
§10. Группы

10.1. Группы, подгруппы, циклы. Множество 𝐺 называется группой, если на нём задана опе-
рация композиции 𝐺 × 𝐺 → 𝐺, (𝑔1,𝑔2) ↦ 𝑔1𝑔2 со свойствами

ассоциативность: ∀ 𝑓,𝑔, ℎ ∈ 𝐺 (𝑓𝑔)ℎ = 𝑓(𝑔ℎ) (10-1)

наличие единицы: ∃ 𝑒 ∈ 𝐺 ∶ ∀𝑔 ∈ 𝐺 𝑒𝑔 = 𝑔 (10-2)

наличие обратных: ∀𝑔 ∈ 𝐺 ∃𝑔−1 ∈ 𝐺 ∶ 𝑔−1𝑔 = 𝑒 (10-3)

Группа называется коммутативной или абелевой, если дополнительно имеет место

коммутативность: ∀ 𝑓,𝑔 ∈ 𝐺 𝑓𝑔 = 𝑔𝑓 . (10-4)

Левый обратный к 𝑔 элемент 𝑔−1 из (10-3) является также и правым обратным, т. е. 𝑔𝑔−1 = 𝑒,
что устанавливается умножением правой и левой части в 𝑔−1𝑔𝑔−1 = 𝑒𝑔−1 = 𝑔−1 слева на
левый обратный к 𝑔−1 элемент.

Упражнение 10.1. Убедитесь, что обратный к 𝑔 элемент 𝑔−1 однозначно определяется элемен-
том 𝑔 и что (𝑔1 …𝑔𝑘)

−1 = 𝑔−1
𝑘 …𝑔−1

1 .

Для единицы 𝑒 из (10-2) при любом 𝑔 ∈ 𝐺 выполнятся также и равенство 𝑔𝑒 = 𝑔, поскольку
𝑔𝑒 = 𝑔(𝑔−1𝑔) = (𝑔𝑔−1)𝑔 = 𝑒𝑔 = 𝑔.

Упражнение 10.2. Убедитесь, что единичный элемент 𝑒 ∈ 𝐺 единствен.

Если группа 𝐺 конечна, число элементов в ней обозначается |𝐺| и называется порядком груп-
пы 𝐺. Подмножество 𝐻 ⊂ 𝐺 называется подгруппой, если оно образует группу относительно
имеющейся в 𝐺 композиции. Для этого достаточно, чтобы вместе с каждым элементом ℎ ∈ 𝐻
в 𝐻 лежал и обратный к нему элемент ℎ−1, а вместе с каждой парой элементов ℎ1, ℎ2 ∈ 𝐻—их
произведение ℎ1ℎ2. Единичный элемент 𝑒 ∈ 𝐺 автоматически окажется в 𝐻, т. к. 𝑒 = ℎℎ−1 для
произвольного ℎ ∈ 𝐻.

Упражнение 10.3. Проверьте, что пересечение любого множества подгрупп является подгруп-
пой.

Пример 10.1 (группы преобразований)

Модельными примерами групп являются группы преобразований, обсуждавшиеся нами в n∘ 0.6.
Все взаимно однозначные отображения произвольного множества 𝑋 в себя очевидно образуют
группу. Она обозначается Aut𝑋 и называется группой автоморфизмов множества𝑋. Подгруппы
𝐺 ⊂ Aut𝑋 называются группами преобразований множества 𝑋. Для 𝑔 ∈ 𝐺 и 𝑥 ∈ 𝑋 мы часто бу-
дем сокращать обозначение 𝑔(𝑥) до 𝑔𝑥. Группа всех автоморфизмов 𝑛-элементного множества
𝑋 = {1, … , 𝑛} называется 𝑛-той симметрической группой и обозначается 𝑆𝑛. Порядок |𝑆𝑛| = 𝑛!.
Чётные перестановки образуют в 𝑆𝑛 подгруппу, обозначаемую 𝐴𝑛 и часто называемую знакопе-
ременной группой. Порядок |𝐴𝑛| = 𝑛!∕2.

