 𝑡2 + 𝑡+1 ∈ 𝔽5[𝑡] неприводим над 𝔽5. Поэтому всё пространство 𝔽45 является модулем
𝑝-кручения и имеет цикловой тип (2) или (1, 1). В первом случае многочлен 𝑝 не аннулирует
матрицу, а во втором— аннулирует. Так как

𝐴2 =
⎛
⎜
⎜
⎜
⎝

4 0 2 3
4 4 4 2
3 4 2 3
4 1 1 3

⎞
⎟
⎟
⎟
⎠

, а 𝐵2 =
⎛
⎜
⎜
⎜
⎝

0 3 1 3
2 1 2 3
3 2 1 0
0 4 4 1

⎞
⎟
⎟
⎟
⎠

,

и тем самым 𝑝(𝐴) = 𝐴2 + 𝐴 + 𝐸 ≠ 0, а 𝑝(𝐵) = 𝐵2 + 𝐵 + 𝐸 = 0, мы заключаем, что матрицы не
подобны. Отметим, что из проделанных вычислений вытекает, что жорданова и фробениусова
нормальные формы матрицы 𝐴 имеют соответственно вид

⎛
⎜
⎜
⎜
⎝

−1 1 0 0
−1 0 1 0
0 0 −1 1
0 0 −1 0

⎞
⎟
⎟
⎟
⎠

и

⎛
⎜
⎜
⎜
⎝

−2 1 0 0
−3 0 1 0
−2 0 0 1
−1 0 0 0

⎞
⎟
⎟
⎟
⎠

,

а жорданова нормальная форма матрицы 𝐵 совпадает с фробениусовой и имеет вид

⎛
⎜
⎜
⎜
⎝

−1 1 0 0
−1 0 0 0
0 0 −1 1
0 0 −1 0

⎞
⎟
⎟
⎟
⎠

.

9.2. Специальныеклассыоператоров.В этомразделемыподробно остановимся на свойствах
нескольких специальных классов операторов, играющих важную роль в различных задачах из
разных областей математики.

9.2.1. Нильпотентные операторы. Линейный оператор 𝐹∶ 𝑉 → 𝑉 называется нильпо-
тентным, если 𝐹𝑚 = 0 для некоторого 𝑚 ∈ ℕ. Так как нильпотентный оператор аннули-
руется многочленом 𝑡𝑚, все его элементарные делители являются степенями 𝑡. В частности,
минимальный многочлен тоже является степенью 𝑡 и, будучи делителем характеристического
многочлена, имеет степень не выше dim𝑉. Поэтому в определении нильпотентного оператора
можно без ограничения общности считать, что𝑚 ⩽ dim𝑉. По теор. 9.1 нильпотентный опера-
тор изоморфен оператору умножения на класс [𝑡] в прямой сумме факторколец вида

𝕜[𝑡]∕(𝑡𝜈1) ⊕ … ⊕ 𝕜[𝑡]∕(𝑡𝜈𝑘) , (9-10)

и два таких оператора изоморфны друг другу, если и только если выписанные в порядке нестро-
гого убывания наборы показателей 𝜈1 ⩾ 𝜈2 ⩾ … ⩾ 𝜈𝑘 у них одинаковы. Таким образом, ниль-
потентные операторынад произвольнымполем𝕜 взаимно однозначно соответствуют диаграм-
мам Юнга 𝜈. Диаграмма 𝜈(𝐹), характеризующая нильпотентный оператор 𝐹, называется его
цикловым типом.
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Умножение на 𝑡 действует на состоящий из векторов 𝑒𝑖 = [𝑡𝑚−𝑖] базис в 𝕜[𝑡]∕(𝑡𝑚) так1:

0 ↤ 𝑒1 ↤ 𝑒2 ↤ 𝑒3 ↤ … ↤ 𝑒𝑚−1 ↤ 𝑒𝑚

и имеет в этом базисе матрицу

𝐽𝑚(0) ≝

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 … 0
0 0 1 ⋱ ⋮
⋮ ⋱ ⋱ ⋱ 0
0 ⋱ ⋱ 1
0 0 … 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎠

,

которая называется нильпотентной жордановой клеткой размера 𝑚. Тем самым, для нильпо-
тентного оператора 𝐹 циклового типа 𝜈(𝐹) в пространстве 𝑉 имеется базис, векторы которого
размещаются по клеткам диаграммы 𝜈(𝐹) так, что 𝐹 переводит каждый из них в левый сосед-
ний, а все векторы самого левого столбца — в нуль:

↭
0 ← • ← • ← • ← • ← • ← •
0 ← • ← • ← • ← • ← •
0 ← • ← • ← •
0 ← • ← • ← •
0 ← • ← •

(9-11)

Базис такого вида называется циклическим или жордановым базисом нильпотентного операто-
ра 𝐹, а наборы базисных векторов, стоящие по строкам диаграммы, называются жордановыми
цепочками. Так как сумма длин первых𝑚 столбцов диаграммы 𝜈(𝐹) равна dim ker𝐹𝑚, длина𝑚-
того столбца диаграммы 𝜈(𝐹) равна dim ker𝐹𝑚 − dim ker𝐹𝑚−1.

9.2.2. Полупростые операторы. Прямая сумма простых2 пространств с операторами на-
зывается полупростым или вполне приводимым пространством с оператором.

Предложение 9.1

Следующие свойства оператора 𝐹∶ 𝑉 → 𝑉 эквивалентны друг другу:

1) 𝑉 является прямой суммой неприводимых 𝐹-инвариантных подпространств

2) 𝑉 линейно порождается неприводимыми 𝐹-инвариантными подпространствами

3) для каждого ненулевого 𝐹-инвариантного подпространства 𝑈 ⊊ 𝑉 существует такое 𝐹-
инвариантное подпространство𝑊 ⊂ 𝑉, что 𝑉 = 𝑈 ⊕ 𝑊

4) оператор 𝐹 подобен умножению на класс [𝑡] в прямой сумме факторколец

𝕜[𝑡]∕(𝑝1) ⊕ 𝕜[𝑡]∕(𝑝2) ⊕ … ⊕ 𝕜[𝑡]∕(𝑝𝑟) ,

где 𝑝𝑖 ∈ 𝕜[𝑡] приведены и неприводимы3 (но не обязательно различны).

1См. формулу (9-4) на стр. 147.
2В другой терминологии— неприводимых, см. начало n∘ 9.1 на стр. 142.
3Иными словами, в прямой сумме (9-1) из теор. 9.1 все показатели степеней𝑚𝑖 = 1.
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Доказательство. Импликация (1) ⇒ (2) очевидна. Импликация (2) ⇒ (3) вытекает из лем. 7.1
на стр. 125. Для лучшего понимания происходящего повторим её доказательство в нашем ны-
нешнем контексте. Для каждого неприводимого 𝐹-инвариантного подпространства 𝐿 ⊂ 𝑉 пе-
ресечение 𝐿 ∩𝑈, будучи 𝐹-инвариантным подпространством в 𝐿, либо нулевое, либо совпадает
с 𝐿. Если все неприводимые инвариантные подпространства 𝐿 ⊂ 𝑉 лежат в 𝑈, то 𝑈 = 𝑉 в си-
лу (2), и доказывать нечего. Если есть ненулевое неприводимое 𝐹-инвариантное подпростран-
ство 𝐿1 ⊂ 𝑉 с 𝐿1 ∩𝑈 = 0, заменим𝑈 на𝑈⊕𝐿1 и повторим рассуждение. Поскольку размерность
подпространства 𝑈 на каждом таком шагу строго увеличивается, через конечное число шагов
получится равенство 𝑈 ⊕ 𝐿1 ⊕ … ⊕ 𝐿𝑘 = 𝑉, и можно взять𝑊 = 𝐿1 ⊕ … ⊕ 𝐿𝑘.

Чтобы доказать импликацию (3) ⇒ (4), покажем сначала, что если свойство (3) выполнено
для пространства𝑉, то оно выполнено и для каждого𝐹-инвариантного подпространства𝐻 ⊂ 𝑉.
Рассмотрим любое инвариантное подпространство 𝑈 ⊂ 𝐻 и отыщем в 𝑉 такие инвариантные
подпространства𝑄 и 𝑅, что 𝑉 = 𝐻⊕𝑄 = 𝑈⊕𝑄⊕𝑅. Рассмотрим проекцию 𝜋∶ 𝑉 ↠ 𝐻 с ядром𝑄
и положим𝑊 = 𝜋(𝑅).

Упражнение 9.12. Проверьте, что 𝐻 = 𝑈 ⊕ 𝑊.

Итак, если свойство (3) выполнено для прямой суммы факторколец (9-1) из теор. 9.1, то оно
выполнено и для каждого слагаемого этой суммы. Однако по сл. 9.2 пространство 𝕜[𝑡] ∕ (𝑝𝑚)
при𝑚 > 1 приводимо, но неразложимо.