10.1.1. Циклические группы и подгруппы. Наименьшая по включению подгруппа в 𝐺, со-
держащая заданный элемент 𝑔 ∈ 𝐺, состоит из всевозможных целых степеней 𝑔𝑚 элемента 𝑔,
где мы, как обычно, полагаем 𝑔0 ≝ 𝑒 и 𝑔−𝑛 ≝ (𝑔−1)

𝑛
. Она называется циклической подгруппой,

порождённой 𝑔, и обозначается ⟨𝑔⟩. Группа ⟨𝑔⟩ абелева и является образом сюрьективного го-
моморфизма абелевых групп 𝜑𝑔 ∶ ℤ ↠ ⟨𝑔⟩, 𝑚 ↦ 𝑔𝑚, который переводит сложение в компо-
зицию. Если ker𝜑𝑔 ≠ 0, то ker𝜑𝑔 = (𝑛) и ⟨𝑔⟩ ≃ ℤ∕ (𝑛), где 𝑛 ∈ ℕ — наименьшая степень,
для которой 𝑔𝑛 = 𝑒. Она называется порядком элемента 𝑔 и обозначается ord(𝑔). В этом случае
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168 §10 Группы

группа ⟨𝑔⟩ имеет порядок1 𝑛 = ord𝑔 и состоит из элементов 𝑒 = 𝑔0, 𝑔 = 𝑔1, 𝑔2, … , 𝑔𝑛−1.
Если ker𝜑𝑔 = 0, то 𝜑𝑔 ∶ ℤ ⥲ ⟨𝑔⟩ является изоморфизмом и все степени 𝑔𝑚 попарно различны.
В этом случае говорят, что 𝑔 имеет бесконечный порядок и пишут ord𝑔 = ∞.

Напомним2, что группа 𝐺 называется циклической, если в ней есть такой элемент 𝑔 ∈ 𝐺,
что все элементы группы являются его целыми степенями, т. е. 𝐺 = ⟨𝑔⟩. Элемент 𝑔 называется
в этом случае образующей циклической группы 𝐺. Например, аддитивная группа целых чисел ℤ
циклическая, и её образующей является любой из элементов ±1. Согласно сл. 2.3 на стр. 52,
всякая конечная подгруппа мультипликативной группы любого поля циклическая. Аддитивная
группа вычетовℤ∕(10) тоже циклическая, и её образующей является любой из четырёх классов3

[±1]6, [±3]6.
Упражнение 10.4. Укажите необходимые и достаточные условия для того, чтобы конечно по-

рождённая абелева группа4 𝐺 = ℤ𝑟 ⊕ ℤ∕(𝑝𝑛11 ) ⊕ … ⊕ ℤ∕(𝑝𝑛𝛼𝛼 ) была циклической.

Лемма 10.1

Элемент ℎ = 𝑔𝑘 тогда и только тогда является образующей циклической группы ⟨𝑔⟩ порядка 𝑛,
когда нод(𝑘, 𝑛) = 1.

Доказательство. Так как ⟨ℎ⟩ ⊂ ⟨𝑔⟩, равенство ⟨ℎ⟩ = ⟨𝑔⟩ равносильно неравенству ord ℎ ⩾ 𝑛.
Если ℎ𝑚 = 𝑔𝑚𝑘 = 𝑒, то 𝑛 ∣ 𝑚𝑘. При нод(𝑛, 𝑘) = 1 мы заключаем, что 𝑛 ∣ 𝑚, откуда 𝑚 ⩾ 𝑛 и,
в частности, ord ℎ ⩾ 𝑛. Если же 𝑛 = 𝑛1𝑑 и 𝑘 = 𝑘1𝑑, где 𝑑 > 1, то ℎ𝑛1 = 𝑔𝑘𝑛1 = 𝑔𝑛𝑘1 = 𝑒 и
ord ℎ ⩽ 𝑛1 < 𝑛. □

10.1.2. Разложение перестановок в композиции циклов. Перестановка 𝜏 ∈ 𝑆𝑛 по кругу
переводящая друг в друга какие-нибудь𝑚 различных элементов5

𝑖1 ↦ 𝑖2 ↦ … ↦ 𝑖𝑚−1 ↦ 𝑖𝑚 ↦ 𝑖1 (10-5)

и оставляющая на месте все остальные элементы, называется циклом длины𝑚.

Упражнение 10.5.Покажите, что𝑘-тая степень цикла длины𝑚 является циклом тогдаи только
тогда, когда нод(𝑘,𝑚) = 1.

Цикл (10-5) часто бывает удобно обозначать 𝜏 = |𝑖1, … , 𝑖𝑚⟩, не смотря на то, что один и тот же
цикл (10-5) допускает𝑚 различных таких записей, получающихся друг из друга циклическими
перестановками элементов.

Упражнение 10.6. Сколько имеется в 𝑆𝑛 различных циклов длины 𝑘?

Теорема 10.1

Каждая перестановка 𝑔 ∈ 𝑆𝑛 является композицией 𝑔 = 𝜏1 … 𝜏𝑘 непересекающихся и, стало
быть, попарно коммутирующих друг с другом циклов, причём такое разложение единственно с
точностью до перестановки циклов.

1Таким образом, порядок элемента равен порядку порождённой им циклической подгруппы.
2См. n∘ 2.5.1 на стр. 51.
3Обратите внимание, что никакой из шести оставшихся классов образующей не являются.
4См. теор. 7.1 на стр. 119.
5Числа 𝑖1, … , 𝑖𝑚 могут быть любыми, не обязательно соседними или возрастающими.
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Доказательство. Поскольку множество 𝑋 = {1, … , 𝑛} конечно, в последовательности

𝑥
𝑔

⟼ 𝑔(𝑥)
𝑔

⟼ 𝑔2(𝑥)
𝑔

⟼ 𝑔3(𝑥)
𝑔

⟼ … , (10-6)

возникающей при применении 𝑔 к произвольной точке 𝑥 ∈ 𝑋, случится повтор. Так как пре-
образование 𝑔∶ 𝑋 ⥲ 𝑋 биективно, первым повторившимся элементом будет стартовый эле-
мент 𝑥. Таким образом, каждая точка 𝑥 ∈ 𝑋 под действием 𝑔 движется по циклу. В силу биек-
тивности 𝑔 два таких цикла, проходящие через различные точки 𝑥 и 𝑦, либо не пересекаются,
либо совпадают. Таким образом, перестановка 𝑔 является произведением непересекающихся
циклов, очевидно, перестановочных друг с другом. □

Упражнение 10.7. Покажите, что два цикла 𝜏1, 𝜏2 ∈ 𝑆𝑛 перестановочны ровно в двух случа-
ях: когда они не пересекаются или когда 𝜏2 = 𝜏𝑠1 и оба цикла имеют одинаковую длину,
взаимно простую с 𝑠.

Определение 10.1 (цикловой тип перестановки)

Написанныйвпорядкенестрогого убываниянабордлиннепересекающихсяциклов1, в которые
раскладывается перестановка 𝑔 ∈ 𝑆𝑛, называется цикловым типом перестановки 𝑔 и обозна-
чается 𝜆(𝑔).

Цикловой тип перестановки 𝑔 ∈ 𝑆𝑛 удобно изображать 𝑛-клеточной диаграммойЮнга, а сами
циклы записывать по строкам этой диаграммы. Например, перестановка

𝑔 = (6, 5, 4, 1, 8, 3, 9, 2, 7) = |1, 6, 3, 4⟩ |2, 5, 8⟩ |7, 9⟩ =
1 6 3 4
2 5 8
7 9

имеет цикловой тип , т. е. 𝜆(6, 5, 4, 1, 8, 3, 9, 2, 7) = (4, 3, 2). Единственной переста-

новкой циклового типа 𝜆 = (1, … , 1) (один столбец высоты 𝑛) является тождественная пере-
становка Id. Диаграмму 𝜆 = (𝑛) (одна строка длины 𝑛) имеют (𝑛 − 1)! циклов максимальной
длины 𝑛.

Упражнение 10.8. Сколько перестановок в симметрической группе 𝑆𝑛 имеют заданный цик-
ловой тип, содержащий для каждого 𝑖 = 1, … , 𝑛 ровно𝑚𝑖 циклов длины 𝑖?