Импликация (4) ⇒ (1) также немедленно вытекает из сл. 9.2. □

Следствие 9.5 (из доказательства предл. 9.1)

Ограничение полупростого оператора на инвариантное подпространство также является полу-
простым оператором. □

9.2.3. Циклические векторы. Вектор 𝑣 ∈ 𝑉 называется циклическим вектором линейного
оператора 𝐹∶ 𝑉 → 𝑉, если его 𝐹-орбита 𝑣, 𝐹𝑣, 𝐹2𝑣, 𝐹3𝑣, , … линейно порождает простран-
ство 𝑉 над полем 𝕜. Иначе можно сказать, что вектор 𝑣 порождает модуль 𝑉𝐹 над 𝕜[𝑡].

Предложение 9.2

Следующие свойства оператора 𝐹∶ 𝑉 → 𝑉 эквивалентны друг другу:

1) 𝐹 обладает циклическим вектором

2) 𝐹 подобен умножению на класс [𝑡] в факторкольце 𝕜[𝑡]∕(𝑓), где 𝑓 ∈ 𝕜[𝑡]

3) простые основания всех элементарных делителей оператора 𝐹 попарно различны

4) минимальный многочлен оператора 𝐹 совпадает с характеристическим.

Доказательство. Условия (2), (3), (4) очевидно эквивалентны и означают, что оператор 𝐹 по-
добен умножению на [𝑡] в прямой сумме факторколец 𝕜[𝑡]∕(𝑝𝑚1

1 ) ⊕ … ⊕ 𝕜[𝑡]∕(𝑝𝑚𝑟𝑟 ), где все
неприводимые приведённые многочлены 𝑝1, … , 𝑝𝑟 попарно различны. Импликация (2) ⇒ (1)
тоже очевидна:𝕜[𝑡]-модуль𝕜[𝑡]∕(𝑓) порождается над𝕜[𝑡] классом [1]. Наоборот, еслимодуль𝑉𝐹
порождается над 𝕜[𝑡] одним вектором 𝑣, то 𝑉𝐹 ≃ 𝕜[𝑡]∕ker𝜋, где эпиморфизм 𝜋∶ 𝕜[𝑡] ↠ 𝑉𝐹 пе-
реводит ℎ(𝑡) в ℎ(𝐹) 𝑣. Поскольку 𝕜[𝑡] — область главных идеалов, ker𝜋 = (𝑓) для некоторого
𝑓 ∈ 𝕜[𝑡], откуда 𝑉 ≃ 𝕜[𝑡]∕(𝑓). □
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9.2.4. Собственные подпространства и собственные числа. Максимальное по включе-
нию ненулевое подпространство в 𝑉, на котором оператор 𝐹∶ 𝑉 → 𝑉 действует как умножение
на скаляр 𝜆 ∈ 𝕜, называется собственным подпространством оператора 𝐹 c собственным чис-
лом или собственным значением 𝜆 и обозначается 𝑉𝜆 ≝ {𝑣 ∈ 𝑉 | 𝐹(𝑣) = 𝜆𝑣} = ker(𝜆 Id𝑉 − 𝐹).
Ненулевые векторы 𝑣 ∈ 𝑉𝜆 называются собственными векторами оператора 𝐹 с собственным
числом1 𝜆.
Предложение 9.3

Любой набор собственных векторов с попарно различными собственными числами линейно
независим.

Доказательство. Пусть собственные векторы 𝑣1, … , 𝑣𝑚 имеют попарно разные собственные
числа 𝜆1, … , 𝜆𝑚 и линейно зависимы. Рассмотрим линейное соотношение между ними, в кото-
ром задействовано минимально возможное число векторов. Пусть это будут векторы 𝑒1, … , 𝑒𝑘.
Тогда 𝑘 ⩾ 2 и 𝑒𝑘 = 𝑥1𝑒1 + … + 𝑥𝑘−1𝑒𝑘−1, где все 𝑥𝑖 ∈ 𝕜 отличны от нуля. При этом 𝜆𝑘𝑒𝑘 =
= 𝐹(𝑒𝑘) = ∑ 𝑥𝑖𝐹(𝑒𝑖) = ∑ 𝑥𝑖𝜆𝑖𝑒𝑖. Вычитая из этого равенства предыдущее, умноженное на 𝜆𝑘,
получаем более короткую зависимость 𝑥1(𝜆1−𝜆𝑘)𝑒1+…+𝑥𝑘−1(𝜆𝑘−1−𝜆𝑘)𝑒𝑘−1 = 0 с ненулевыми
коэффициентами. □

Следствие 9.6

Сумма ненулевых собственных подпространств с попарно разными собственными числами яв-
ляется прямой. □

9.2.5. Спектр. Множество собственных чисел линейного оператора 𝐹∶ 𝑉 → 𝑉, т. е. всех
таких 𝜆 ∈ 𝕜, что 𝑉𝜆 = ker(𝜆 Id𝑉 − 𝐹) ≠ 0, называется спектром2 оператора 𝐹 и обозначается

Spec𝐹 = {𝜆 ∈ 𝕜 | ker(𝜆 Id𝑉 − 𝐹) ≠ 0} = {𝜆 ∈ 𝕜 | det(𝑡𝐸 − 𝐹) = 0} ,

или Spec𝕜 𝐹, если важно явно указать основное поле. Так как ker(𝜆 Id𝑉 − 𝐹) ≠ 0, если и только
если det(𝑡𝐸 − 𝐹) = 0, спектр представляет собою множество корней характеристического мно-
гочлена 𝜒𝐹(𝑡) = det(𝑡𝐸 − 𝐹) в поле 𝕜. Над алгебраически замкнутым полем спектр любого опе-
ратора не пуст и совпадает с множеством собственных чиселжордановых клеток оператора𝐹, о
котором шла речь в n∘ 9.1.6 на стр. 147 выше. Над произвольным полем количество различных
собственных чисел в спектре не превосходит deg𝜒𝐹 = dim𝑉, что согласуется со сл. 9.6, согласно
которому

∑
𝜆∈Spec𝐹

dim𝑉𝜆 ⩽ dim𝑉 . (9-12)

Упражнение 9.13. Покажите, что Spec𝐹 содержится в множестве корней любого многочлена,
аннулирующего 𝐹.

Если известен спектр 𝐹, отыскание собственных подпространств сводится к решению систем
линейных однородных уравнений (𝜆 Id𝑉 −𝐹) 𝑣 = 0, которые гарантированно имеют ненулевые
решения при 𝜆 ∈ Spec𝐹.

Следствие 9.7

Над алгебраически замкнутым полем 𝕜 любой оператор обладает хотя бы одним ненулевым
собственным подпространством. □

1Или собственным значением.
2Ср. с n∘ 9.1.6 на стр. 147.
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Упражнение 9.14. Покажите, что над алгебраически замкнутым полем 𝕜 оператор 𝐹 нильпо-
тентен, если и только если Spec𝐹 = {0}, и приведите пример оператора, для которого нера-
венство (9-12) строгое.

9.2.6. Диагонализуемые операторы. Оператор 𝐹∶ 𝑉 → 𝑉 называется диагонализуемым,
если в 𝑉 имеется базис, в котором 𝐹 записывается диагональной матрицей. Такой базис состо-
ит из собственных векторов оператора 𝐹, а элементы диагональной матрицы суть собственные
числа 𝐹, причём каждое собственное число 𝜆 ∈ Spec𝐹 встречается на диагонали ровно столько
раз, какова кратность корня 𝑡 = 𝜆 в характеристическом многочлене 𝜒𝐹(𝑡) и какова размер-
ность собственного подпространства 𝑉𝜆. Иначе можно сказать, что диагонализуемый опера-
тор 𝐹 подобен оператору умножения на класс [𝑡] в прямой сумме факторколец1 𝕜[𝑡]∕(𝑡−𝜆) ≃ 𝕜,
где 𝜆 пробегает Spec𝐹, и каждое такое прямое слагаемое представлено в сумме ровно dim𝑉𝜆
раз.

Предложение 9.4

Следующие свойства линейного оператора 𝐹∶ 𝑉 → 𝑉 эквивалентны:

1) 𝐹 диагонализуем

2) пространство 𝑉 линейно порождается собственными векторами оператора 𝐹

3) все элементарные делители 𝐹 имеют вид (𝑡 − 𝜆), 𝜆 ∈ 𝕜

4) характеристический многочлен 𝜒𝐹(𝑡) = det(𝑡𝐸 − 𝐹) полностью раскладывается в 𝕜[𝑡] на
линейныемножители, и кратность каждого его корня 𝜆 равна размерности собственного
подпространства 𝑉𝜆

5) оператор 𝐹 можно аннулировать многочленом, который раскладывается в 𝕜[𝑡] в произ-
ведение попарно различных линейных множителей.

Доказательство. Эквивалентность свойств (3) и (5) очевидна. Эквивалентность свойств (1),
(2), (3) и импликация (1) ⇒ (4) были установлены перед формулировкой предл. 9.4. Из (4)
вытекает, что ∑ dim𝑉𝜆 = deg𝜒𝐹 = dim𝑉. Поэтому прямая по сл. 9.6 сумма всех различных
собственных подпространств 𝑉𝜆 совпадает с 𝑉, что даёт импликацию (4) ⇒ (1). □

Следствие 9.8

Если оператор 𝐹∶ 𝑉 → 𝑉 диагонализуем, то его ограничение на любое инвариантное подпро-
странство тоже диагонализуемо на этом подпространстве.

Доказательство. Это вытекает из свойства (5) предл. 9.4. □

Упражнение 9.15.Убедитесь, чтонад алгебраически замкнутымполемдиагонализуемостьрав-
носильна полупростоте.

1Ср. с упр. 9.9 на стр. 147.
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9.2.7. Что стоит за аннулирующим многочленом? Если известно разложение на простые
множители того или иного многочлена, аннулирующего линейный оператор1 𝐹∶ 𝑉 → 𝑉, то
это, во-первых, оставляет лишь конечное число возможностей для набора элементарных дели-
телей ℰ𝓁(𝐹) оператора 𝐹, а во-вторых, позволяет явно строить 𝐹-инвариантные подпростран-
ства в 𝑉 и/или раскладывать 𝑉 в прямую сумму таких подпространств в терминах действия 𝐹
непосредственно на пространстве 𝑉.

Пример 9.5 (инвариантные подпространства вещественного оператора)

Покажем, что над полем вещественных чисел ℝ любой конечномерный линейный оператор 𝐹
обладает одномерным или двумерным инвариантным подпространством. Пусть 𝜒𝐹 = 𝑞1 … 𝑞𝑚,
где 𝑞𝑖 ∈ ℝ[𝑡] —неприводимые приведённые линейные или квадратичные многочлены, не обя-
зательно различные. Применим нулевой оператор 0 = 𝜒𝐹(𝐹) = 𝑞1(𝐹) ∘ 𝑞2(𝐹) ∘ … ∘ 𝑞𝑚(𝐹) к
какому-нибудь ненулевому вектору 𝑣 ∈ 𝑉. При некотором 𝑖 ⩾ 0 получится такой ненулевой
вектор 𝑤 = 𝑞𝑖+1(𝐹) ∘ … ∘ 𝑞𝑚(𝐹) 𝑣, что 𝑞𝑖(𝐹)𝑤 = 0. Если 𝑞𝑖(𝑡) = 𝑡 − 𝜆 линеен, то 𝐹(𝑤) = 𝜆𝑤
и вектор 𝑤 порождает одномерное 𝐹-инвариантное подпространство. Если 𝑞𝑖(𝑡) = 𝑡2 − 𝛼𝑡 − 𝛽
квадратичен, то 𝐹(𝐹𝑤) = 𝛼𝐹(𝑤) + 𝛽𝑤 лежит в линейной оболочке векторов 𝑤 и 𝐹𝑤, которая
тем самым является 𝐹-инвариантным подпространством размерности не больше 2.

Пример 9.6 (инволюции)

Линейный оператор 𝜎∶ 𝑉 → 𝑉 называется инволюцией, если он удовлетворяет соотношению
𝜎2 = Id𝑉, т. е. аннулируется многочленом 𝑡2 − 1. Тождественная инволюция 𝜎 = Id𝑉 называет-
ся тривиальной. Так как 𝑡2 − 1 = (𝑡 + 1)(𝑡 − 1) является произведением различных линейных
множителей, все инволюции диагонализуемы, причём спектр любой инволюции исчерпывает-
ся числами ±1. Таким образом, любое пространство 𝑉 с инволюцией 𝜎 ≠ ±Id𝑉 распадается в
прямую сумму 𝑉 = 𝑉+ ⊕ 𝑉− собственных подпространств 𝑉+ = ker(𝜎 − Id𝑉) = im(𝜎 + Id𝑉) и
𝑉− = ker(𝜎 + Id𝑉) = im(𝜎 − Id𝑉) c собственными числами ±1, и любой вектор 𝑣 ∈ 𝑉 однозначно
записывается как𝑣 = 𝑣++𝑣−, где𝑣± ∈ 𝑉± находятся поформулам𝑣+ = (𝑣+𝐹𝑣)∕2,𝑣− = (𝑣−𝐹𝑣)∕2.

Теорема 9.3 (теорема о разложении)

Пусть линейный оператор 𝐹∶ 𝑉 → 𝑉 на произвольном2 векторном пространстве 𝑉 над произ-
вольным полем 𝕜 аннулируется произведением 𝑞 = 𝑞1 … 𝑞𝑟 попарно взаимно простых много-
членов 𝑞𝑖 ∈ 𝕜[𝑡]. Положим𝑄𝑗 = 𝑞∕𝑞𝑗. Тогда ker 𝑞𝑗(𝐹) = im𝑄𝑗(𝐹) при всех 𝑗, эти подпространства
𝐹-инвариантны, и 𝑉 является прямой суммой тех из них, что отличны от нуля.

Доказательство. Так как 𝑞(𝐹) = 𝑞𝑖(𝐹) ∘ 𝑄𝑗(𝐹) = 0, имеем включение im𝑄𝑖(𝐹) ⊂ ker 𝑞𝑖(𝐹). По-
этому достаточно показать, что 𝑉 линейно порождается образами операторов 𝑄𝑖(𝐹), а сумма
ядер ker 𝑞𝑖(𝐹) прямая3, т. е. ker 𝑞𝑖(𝐹) ∩ ∑𝑗≠𝑖 ker 𝑞𝑗(𝐹) = 0 для всех 𝑖. Первое вытекает из того,
что �.�.�.(𝑄1, … ,𝑄𝑟) = 1, а значит, существуют такие ℎ1, … , ℎ𝑟 ∈ 𝕜[𝑡], что 1 = ∑𝑄𝑗(𝑡)ℎ𝑗(𝑡). Под-
ставляя в это равенство 𝑡 = 𝐹 и применяя обе части к произвольному вектору 𝑣 ∈ 𝑉, получаем
разложение 𝑣 = 𝐸𝑣 = ∑𝑄𝑗(𝐹)ℎ𝑗(𝐹)𝑣 ∈ ∑ im𝑄𝑗(𝐹). Второе вытекает из взаимной простоты 𝑞𝑖
и 𝑄𝑖, в силу которой существуют такие 𝑔, ℎ ∈ 𝕜[𝑡], что 1 = 𝑔(𝑡) ⋅ 𝑞𝑖(𝑡) + ℎ(𝑡) ⋅ 𝑄𝑖(𝑡). Подста-
вим сюда 𝑡 = 𝐹 и применим обе части полученного равенства 𝐸 = 𝑔(𝐹) 𝑞𝑖(𝐹) + ℎ(𝐹) ∘ 𝑄𝑖(𝐹) к
произвольному вектору 𝑣 ∈ ker 𝑞𝑖(𝐹) ∩ ∑𝑗≠𝑖 ker 𝑞𝑗. Так как ker 𝑞𝑗(𝐹) ⊂ ker𝑄𝑖(𝐹) при всех 𝑗 ≠ 𝑖,
получим 𝑣 = 𝐸𝑣 = 𝑔(𝐹) 𝑞𝑖(𝐹) 𝑣 + ℎ(𝐹)𝑄𝑖(𝐹) 𝑣 = 0, что и требовалось. □

1Например, характеристического многочлена 𝜒𝐹(𝑡) = det(𝑡𝐸 − 𝐹).
2Возможно даже бесконечномерном.
3См. предл. 5.2 на стр. 85.
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Пример 9.7 (проекторы)

Линейный оператор 𝜋∶ 𝑉 → 𝑉 называется идемпотентом или проектором, если он аннули-
руется многочленом 𝑡2 − 𝑡 = 𝑡(𝑡 − 1), т. е. удовлетворяет соотношению 𝜋2 = 𝜋 . По теор. 9.3
образ любого идемпотента 𝜋∶ 𝑉 → 𝑉 совпадает с подпространством его неподвижных векто-
ров: im𝜋 = ker(𝜋 − Id𝑉) = {𝑣 | 𝜋(𝑣) = 𝑣}, и всё пространство распадается в прямую сумму
𝑉 = ker𝜋 ⊕ im𝜋. Тем самым, оператор 𝜋 проектирует 𝑉 на im𝜋 вдоль ker𝜋. Отметим, что опе-
ратор Id𝑉 −𝜋 тоже является идемпотентом и проектирует 𝑉 на ker𝜋 вдоль im𝜋. Таким образом,
задание прямого разложения 𝑉 = 𝑈 ⊕ 𝑊 равносильно заданию пары идемпотентных эндо-
морфизмов 𝜋1 = 𝜋21 и 𝜋2 = 𝜋22 пространства 𝑉, связанных соотношениями 𝜋1 + 𝜋2 = 1 и
𝜋1𝜋2 = 𝜋2𝜋1 = 0.

Упражнение 9.16. Выведите из этих соотношений, что ker𝜋1 = im𝜋2 и im𝜋1 = ker𝜋2.

9.3. Функции от операторов. Всюду в этом разделе мы предполагаем, что линейный оператор
𝐹∶ 𝑉 → 𝑉 действует на конечномерном векторном пространстве 𝑉 над полемℝ или ℂ, которое
мы будем обозначать через𝕂, и аннулируется многочленом

𝛼(𝑡) = (𝑡 − 𝜆1)𝑚1 … (𝑡 − 𝜆𝑟)𝑚𝑟 , где 𝜆𝑖 ≠ 𝜆𝑗 при 𝑖 ≠ 𝑗 , (9-13)

который полностью разлагается на линейные множители в 𝕂[𝑡]. Последнее означает, что ми-
нимальный и характеристический многочлены оператора 𝐹 тоже полностью разлагался на ли-
нейные множители в 𝕂[𝑡], и в практических вычислениях в качестве 𝛼(𝑡) обычно берётся ха-
рактеристический многочлен 𝜒𝐹(𝑡) оператора 𝐹. Однако, чем меньше степень многочлена 𝛼(𝑡),
тем проще будут все предстоящие нам вычисления.