Пример 10.2 (вычисление порядка и знака перестановки)

Порядок перестановки 𝑔 ∈ 𝑆𝑛 равен наименьшему общему кратному длин непересекающихся
циклов, из которых она состоит. Например, порядок перестановки

(3, 12, 7, 9, 10, 4, 11, 1, 6, 2, 8, 5) = |1, 3, 7, 11, 8⟩ |2, 12, 5, 10⟩ |4, 9, 6⟩ ∈ 𝑆12

равен 5 ⋅ 4 ⋅ 3 = 60. По правилу ниточек из прим. 8.1 на стр. 128 знак цикла длины 𝓁 равен
(−1)𝓁−1. Поэтому перестановка чётна тогда и только тогда, когда у неё чётное число циклов
чётной длины.

Упражнение 10.9. Найдите чётность 𝑔 = (6, 5, 4, 1, 8, 3, 9, 2, 7) ∈ 𝑆9 и вычислите 𝑔15.

1Включая циклы длины один, отвечающие элементам, которые перестановка оставляет на месте.



170 §10 Группы

10.2. Группы фигур. Для любой фигуры 𝛷 в евклидовом1 пространстве ℝ𝑛 биективные отоб-
ражения 𝛷 → 𝛷 индуцированные ортогональными2 линейными преобразованиями простран-
стваℝ𝑛, переводящимифигуру𝛷 в себя, образуют группу преобразований фигуры𝛷. Эта груп-
па называется полной группой фигуры 𝛷 и обозначается O𝛷. Подгруппу SO𝛷 ⊂ O𝛷, состоящую
из биекций, индуцированных собственными3 ортогональными операторами ℝ𝑛 → ℝ𝑛, мы бу-
дем называть собственной группой фигуры 𝛷. Если фигура 𝛷 ⊂ ℝ𝑛 содержится в некоторой
гиперплоскости 𝛱 ⊂ ℝ𝑛, то собственная группа фигуры 𝛷 совпадает с полной: беря компо-
зицию любого несобственного движения из группы фигуры с отражением в плоскости 𝛱, мы
получаем собственное движение, которое действует на фигуру 𝛷 точно также, как и исходное
несобственное движение.

Упражнение 10.10. Изготовьте модели пяти платоновых тел — тетраэдра, октаэдра, куба, до-
декаэдра и икосаэдра, см. рис. 10⋄5 – рис. 10⋄8 на стр. 172 – 173.

Пример 10.3 (группы диэдров 𝐷𝑛)

Группа правильного плоского 𝑛-угольника, лежащего в пространстве ℝ3 так, что его центр на-
ходится в нуле, обозначается 𝐷𝑛 и называется 𝑛-той группой диэдра. Простейший диэдр— дву-
угольник — возникает при 𝑛 = 2. Его можно представлять себе как вытянутую симметричную
луночку с двумя сторонами, изображённую на рис. 10⋄1. Группа 𝐷2 такой луночки совпадает с
группами описанного вокруг неё прямоугольника и вписанного в неё ромба4. Она состоит из
тождественного отображения и трёх поворотов на 180∘ вокруг перпендикулярных друг другу
осей, одна из которых проходит через вершины луночки, другая — через середины её сторон, а
третья перпендикулярна плоскости луночки и проходит её центр.

1

2 3
𝜎23

𝜎31𝜎12

𝜏−1

𝜏

Рис. 10⋄1. Двуугольник 𝐷2. Рис. 10⋄2. Группа треугольника.

Упражнение 10.11. Убедитесь, что 𝐷2 ≃ ℤ∕(2) ⊕ ℤ∕(2).

1Напомню, что евклидовость означает фиксацию в векторном пространстве ℝ𝑛 симметричного би-
линейного положительного скалярного произведения 𝑉 × 𝑉 → ℝ, обозначаемого (𝑣,𝑤), см. лекцию
http://http://gorod.bogomolov-lab.ru//ps/stud/geom_ru/2122/lec_03.pdf.

2Линейный оператор 𝐹∶ ℝ𝑛 → ℝ𝑛 на евклидовом пространствеℝ𝑛 называется ортогональным, если
он сохраняет скалярное произведение, т. е. ∀ 𝑣,𝑤 ∈ ℝ𝑛 (𝐹𝑣,𝐹𝑤) = (𝑣,𝑤) (достаточно, чтобы это ра-
венство выполнялось при 𝑣 = 𝑤), см. лекцию http://http://gorod.bogomolov-lab.ru//ps/stud/geom_ru/
2122/lec_11.pdf.