Сделанныенамипредположенияна оператор𝐹 равносильны тому, чтоℰ𝓁(𝐹)исчерпывается
степенями линейных двучленов (𝑡 − 𝜆)𝑚, 𝜆 ∈ Spec𝐹. В этой ситуации 𝕂[𝑡]-модуль 𝑉𝐹 является
прямой суммой 𝑉 = ⨁𝜆∈Spec𝐹 𝐾𝜆 корневых подпространств1

𝐾𝜆 ≝ {𝑣 ∈ 𝑉 | ∃𝑚 ∈ ℕ∶ (𝜆 Id − 𝐹)𝑚𝑣 = 0} = ker(𝜆 Id − 𝐹)𝑚𝜆 , (9-14)

биективно соответствующих собственным числам 𝜆 ∈ Spec𝐹. Показатель 𝑚𝜆 в правой части
формулы (9-14) равен кратности корня 𝑡 = 𝜆 минимального многочлена 𝜇𝐹(𝑡) оператора2 𝐹.
Множество корней 𝜆1, … , 𝜆𝑟 многочлена (9-13) содержит Spec(𝐹) и для каждого 𝜆 ∈ Spec𝐹
показатель𝑚𝜆 не больше кратности корня 𝑡 = 𝜆 многочлена (9-13).

Упражнение 9.17. Не прибегая к теор. 9.1 на стр. 143, выведите существование корневого раз-
ложения 𝑉 = ⨁𝜆∈Spec𝐹 𝐾𝜆 из тождества Гамильтона –Кэли и теор. 9.3 на стр. 158.

9.3.1. Гомоморфизм вычисления. Алгебра 𝒜, состоящая из функций 𝑈 → 𝕂, заданных
на каком-нибудь подмножестве 𝑈 ⊂ 𝕂, содержащем все корни многочлена (9-13), называется
алгебраически вычислимой на операторе 𝐹, если 𝕂[𝑡] ⊂ 𝒜 и для каждого корня 𝜆 кратности 𝑘
многочлена (9-13) все функции 𝑓 ∈ 𝒜 определены в точке 𝜆 ∈ 𝕂 вместе с первыми 𝑘 − 1
производными 𝑓(𝜈) = 𝑑𝜈𝑓

𝑑𝑡𝜈 и допускают тейлоровское разложение вида

𝑓(𝑡) = 𝑓(𝜆) + 𝑓′(𝜆)
1! (𝑡 − 𝜆) + … + 𝑓(𝑘−1)(𝜆)

(𝑘 − 1)! (𝑡 − 𝜆)𝑘−1 + 𝑔𝜆(𝑡) ⋅ (𝑡 − 𝜆)𝑘 , (9-15)

1Т. е. подмодулей (𝑡 − 𝜆)-кручения, см. n∘ 9.1.6 на стр. 147.
2Т. е. максимальному из показателей степеней элементарных делителей вида (𝑡 − 𝜆)𝑚 оператора 𝐹.
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где функция 𝑔𝜆(𝑡) тоже лежит в алгебре𝒜.
Например, алгебра 𝒜 всех функций, определённых в 𝜀-окрестности каждого собственно-

го числа 𝜆 ∈ Spec𝐹 и представимых в ней суммой абсолютно сходящегося степенного ряда
от (𝑡− 𝜆), алгебраически вычислима на операторе 𝐹. Подалгебра в𝒜, состоящая из всех анали-
тических функций1 𝕂 → 𝕂, алгебраически вычислима на всех операторах 𝐹 ∈ End𝕂(𝑉), харак-
теристические многочлены которых полностью разлагаются на линейные множители в𝕂[𝑡].

Теорема 9.4

В сделанных вышепредположениях каждая алгебраически вычислимаяна операторе𝐹∶ 𝑉 → 𝑉
алгебра функций𝒜 допускает единственный такой гомоморфизм 𝕂-алгебр ev𝐹 ∶ 𝒜 → End𝑉,
что ev𝐹(𝑝) = 𝑝(𝐹) для всех многочленов 𝑝 ∈ 𝕂[𝑡] ⊂ 𝒜.

Доказательство теор. 9.4. Пусть оператор 𝐹 аннулируется многочленом (9-13), и пусть иско-
мый гомоморфизм ev𝐹 ∶ 𝒜 → 𝕂 существует. Пространство 𝑉 является прямой суммой 𝐹-инва-
риантных корневых подпространств 𝐾𝜆 = ker(𝐹 − 𝜆Id)𝑚𝜆 . Согласно формуле (9-15) оператор

𝑓(𝐹) = 𝑓(𝜆) ⋅ 𝐸 + 𝑓′(𝜆) ⋅ (𝐹 − 𝜆𝐸) + … + 𝑓(𝑚𝜆−1)(𝜆)
(𝑚𝜆 − 1)! (𝐹 − 𝜆𝐸)𝑚𝜆−1 + 𝑔𝜆(𝐹)(𝐹 − 𝜆𝐸)𝑚𝜆 (9-16)

действует на каждом подпространстве𝐾𝜆 точно так же, как результат подстановки оператора 𝐹
в многочлен 𝑗𝑚𝜆−1

𝜆 𝑓(𝑡) ≝ 𝑓(𝜆) + 𝑓′(𝜆) ⋅ (𝑡 − 𝜆) + … + 𝑓(𝑚𝜆−1)(𝜆) ⋅ (𝑡 − 𝜆)𝑚𝜆−1∕(𝑚𝜆 − 1)!. Класс
этого многочлена в факторкольце𝕂[𝑡]∕((𝑡− 𝜆)𝑚𝜆) называется (𝑚𝜆 − 1)-струёй функции 𝑓 ∈ 𝒜
в точке 𝜆 ∈ 𝕂. По китайской теореме об остатках существует единственный такой многочлен
𝑝𝑓(𝐹)(𝑡) ∈ 𝕂[𝑡] степени, строго меньшей deg𝛼(𝑡), что 𝑝𝑓(𝐹)(𝑡) ≡ 𝑗𝑚𝜆−1

𝜆 𝑓(𝑡) (mod𝛼(𝑡)) сразу для
всех корней 𝜆 многочлена 𝛼. Поскольку операторы 𝑝𝑓(𝐹)(𝐹) и 𝑓(𝐹) одинаково действуют на каж-
дом подпространстве 𝐾𝜆, имеется равенство 𝑓(𝐹) = 𝑝𝑓(𝐹)(𝐹). Таким образом, гомоморфизм вы-
числения единствен. Остаётся убедиться, что отображение 𝑓 ↦ 𝑝𝑓(𝐹)(𝐹) действительно являет-
ся гомоморфизмом𝕂-алгебр. Проверим сначала, что отображение

𝐽∶ 𝒜 → 𝕂[𝑡]
((𝑡 − 𝜆1)𝑚1)

× … × 𝕂[𝑡]
((𝑡 − 𝜆𝑟)𝑚𝑟)

≃ 𝕂[𝑡]
(𝛼) ,

𝑓 ↦ (𝑗
𝑚1−1
𝜆1 𝑓, … , 𝑗𝑚𝑟−1

𝜆𝑠 𝑓) ,

(9-17)

сопоставляющее функции 𝑓 ∈ 𝒜 набор её струй2 во всех корнях многочлена 𝛼, является го-
моморфизмом 𝕂-алгебр, т. е. 𝕂-линейно и удовлетворяет равенству 𝐽(𝑓𝑔) = 𝐽(𝑓)𝐽(𝑔). Первое
очевидно, второе достаточно установить для каждой струи 𝑗𝑚−1

𝜆 отдельно. Используя правило
Лейбница: (𝑓𝑔)(𝑘) = ∑𝑘

𝜈=0 (𝑘𝜈) 𝑓(𝜈)𝑔(𝑘−𝜈), получаем следующие равенства по модулю (𝑡 − 𝜆)𝑚:

𝑗𝑚−1
𝜆 (𝑓𝑔) =

𝑚−1

∑
𝑘=0

(𝑡 − 𝜆)𝑘
𝑘! ∑

𝜈+𝜇=𝑘

𝑘!
𝜈!𝜇!𝑓

(𝜈)(𝜆)𝑔(𝜇)(𝜆) =

=
𝑚−1

∑
𝑘=0

∑
𝜈+𝜇=𝑘

𝑓(𝜈)(𝜆)
𝜈! (𝑡 − 𝜆)𝜈 ⋅ 𝑔

(𝜇)(𝜆)
𝜇! (𝑡 − 𝜆)𝜇 ≡ 𝑗𝑚−1

𝜆 (𝑓)𝑗𝑚−1
𝜆 (𝑔) .