3Т. е. сохраняющими ориентацию или, что то же самое, с определителем 1, см. раздел 10.2.1 на стр.
133 лекции http://gorod.bogomolov-lab.ru/ps/stud/geom_ru/2122/lec_10.pdf.

4Мы предполагаем, что луночка такова, что оба они не квадраты.

http://http://gorod.bogomolov-lab.ru//ps/stud/geom_ru/2122/lec_03.pdf
http://http://gorod.bogomolov-lab.ru//ps/stud/geom_ru/2122/lec_11.pdf
http://http://gorod.bogomolov-lab.ru//ps/stud/geom_ru/2122/lec_11.pdf
http://gorod.bogomolov-lab.ru/ps/stud/geom_ru/2122/lec_10.pdf
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Следующая диэдральная группа— группа треугольника𝐷3 —состоит из шести движений: тож-
дественного, двух поворотов 𝜏, 𝜏−1 на ±120∘ вокруг центра треугольника и трёх осевых сим-
метрий 𝜎𝑖𝑗 относительно его медиан (см. рис. 10⋄2). Так как движение плоскости однозначно
задаётся своим действием на вершины треугольника, группа треугольника𝐷3 изоморфна груп-
пе перестановок 𝑆3 его вершин. При этом повороты на ±120∘ отождествляются с циклически-
ми перестановками (2, 3, 1), (3, 1, 2), а осевые симметрии— с транспозициями 𝜎23 = (1, 3, 2),
𝜎13 = (3, 2, 1), 𝜎12 = (2, 1, 3). Поскольку движение плоскости, переводящее в себя правильный
𝑛-угольник, однозначно определяется своим действием на аффинный репер, образованный ка-
кой-нибудь вершиной и примыкающей к ней парой сторон, группа диэдра𝐷𝑛 при каждом 𝑛 ⩾ 2
состоит из 2𝑛 движений: выбранную вершину можно перевести в любую из 𝑛 вершин, после
чего одним из двух возможных способов совместить рёбра. Эти 2𝑛 движений суть 𝑛 поворотов
вокруг центра многоугольника на углы1 2𝜋𝑘∕𝑛 с 𝑘 = 0, 1, … , (𝑛− 1) и 𝑛 осевых симметрий2 от-
носительно прямых, проходящих при нечётном 𝑛 через вершину и середину противоположной
стороны, а при чётном 𝑛 — через пары противоположных вершин и через середины противо-
положных сторон (cм. рис. 10⋄3).

Рис. 10⋄3. Оси диэдров 𝐷4, 𝐷5 и 𝐷6.

Упражнение 10.12. Составьте таблицы умножения в группах𝐷3,𝐷4 и𝐷5, аналогичные таблице
из форм. (0-23) на стр. 13.

Пример 10.4 (группа тетраэдра)

Поскольку каждое движение трёхмерного евклидова пространстваℝ3 однозначно задаётся сво-
им действием на вершины правильного тетраэдра и это действие может быть произвольным,
полная группа правильного тетраэдра с центром в нуле изоморфна группе 𝑆4 перестановок его
вершин и состоит из 24 движений. Собственная группа состоит из 12 = 4 ⋅ 3 движений: пово-
рот тетраэдра однозначно задаётся своим действиемна аффинныйрепер, образованный какой-
нибудь вершиной и тремя выходящими из неё рёбрами, и может переводить эту вершину в лю-
бую из четырёх вершин, после чего остаются ровно три возможности для совмещения рёбер,
сохраняющего ориентацию пространства. Полный список всех собственных движений тетра-
эдра таков: тождественное, 4⋅2 = 8 поворотов на углы±120∘ вокруг прямых, проходящих через
вершину и центр противоположной грани, а также 3 поворота на 180∘ вокруг прямых, проходя-
щих через серединыпротивоположныхрёбер. В несобственной группе, помимоперечисленных
поворотов, имеется 6 отражений 𝜎𝑖𝑗 в плоскостях, проходящих через середину ребра [𝑖, 𝑗] и про-
тивоположное ребро, см. рис. 10⋄4.