1Т. е. функций, задаваемых сходящимися всюду в𝕂 степенными рядами.
2Мы рассматриваем этот набор как элемент прямого произведения соответствующих колец вычетов,

которое по китайской теореме об остатках изоморфно факторкольцу𝕂[𝑡]∕(𝛼).
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Отображение 𝑓 ↦ 𝑝𝑓(𝐹)(𝐹) является композицией гомоморфизма (9-17) с гомоморфизмом вы-
числения многочленов ev𝐹 ∶ 𝕂[𝑡] → End𝑉, 𝑝 ↦ 𝑝(𝐹), который корректно пропускается через
фактор𝕂[𝑡]∕(𝛼), так как 𝛼(𝐹) = 0. □

Определение 9.1 (гомоморфизм вычисления)

Гомоморфизм ev𝐹 ∶ 𝒜 → End𝑉 из теор. 9.4 называется вычислением функций 𝑓 ∈ 𝒜 на опера-
торе 𝐹. Линейный оператор ev𝐹(𝑓)∶ 𝑉 → 𝑉, в который переходит функция 𝑓 ∈ 𝒜 при гомомор-
физме вычисления, обозначается 𝑓(𝐹) и называется функцией 𝑓 от оператора 𝐹.

Замечание 9.1. (как относиться к функциям от операторов) Изтеор. 9.4 вытекает, что еслиха-
рактеристический многочлен линейного оператора 𝐹∶ 𝑉 → 𝑉 полностью разлагается на ли-
нейныемножители в𝕂[𝑡], то на пространстве𝑉 определены такие линейные операторы, как 𝑒𝐹
или sin𝐹, а если 𝐹 ∈ GL(𝑉), то и такие задаваемые аналитическими вне нуля функциями опе-
раторы, как ln𝐹 или √𝐹, причём алгебраические свойства всех этих операторов точно такие
же, как у числовых функций 𝑒𝑡, sin 𝑡, ln 𝑡 и √𝑡. В частности, все эти функции от оператора 𝐹
коммутируют друг с другом и с 𝐹, а также удовлетворяют соотношениям вроде ln𝐹2 = 2 ln𝐹 и
√𝐹√𝐹 = 𝐹. Таким образом, функции от операторовможно использовать для отыскания опера-
торов с предписанными свойствами, например, удовлетворяющих заданному алгебраическому
или дифференциальному уравнению, в частности, для извлечения корней из невырожденных
операторов.

Предложение 9.5

В условиях теор. 9.4 на стр. 160 для любой функции 𝑓 из алгебраически вычислимой на опера-
торе 𝐹 алгебры функций 𝒜 спектр оператора 𝑓(𝐹) состоит из чисел 𝑓(𝜆), где 𝜆 ∈ Spec𝐹. Если
𝑓′(𝜆) ≠ 0, то элементарные делители (𝑡− 𝜆)𝑚 ∈ ℰ𝓁(𝐹) биективно соответствуют элементарным
делителям (𝑡−𝑓(𝜆))

𝑚 ∈ ℰ𝓁(𝑓(𝐹)). Если 𝑓′(𝜆) = 0, то каждому элементарному делителю (𝑡−𝜆)𝑚
с 𝑚 > 1 из ℰ𝓁(𝐹) в множестве ℰ𝓁(𝑓(𝐹)) соответствует объединение нескольких элементарных

делителей вида (𝑡 − 𝑓(𝜆))
𝓁𝑖 с 𝓁𝑖 ∈ ℕ и ∑𝑖 𝓁𝑖 = 𝑚.

Доказательство. Реализуем 𝐹 как оператор умножения на класс [𝑡] в прямой сумме факторко-
лец𝑉 = 𝕂[𝑡]∕((𝑡−𝜆1)𝑠1)⊕…⊕𝕂[𝑡]∕((𝑡−𝜆𝑟)𝑠𝑟). Как мы видели в доказательстве теор. 9.4 огра-
ничение оператора 𝑓(𝐹) на корневое подпространство 𝐾𝜆 раскладывается в сумму скалярного
оператора 𝑓(𝜆)𝐸 и нильпотентного оператора 𝑁 = 𝑓′(𝜆) ⋅ 𝜂 + 1

2 𝑓
″(𝜆) ⋅ 𝜂2 + …, где 𝜂∶ 𝐾𝜆 → 𝐾𝜆

обозначает оператор умножения на класс [𝑡 − 𝜆]. На каждом слагаемом𝕂[𝑡]∕((𝑡 − 𝜆)𝑚) опера-
тор 𝜂 имеет ровно одну жорданову цепочку максимальной длины𝑚. Если 𝑓′(𝜆) ≠ 0, то

𝑁𝑚−1 = 𝑓′(𝜆)𝑚−1 ⋅ 𝜂𝑚−1 ≠ 0 .

Поэтому 𝑁 тоже имеет ровно одну жорданову цепочку длины𝑚. При 𝑓′(𝜆) = 0 и𝑚 > 1 равен-
ство 𝑁𝑘 = 0 наступит при 𝑘 < 𝑚. Поэтому цикловой тип ограничения оператора 𝑁 на каждое
слагаемое вида𝕂[𝑡]∕((𝑡 − 𝜆)𝑚) состоит из нескольких цепочек суммарной длины𝑚. □

Упражнение 9.18. Покажите, что матрица 𝐽−1
𝑛 (𝜆), обратная к жордановой клетке размера 𝑛×𝑛

с собственным числом 𝜆, подобна матрице 𝐽𝑛(𝜆−1).
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9.3.2. Интерполяционный многочлен. Многочлен 𝑝𝑓(𝐹)(𝑡) ∈ 𝕂[𝑡], принимающий на опе-
раторе 𝐹 то же самое значение, что и функция 𝑓 ∈ 𝒜, называется интерполяционным много-
членом для вычисления 𝑓(𝐹). Он однозначно определяется тем, что его степень строго меньше
степени аннулирующего оператор 𝑓 многочлена𝛼 и в каждом корне кратности𝑚многочлена𝛼
саммногочлен 𝑝𝑓(𝐹) и первые его𝑚−1 производные принимают те же значения, что функция 𝑓
и её первые𝑚 − 1 производные. Таким образом, при deg𝛼 = 𝑑 отыскание коэффициентов ин-
терполяционногомногочлена 𝑝𝑓(𝐹) сводится к решению системыиз𝑑 линейных уравненийна𝑑
неизвестных.

Лемма 9.2 (об интерполяции с кратными узлами1)

Для любых различных чисел 𝑎1, … , 𝑎𝑛 из любого поля 𝕜 и произвольно заданного для каждо-
го 𝑎𝑖 набора из𝑚𝑖 значений 𝑏𝑖,0, 𝑏𝑖,1, … , 𝑏𝑖,𝑚𝑖−1 ∈ 𝕜 существует единственный такоймногочлен
𝑔 ∈ 𝕜[𝑥] степени строго меньше𝑚 = 𝑚1 + … + 𝑚𝑛, что при каждом 𝑖 = 1, … , 𝑛 сам этот мно-
гочлен и первые его𝑚𝑖 − 1 производные принимают в точке 𝑎𝑖 заданные значения

𝑔(𝑎𝑖) = 𝑏𝑖,0, 𝑔′(𝑎𝑖) = 𝑏𝑖,1, … , 𝑔(𝑚𝑖−1)(𝑎𝑖) = 𝑏𝑖,𝑚𝑖−1 ,

где 𝑔(𝑘)(𝑥) = 𝑑𝑘𝑔(𝑥)∕𝑑𝑥𝑘 означает 𝑘-тую производную многочлена 𝑔.

Доказательство. Введём на𝑚 парах чисел (𝑖, 𝑗), где 1 ⩽ 𝑖 ⩽ 𝑛, 0 ⩽ 𝑗 < 𝑚𝑗, какой-нибудь линей-
ный порядок и рассмотрим отображение 𝐹∶ 𝕜[𝑥]<𝑚 → 𝕜𝑚, переводящее каждый многочлен 𝑔
степени меньше 𝑚 в набор значений2 𝑔(𝑗)(𝑎𝑖), записанных в одну строку в выбранном на па-
рах (𝑖, 𝑗) порядке.

Упражнение 9.19. Убедитесь, что отображение 𝐹 линейно.

Если 𝑔 ∈ ker𝐹, то по предл. 2.6 на стр. 45 каждое число 𝑎𝑖 ∈ 𝕜 является как минимум 𝑚𝑖-
кратным корнем многочлена 𝑔, т. е. 𝑔 делится на ∏𝑖(𝑥 − 𝑎𝑖)𝑚𝑖 , откуда 𝑔 = 0, ибо степень про-
изведения равна 𝑚 > deg𝑔. Мы заключаем, что ker𝐹 = 0. Поскольку dim𝕜[𝑥]<𝑚 = dim𝕜𝑚,
отображение 𝐹 биективно. □

Пример 9.8 (степенная функция и рекуррентные уравнения, ср. c прим. 3.6 на стр. 59)

Задача отыскания 𝑛-того члена 𝑎𝑛 числовой последовательности 𝑧∶ ℤ → 𝕂, 𝑛 ↦ 𝑧𝑛, реша-
ющей рекуррентное уравнение 𝑧𝑛 = 𝛼1𝑧𝑛−1 + 𝛼2𝑧𝑛−2 + … + 𝛼𝑚𝑧𝑛−𝑚 с начальным условием
(𝑧0, … , 𝑧𝑛−1) = (𝑎0, … , 𝑎𝑛−1) ∈ 𝕂𝑛, сводится вычислению 𝑛-той степени матрицы сдвига

𝑆 =

⎛
⎜
⎜
⎜
⎜
⎜
⎝

0 0 … 0 𝛼𝑚
1 0 ⋱ ⋮ 𝛼𝑚−1
0 1 ⋱ 0 ⋮
⋮ ⋱ ⋱ 0 𝛼2
0 … 0 1 𝛼1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

смещающей каждый фрагмент из𝑚 последовательных элементов на один шаг вправо:

(𝑧𝑘+1, 𝑧𝑘+2, … , 𝑧𝑘+𝑚) ⋅ 𝑆 = (𝑧𝑘+2, 𝑧𝑘+3, … , 𝑧𝑘+𝑚+1) .