1При 𝑘 = 0 получается тождественное преобразование.
2Или, что то же самое, поворотов на 180∘ в пространстве.
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При изоморфизме с 𝑆4 отражение 𝜎𝑖𝑗 переходит в транспозицию букв 𝑖 и 𝑗, повороты на

Рис. 10⋄4. Зеркало
отражения 𝜎12 и ось поворота

на 180∘.

±120∘, представляющие собой всевозможные композиции 𝜎𝑖𝑗𝜎𝑗𝑘 с попарно разными 𝑖, 𝑗, 𝑘, пе-
реходят в циклические перестановки букв 𝑖, 𝑗, 𝑘, три вращения на 180∘ относительно осей, со-
единяющих середины противоположных рёбер, — в одновре-
менные транспозиции непересекающихся пар букв: 𝜎12𝜎34 =
= (2, 1 , 4, 3), 𝜎13𝜎24 = (3, 4 , 1, 2), 𝜎14𝜎23 = (4, 3 , 2, 1).

Упражнение 10.13. Убедитесь, что вместе с тождественным
преобразованием эти три поворота образуют группу дву-
угольника 𝐷2.

Оставшиесяшесть несобственных преобразований тетраэдра
отвечаютшести циклическим перестановкам вершин |1234⟩,
|1243⟩, |1324⟩, |1342⟩, |1423⟩, |1432⟩ и реализуются поворо-
тами на ±90∘ относительно прямых, проходящих через сере-
дины противоположных рёбер с последующим отражением в
плоскости, проходящей через центр тетраэдра и перпендику-
лярной оси поворота.

Упражнение 10.14. Выразите эти 6 движений через отраже-
ния 𝜎𝑖𝑗.

Пример 10.5 (группа додекаэдра)

Как и для тетраэдра, всякое вращение додекаэдра однозначно задаётся своим действием на аф-
финный репер, образованный вершиной и тремя выходящимииз неё рёбрами, иможет перево-
дить эту вершину в любую из 20 вершин, а затем тремя способами совмещать рёбра с сохране-
ниемориентации.Поэтому собственная группа додекаэдра (см. рис. 10⋄5) состоитиз20⋅3 = 60
движений: 6⋅4 = 24поворотов на углы 2𝜋𝑘∕5, 1 ⩽ 𝑘 ⩽ 4, вокруг осей, проходящих через центры
противоположных граней додекаэдра, 10 ⋅2 = 20 поворотов на углы ±2𝜋∕3 вокруг осей, прохо-
дящих через противоположные вершины, 15 поворотов на 180∘ вокруг осей, проходящих через
середины противоположных рёбер, и тождественного преобразования. Полная группа додека-
эдра состоит из 20 ⋅ 6 = 120 движений и помимо перечисленных 60 поворотов содержит их
композиции с центральной симметрией относительно центра додекаэдра.

Рис. 10⋄5. Додекаэдр. Рис. 10⋄6. Икосаэдр.

Упражнение 10.15. Покажите что полные группы куба, октаэдра и икосаэдра состоят, соответ-
ственно из 48, 48 и 120 движений, а собственные— из 24, 24 и 60 поворотов.
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10.3. Гомоморфизмы групп. Отображение групп 𝜑∶ 𝐺1 → 𝐺2 называется гомоморфизмом, ес-
ли оно переводит композицию в композицию, т. е. для любых𝑔, ℎ ∈ 𝐺1 в группе𝐺2 выполняется
соотношение 𝜑(𝑔ℎ) = 𝜑(𝑔)𝜑(ℎ). Термины эпиморфизм, мономорфизм и изоморфизм примени-
тельно к отображению групп всегда подразумевают по умолчанию, что это отображение явля-
ется гомоморфизмом групп.

Упражнение 10.16. Убедитесь, что композиция гомоморфизмов тоже является гомоморфиз-
мом.

Рис. 10⋄7. Куб. Рис. 10⋄8. Октаэдр.