1Это утверждение обобщает прим. 2.5 на стр. 43.
2Где для единообразия обозначений мы полагаем 𝑔(0) ≝ 𝑔.



9.3.Функции от операторов 163

Искомый элемент 𝑎𝑛 при этом равен первой координате вектора

(𝑎𝑛, 𝑎𝑛+1, … , 𝑎𝑛+𝑚−1) = (𝑎0, 𝑎1, … , 𝑎𝑚−1) ⋅ 𝑆𝑛 .

Матрица 𝑆𝑛 = 𝑝𝑆𝑛(𝑆) является результатом подстановки матрицы 𝑆 в интерполяционный мно-
гочлен 𝑝𝑆𝑛(𝑡) ∈ 𝕂[𝑡] для вычисления на матрице 𝑆 степенной функции 𝑓(𝑡) = 𝑡𝑛. Обратите вни-
мание, что deg 𝑝𝑆𝑛 < 𝑚, и коэффициенты многочлена 𝑝𝑆𝑛 находятся решением системы из 𝑚
линейных уравнений на𝑚 неизвестных.

Например, для уравнения Фибоначчи 𝑎𝑛 = 𝑎𝑛−1 + 𝑎𝑛−2 матрица сдвига имеет вид

𝑆 = (
0 1
1 1) .

Интерполяционныймногочлен для вычисления степеннойфункции 𝑡𝑛 на этойматрице линеен.
Записывая его в виде 𝑝𝑆𝑛(𝑡) = 𝑎𝑡 + 𝑏 с неопределёнными коэффициентами 𝑎 и 𝑏, получаем

𝑆𝑛 = 𝑎 𝑆 + 𝑏 𝐸 = (
𝑏 𝑎
𝑎 𝑎 + 𝑏) .

Таким образом, 𝑛-тое число Фибоначчи, решающее уравнение Фибоначчи с начальным усло-
вием (𝑎0, 𝑎1) = (0, 1), равно первой координате вектора (𝑎𝑛, 𝑎𝑛+1) = (0, 1) ⋅ 𝑆𝑛 = (𝑎, 𝑎 + 𝑏).
Матрица 𝑆 аннулируется своим характеристическим многочленом

𝜒𝑆(𝑡) = 𝑡2 − 𝑡 tr 𝑆 + det 𝑆 = 𝑡2 − 𝑡 − 1 = (𝑡 − 𝜆+)(𝑡 − 𝜆−)

с однократными корнями 𝜆± = (1 ± √5)∕2. Функция 𝑡𝑛 принимает на них значения 𝜆𝑛±. Коэф-
фициенты 𝑎 и 𝑏 находятся из системы

{
𝑎 𝜆+ + 𝑏 = 𝜆𝑛+
𝑎 𝜆− + 𝑏 = 𝜆𝑛− ,

и по правилу Крамера 𝑎 = (𝜆𝑛+ − 𝜆𝑛−)∕(𝜆+ − 𝜆−). Тем самым,

𝑎𝑛 = 𝑎 = (1 + √5)𝑛 − (1 − √5)𝑛

2𝑛 ⋅ √5
,

что согласуется с прим. 3.6 на стр. 59.

Пример 9.9 (квадратный корень из оператора)

Покажем, что если поле 𝕜 алгебраически замкнуто и char𝕜 ≠ 2, то из любого биективного ли-
нейного оператора𝐹 на конечномерном векторномпространстве𝑉 над полем𝕜можноизвлечь
квадратный корень, являющийся многочленом от оператора 𝐹. В прим. 3.8 на стр. 63 мы виде-
ли, что при всех целых 𝑘 ⩾ 0 биномиальный коэффициент (2𝑘𝑘 ) нацело делится на (𝑘+1), и если

char𝕜 ≠ 2, то корректно определён биномиальный степенной ряд1

√1 + 𝑥 = ∑
𝑘⩾0(

1∕2
𝑘 )𝑥

𝑘 = 1 + 1
2 ∑
𝑘⩾1

(−1)𝑘−1

4𝑘−1 (
2𝑘 − 2
𝑘 − 1 )

𝑥𝑘
𝑘 . (9-18)

1См. формулу (3-19) на стр. 62.



164 §9Пространство с оператором

Упражнение 9.20. Убедитесь в том, что квадрат многочлена, равного сумме первых 𝑛+ 1 чле-
нов этого ряда, равен 1 + 𝑥 в 𝕜[𝑥]∕(𝑥𝑛+1).

Если поле 𝕜 алгебраически замкнуто, характеристический многочлен 𝜒𝐹(𝑡) оператора 𝐹 разла-
гается на взаимно простые множители (𝑡 − 𝜆)𝑚𝜆 , где 𝜆 ∈ Spec(𝐹), и пространство 𝑉 является
прямой суммой 𝐹-инвариантных корневых подпространств 𝐾𝜆 = ker(𝐹 − 𝜆Id)𝑚𝜆 . Так как 𝐹 би-
ективен, все числа 𝜆 в этом разложении отличны от нуля. Для каждого 𝜆 ∈ Spec(𝐹) обозначим
через 𝑝𝜆(𝑡) ∈ 𝕜[𝑡] сумму первых 𝑚𝜆 членов формального разложения Тэйлора функции √𝑡 в
точке 𝜆, которое получается из (9-18) заменой переменных:

√𝑡 = √𝜆 + (𝑡 − 𝜆) = √𝜆 ⋅ (1 + (𝑡 − 𝜆)∕𝜆)
1∕2 = 𝜆1∕2 + 𝑡 − 𝜆

2𝜆1∕2 − (𝑡 − 𝜆)2
8𝜆3∕2 + (𝑡 − 𝜆)3

16𝜆5∕2 − … .

Тогда 𝑝2𝜆(𝑡) ≡ 𝑡mod (𝑡 − 𝜆)𝑚𝜆 в силу упр. 9.20. По китайской теореме об остатках существует
многочлен 𝑝(𝑡), сравнимый с 𝑝𝜆(𝑡) по модулю (𝑡 − 𝜆)𝑚𝜆 сразу для всех 𝜆 ∈ Spec(𝐹). Он имеет
𝑝2(𝑡) ≡ 𝑡mod (𝑡 − 𝜆)𝑚𝜆 для всех 𝜆 ∈ Spec(𝐹). Поскольку квадрат оператора 𝑝(𝐹) действует на
каждом корневом подпространстве 𝐾𝜆 точно также, как 𝐹, мы заключаем, что 𝑝2(𝐹) = 𝐹.

Замечание 9.2. (аналитически определённые функции от оператора) Гомоморфизм вычисле-
ния значений многочленов на матрице 𝐹 ∈ Mat𝑛(ℂ) можно продолжать на б ′ольшие алгебры
функций 𝒞 ⊃ ℂ[𝑧] средствами анализа: наделим пространства 𝒞 и Mat𝑛(ℂ) той или иной то-
пологией, представим функцию 𝑓 ∈ 𝒞 в виде предела 𝑓 = lim𝑘→∞ 𝑓𝑘 какой-нибудь последова-
тельности многочленов 𝑓𝑘 и положим матрицу 𝑓(𝐹) равной пределу последовательности мат-
риц 𝑓𝑘(𝐹) ∈ Mat𝑛(ℂ). Разумеется, при этом необходимо проверять, что предел lim𝑘→∞ 𝑓𝑘(𝐹) су-
ществует и зависит только от функции 𝑓, а не от выбора сходящейся к 𝑓 последовательности
многочленов, и отдельно следует убедиться в том, что полученное таким образом отображение
ev𝐹 ∶ 𝒞 → Mat𝑛(ℂ), 𝑓 ↦ 𝑓(𝐹), является гомоморфизмом алгебр1. Но если это так, и если переход
к пределу в пространстве матриц перестановочен со сложением и умножением на константы2,
то какбыниопределялась сходимость впространствефункцийикакойбынибыла сходящаяся к
функции 𝑓 последовательность многочленов 𝑓𝑘, последовательность матриц 𝑓𝑘(𝐹) будет лежать
в конечномерном векторном пространстве, порождённом над ℂ степенями 𝐹𝑚 с 0 ⩽ 𝑚 < 𝑛,
т. е. её предел a priori будет многочленом от 𝐹 степени, строго меньшей 𝑛, а значит, может быть
вычислен при помощи подходящего интерполяционного многочлена. Если матрицы 𝐹 и 𝐺 по-
добны, т. е. 𝐺 = 𝐶𝐹𝐶−1 для некоторой матрицы 𝐶 ∈ GL𝑘(ℂ), то аналитически определённые
функции от этихматриц тоже будут подобны: так как равенство 𝑓𝑘(𝐺) = 𝐶𝑓𝑘(𝐹)𝐶−1 справедливо
для всех многочленов, приближающихфункцию 𝑓, оно выполняется и для предельнойфункции
в силу непрерывности линейного отображения Mat𝑛(ℂ) → Mat𝑛(ℂ), 𝑋 ↦ 𝐶𝑋𝐶−1.

9.4. Перестановочные операторы и разложение Жордана. Если линейные операторы 𝐹 и 𝐺
на векторном пространстве 𝑉 над произвольным полем 𝕜 коммутируют друг с другом, то ядро

1Иначе не вполне понятно, зачем оно нужно. В качестве упражнения по анализу читателю настоя-
тельно рекомендуется попробовать самостоятельно реализовать намеченную программу, используя на
пространстве функций топологию, в которой сходимость последовательности функций означает равно-
мерную сходимость в каждом круге в ℂ, а на пространствеMat𝑛(ℂ) —стандартную топологию простран-
ства ℂ𝑛2

, где сходимость определяется покоординатно.
2Т. е. lim

𝑘→∞
(𝜆𝐹𝑘 + 𝜇𝐺𝑘) = 𝜆 lim

𝑘→∞
𝐹𝑘 + 𝜇 lim

𝑘→∞
𝐺𝑘. Это означает, в частности, что все ℂ-линейные отобра-

жения Mat𝑛(ℂ) → Mat𝑛(ℂ) непрерывны.
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и образ любого многочлена от оператора 𝐹 переводятся оператором 𝐺 в себя:

𝑓(𝐹) 𝑣 = 0 ⇒ 𝑓(𝐹)𝐺𝑣 = 𝐺𝑓(𝐹) 𝑣 = 0
𝑣 = 𝑓(𝐹)𝑤 ⇒ 𝐺𝑣 = 𝐺𝑓(𝐹)𝑤 = 𝑓(𝐹)𝐺𝑤 .

В частности, все собственные подпространства 𝑉𝜆 = ker(𝐹 − 𝜆𝐸) инвариантны относительно
любого перестановочного с 𝐹 оператора 𝐺.

Предложение 9.6

В конечномерном векторном пространстве 𝑉 над алгебраически замкнутым полем 𝕜 любое
множество коммутирующих друг с другом операторов обладает общим для всех операторов
собственным вектором. Над произвольным полем 𝕜 любое множество коммутирующих друг с
другом диагонализуемых операторов на 𝑉 можно одновременно диагонализовать в некотором
общем для всех операторов базисе.

Доказательство. Индукция по dim𝑉. Если все операторы скалярны (что так при dim𝑉 = 1), то
доказывать нечего — подойдут, соответственно, любой ненулевой вектор и любой базис. Если
среди операторов есть хоть один нескалярный оператор 𝐹, то над замкнутым полем у него есть
собственное подпространство строго меньшей размерности, чем 𝑉, а в диагонализуемом слу-
чае 𝑉 является прямой суммой таких собственных подпространств. Каждое собственное под-
пространство оператора 𝐹 инвариантно для всех операторов, причём если операторы диаго-
нализуемы на всём пространстве, то их ограничения на собственные подпространства опера-
тора 𝐹 тоже диагонализуемы по сл. 9.8. Применяя к собственному подпространству (соответ-
ственно ко всем собственным подпространствам) оператора 𝐹 предположение индукции, по-
лучаем требуемое. □

Пример 9.10 (конечные группы операторов)

Если𝑚 линейныхоператоровнаконечномерномпространстве𝑉 надалгебраически замкнутым
полем 𝕜 характеристики char𝕜 ∤ 𝑚 образуют группу 𝐺, то каждый из этих операторов аннули-
руется многочленом 𝑡𝑚 − 1, который раскладывается в произведение 𝑚 попарно различных
линейных множителей1. Поэтому каждый оператор в группе 𝐺 диагонализуем. Все операторы
из группы𝐺 одновременно диагонализуются в одномобщембазисе, еслии только если группа𝐺
абелева.

Теорема 9.5 (разложение Жордана)

Для каждого оператора 𝐹 на конечномерном векторном пространстве 𝑉 над алгебраически за-
мкнутым полем 𝕜 существует единственная пара таких операторов 𝐹𝑑 и 𝐹𝑛, что 𝐹𝑛 нильпотен-
тен,𝐹𝑑 диагонализуем,𝐹𝑑𝐹𝑛 = 𝐹𝑛𝐹𝑑 и𝐹 = 𝐹𝑑+𝐹𝑛. Эти единственныеоператоры𝐹𝑑 и𝐹𝑛 являются
многочленами без свободных членов от оператора 𝐹.

Доказательство. Пусть Spec𝐹 = {𝜆1, … , 𝜆𝑟}. В силу алгебраической замкнутости поля𝕜, харак-
теристический многочлен 𝜒𝐹(𝑡) = ∏𝜆∈Spec𝐹(𝑡− 𝜆)𝑚𝜆 полностью разлагается на линейные мно-
жители, и пространство 𝑉 = ⨁𝜆∈Spec𝐹 𝐾𝜆 является прямой суммой корневых подпространств
𝐾𝜆 = ker(𝐹−𝜆 Id)𝑚𝜆 . В качестве диагонализуемого оператора𝐹𝑑 можно взять оператор, действу-
ющий на каждом корневом подпространстве𝐾𝜆 умножением на 𝜆, а в качестве нильпотентного

1Поскольку производная𝑚𝑡𝑚−1 многочлена 𝑡𝑚 − 1 отлична от нуля и взаимно проста с ним.
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оператора 𝐹𝑛 — разность 𝐹𝑛 = 𝐹 − 𝐹𝑑, которая действует на каждом корневом подпростран-
стве 𝐾𝜆 нильпотентным оператором 𝐹 − 𝜆 Id.

Покажем, что оба эти оператора являются многочленами без свободного члена от 𝐹. Для
этого достаточно представить в таком виде оператор 𝐹𝑑. Для каждого ненулевого 𝜆 ∈ Spec𝐹
обозначим через𝑔𝜆 ∈ 𝕜[𝑥]многочлен, представляющий класс 𝜆∕𝑡 в𝕜[𝑥]∕((𝑡 − 𝜆)𝑚𝜆), а для 𝜆 = 0
положим 𝑔𝜆(𝑡) = 0. По китайской теореме об остатках существует многочлен 𝑔 ∈ 𝕜[𝑥], срав-
нимый с 𝑔𝜆 по модулю (𝑡 − 𝜆)𝑚𝜆 сразу для всех 𝜆 ∈ Spec𝐹. Многочлен 𝑡𝑔𝜆 не имеет свободного
члена, и его класс в 𝕜[𝑥]∕((𝑡 − 𝜆)𝑚𝜆) равен классу 𝜆 для всех 𝜆 ∈ Spec𝐹. Поэтому оператор 𝑔(𝐹)
действует на каждом корневом подпространстве 𝐾𝜆 как умножение на 𝜆, т. е. совпадает с 𝐹𝑑.

Будучи многочленами от 𝐹, операторы 𝐹𝑑 и 𝐹𝑛 = 𝐹−𝐹𝑑 перестановочнымежду собою и с 𝐹.
Это доказывает существование операторов 𝐹𝑑 и 𝐹𝑛 с требуемыми свойствами, включающими в
себя и последнее утверждение предложения. Докажем их единственность.

Пусть есть ещё одно разложение𝐹 = 𝐹′
𝑑+𝐹′

𝑛 , в котором𝐹′
𝑑 диагонализуем,𝐹′

𝑛 нильпотентен
и 𝐹′

𝑑𝐹′
𝑛 = 𝐹′

𝑛𝐹′
𝑑. Из последнего равенства вытекает, что 𝐹′

𝑑 и 𝐹′
𝑛 перестановочны с любыммного-

членом от𝐹 = 𝐹′
𝑑 +𝐹′

𝑛 , в частности, с построенными выше𝐹𝑑 и𝐹𝑛. Поэтому каждое собственное
подпространство 𝑉𝜆 оператора 𝐹𝑑 переводится оператором 𝐹′

𝑑 в себя1, причём 𝐹′
𝑑 диагонализу-

ем2 на каждом 𝑉𝜆. Если бы оператор 𝐹′
𝑑 имел на 𝑉𝜆 собственный вектор с собственным значе-

нием 𝜇 ≠ 𝜆, то этот вектор был бы собственным для оператора 𝐹𝑛 −𝐹′
𝑛 = 𝐹𝑑 −𝐹′

𝑑 с собственным
значением 𝜆 − 𝜇 ≠ 0, что невозможно, так как оператор 𝐹𝑛 − 𝐹′

𝑛 нильпотентен.

Упражнение 9.21. Докажите, что разность двух перестановочных нильпотентных операторов
нильпотентна.

Следовательно, оператор 𝐹′
𝑑 действует на каждом собственном подпространстве 𝑉𝜆 операто-

ра 𝐹𝑑 как умножение на 𝜆, откуда 𝐹′
𝑑 = 𝐹𝑑. Тогда и 𝐹′

𝑛 = 𝐹 − 𝐹′
𝑑 = 𝐹 − 𝐹𝑑 = 𝐹𝑛. □

Определение 9.2

Операторы𝐹𝑑 и𝐹𝑛 из теор. 9.5 называются, соответственно, диагонализуемойи нильпотентной
составляющими оператора 𝐹.

Замечание 9.3. Поскольку операторы 𝐹𝑑 и 𝐹𝑛 являются многочленами от 𝐹, каждое 𝐹-инвари-
антное подпространство 𝑈 ⊂ 𝑉 является инвариантным для 𝐹𝑑 и 𝐹𝑛.

1См. n∘ 9.4 на стр. 164.
2См. сл. 9.8 на стр. 157.



Ответы и указания к некоторым упражнениям

Упр. 9.1. Если отождествитьℝ[𝑡]∕(𝑡2+1) с полемℂ, отправив классы [1]и [𝑡] в1и 𝑖 соответственно,
умножение на класс [𝑡] превратится в умножение на 𝑖, т. е. в поворот на угол 𝜋∕2, который не
переводит никакое одномерное векторное подпространство в себя.

Упр. 9.2. Пусть 𝕜[𝑡]∕(𝑡𝑛) = 𝑈 ⊕ 𝑊, где 𝑈 и𝑊 переводятся в себя умножением на [𝑡]. Оба этих
подпространства не могут целиком содержаться в образе оператора умножения на [𝑡], так как
иначе их сумма тоже бы в нём содержалась. Поэтому в одном из них, пусть это будет𝑈, имеется
класс [𝑔] многочлена 𝑔 с ненулевым свободным членом. Тогда классы [𝑡𝑛−1𝑔], … , [𝑡𝑔], [𝑔] ∈ 𝑈
выражаются через базис [1], [𝑡], … , [𝑡𝑛−1] пространства 𝕜[𝑡]∕(𝑡𝑛) при помощи верхнетреуголь-
ной матрицы, на диагонаи которой всюду стоит ненулевой свободный член многочлена 𝑔. Сле-
довательно, эти классы тоже образуют базис в 𝕜[𝑡]∕(𝑡𝑛), и значит, содержащее их подпростран-
ство 𝑈 совпадает со всем пространством 𝕜[𝑡]∕(𝑡𝑛).

Упр. 9.3. Разложите каждое пространство (𝐹|𝑈𝑖
,𝑈𝑖) по форм. (9-1) на стр. 143. В силу единствен-

ности такого разложения прямая сумма полученных разложений является разложением исход-
ного пространства (𝐹,𝑉).

Упр. 9.4. Коэффициенты 𝑔𝑖 ∈ 𝕜𝑛 неполного частного 𝑔(𝑡) от деления ℎ(𝑡) на 𝑡𝐸 − 𝐴 вычисляются
рекурсивно по формулам 𝑔𝑚−1 = ℎ𝑚, 𝑔𝑖−1 = ℎ𝑖 + 𝐴𝑔𝑖 при 𝑖 ⩽ 𝑚 − 1. Остаток 𝑟 = ℎ(𝑡) − (𝑡𝐸 −
𝐴)𝑔(𝑡) ∈ 𝕜𝑛 не зависит от 𝑡. Подставляя 𝑡 = 𝐴, что законно, ибо 𝐴 коммутирует1, заключаем,
что 𝑟 = ℎ(𝐴).

Упр. 9.5. det(𝑡𝐸−𝐶−1𝐴𝐶) = det(𝑡𝐶−1𝐸𝐶−𝐶−1𝐴𝐶) = det(𝐶−1(𝑡𝐸−𝐴)𝐶) = det𝐶−1⋅det(𝑡𝐸−𝐴)⋅det𝐶 =
= det(𝑡𝐸 − 𝐴).

Упр. 9.6. Пусть 𝑓 = 𝑡𝑛 +𝑎1𝑡𝑛−1 + … +𝑎𝑛. Напишите матрицу 𝐹 оператора умножения на класс [𝑡]
в факторкольце 𝕜[𝑥]∕(𝑓) в базисе [𝑡𝑛−1], [𝑡𝑛−2], … , [𝑡], [1] и разложите det(𝑡𝐸 − 𝐹) по первому
столбцу.

Упр. 9.7. Пусть 𝑓(𝑡) = 𝜇𝑣,𝐹(𝑡)𝑔(𝑡) + 𝑟(𝑡), где либо 𝑟 = 0, либо deg 𝑟 < deg 𝜇𝑣,𝐹. Если 𝑓(𝐹) = 0, то
𝑟(𝐹)𝑣 = 0, что невозможно для ненулевого 𝑟 с deg 𝑟 < deg 𝜇𝑣,𝐹 по определениюмногочлена 𝜇𝑣,𝐹.
Поэтому 𝑟 = 0.

Упр. 9.8. Если оператор 𝑞(𝐹) аннулирует все векторы из какого-нибудь линейного порождающе-
го 𝑉 множества, то он аннулирует любой вектор из 𝑉.

Упр. 9.12. Так как любой вектор ℎ ∈ 𝐻 представляется в 𝑉 как ℎ = 𝑢 + 𝑞 + 𝑟 с 𝑢 ∈ 𝑈, 𝑞 ∈ 𝑄, 𝑟 ∈ 𝑅,
в 𝑈 выполняется равенство ℎ = 𝜋(ℎ) = 𝜋(𝑢) + 𝜋(𝑟) , в котором 𝜋(𝑢) = 𝑢 ∈ 𝑈 и 𝜋(𝑟) ∈ 𝑊, т. е.
𝑈+𝑊 = 𝐻. Если 𝑢 ∈ 𝑈∩𝑊, то 𝑢 = 𝜋(𝑟) для некоторого 𝑟 ∈ 𝑅, и𝜋(𝑢−𝑟) = 𝜋(𝑢)−𝜋(𝑟) = 𝑢−𝑢 = 0,
откуда 𝑢 − 𝑟 ∈ ker𝜋 = 𝑄, что возможно только при 𝑢 = 𝑟 = 0. Поэтому 𝑈 ∩ 𝑊 = 0.

Упр. 9.13. Если 𝜆 ∈ Spec𝐹 и 𝑔(𝜆) ≠ 0, то 𝑔(𝐹) действует на ненулевом собственном подпростран-
стве 𝑉𝜆 умножением на ненулевое число 𝑔(𝜆). Тем самым, 𝑔(𝐹) ≠ 0 .

Упр. 9.14. Над алгебраически замкнутым полем всякий многочлен имеющий только один корень
0 равен 𝑡𝑚. Поэтому 𝜒𝐹(𝑡) = 𝑡𝑚 и по теореме Гамильтона –Кэли 𝐹𝑚 = 0.

Упр. 9.17. Разложение характеристического многочлена оператора 𝐹 в виде произведения степе-
ней попарно разных линейных форм 𝜒𝐹(𝑡) = ∏

𝜆∈Spec𝐹
(𝑡 − 𝜆)𝑁𝜆 удовлетворяет условиям теор. 9.3

с 𝑞𝑖 = (𝑡 − 𝜆)𝑁𝜆 , а корневые подпространства 𝐾𝜆 = ker(𝜆 Id − 𝐹)𝑁𝜆 .

1См. упр. 8.13 на стр. 139.
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Упр. 9.18. Над полем ℂ можно применить предл. 9.5. Над произвольным полем 𝕜 оператор 𝐹 с
матрицей 𝐽𝑛(𝜆) имеет вид 𝜆Id + 𝑁, где 𝑁𝑛 = 0, но 𝑁𝑛−1 ≠ 0. Обратный оператор

𝐹−1 = (𝜆Id + 𝑁)−1 = 𝜆−1(Id + 𝑁∕𝜆)−1 = 𝜆−1 − 𝜆−2𝑁 + 𝜆−3𝑁2 − … + (−1)𝑛−1𝜆−𝑛𝑁𝑛−1

имеет вид 𝜆−1Id + 𝑀, где оператор 𝑀 = −𝜆−2𝑁(1 − 𝜆−1𝑁 + …) тоже имеет 𝑀𝑛 = 0, а 𝑀𝑛−1 =
𝜆2(1−𝑛)𝑁𝑛−1 ≠ 0. Таким образом, ЖНФ оператора 𝐹−1 это одна клетка 𝐽𝑛 (𝜆−1).

Упр. 9.20. В 𝕜⟦𝑥⟧ квадрат ряда √1 + 𝑥 равен 1 + 𝑥, а коэффициенты при 𝑥𝑘 для 0 ⩽ 𝑘 ⩽ 𝑛 у

квадрата ряда √1 + 𝑥 такие же, как и у квадрата многочлена из условия.

Упр. 9.21. Если 𝑎𝑛 = 0, 𝑏𝑚 = 0 и 𝑎𝑏 = 𝑏𝑎, то (𝑎 − 𝑏)𝑚+𝑛−1 = 0 по формуле Ньютона.
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