Каждый гомоморфизм групп 𝜑∶ 𝐺1 → 𝐺2 переводит единицу 𝑒1 группы 𝐺1 в единицу 𝑒2 груп-
пы 𝐺2: равенство 𝜑(𝑒1) = 𝑒2 получается из равенств 𝜑(𝑒1)𝜑(𝑒1) = 𝜑(𝑒1𝑒1) = 𝜑(𝑒1) умноже-
нием правой и левой части на 𝜑(𝑒1)−1. Кроме того, для любого 𝑔 ∈ 𝐺 выполняется равенство
𝜑(𝑔−1) = 𝜑(𝑔)−1, так как 𝜑(𝑔−1)𝜑(𝑔) = 𝜑(𝑔−1𝑔) = 𝜑(𝑒1) = 𝑒2. Поэтому образ

im𝜑 ≝ 𝜑(𝐺1) ⊂ 𝐺2

гомоморфизма групп является подгруппой группы 𝐺2. Полный прообраз единицы 𝑒2 ∈ 𝐺2 назы-
вается ядром гомоморфизма 𝜑 и обозначается

ker𝜑 ≝ 𝜑−1 (𝑒2) = {𝑔 ∈ 𝐺1 | 𝜑(𝑔1) = 𝑒2} .

Это подгруппа в 𝐺1, поскольку равенства 𝜑(𝑔) = 𝜑(ℎ) = 𝑒2 влекут равенства

𝜑(𝑔ℎ) = 𝜑(𝑔)𝜑(ℎ) = 𝑒2𝑒2 = 𝑒2 и 𝜑(𝑔−1) = 𝜑(𝑔)−1 = 𝑒−1
2 = 𝑒2 .

Предложение 10.1

Для любого гомоморфизма групп 𝜑∶ 𝐺1 → 𝐺2 и каждого 𝑔 ∈ 𝐺1 выполняются равенства

𝜑−1(𝜑(𝑔)) = 𝑔(ker𝜑) = (ker𝜑)𝑔 , где

𝑔(ker𝜑) ≝ {𝑔ℎ | ℎ ∈ ker𝜑} и (ker𝜑)𝑔 ≝ {ℎ𝑔 | ℎ ∈ ker𝜑} .

В частности, все непустые слои 𝜑 находится в биекции с ker𝜑.

Доказательство. Если 𝜑(𝑡) = 𝜑(𝑔), то 𝜑(𝑡𝑔−1) = 𝜑(𝑡)𝜑(𝑔)−1 = 𝑒 и 𝜑(𝑔−1𝑡) = 𝜑(𝑔)−1𝜑(𝑡) = 𝑒,
т. е. 𝑡𝑔−1 ∈ ker𝜑 и 𝑔−1𝑡 ∈ ker𝜑. Поэтому 𝑡 ∈ (ker𝜑)𝑔 и 𝑡 ∈ 𝑔(ker𝜑). Наоборот, для всех
ℎ ∈ ker𝜑 выполняются равенства 𝜑(ℎ𝑔) = 𝜑(ℎ)𝜑(𝑔) = 𝜑(𝑔) и 𝜑(𝑔ℎ) = 𝜑(𝑔)𝜑(ℎ) = 𝜑(𝑔). Тем
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самым, полный прообраз𝜑−1(𝜑(𝑔)) элемента𝜑(𝑔) совпадает и с (ker𝜑)𝑔, и с𝑔(ker𝜑), а (ker𝜑)𝑔
и 𝑔(ker𝜑) совпадают друг с другом. Взаимно обратные биекции

(ker𝜑)𝑔
𝑡↦𝑡𝑔−1

,,
ker𝜑

ℎ↦𝑔ℎ
--

ℎ𝑔↤ℎ
mm 𝑔(ker𝜑)

𝑔−1𝑡↤𝑡
ll

между ядром и слоем𝜑−1(𝜑(𝑔)) = (ker𝜑)𝑔 = 𝑔(ker𝜑) задаются правым и левым умножениями
элементов ядра на 𝑔, а элементов слоя — на 𝑔−1. □

Следствие 10.1

Для того, чтобы гомоморфизм групп 𝜑∶ 𝐺1 → 𝐺2 был инъективен, необходимо и достаточно,
чтобы его ядро исчерпывалось единичным элементом. □

Следствие 10.2

Для любого гомоморфизма конечных групп 𝜑∶ 𝐺1 → 𝐺2 выполнено равенство

| im(𝜑)| = |𝐺1|∕| ker(𝜑)| . (10-7)

В частности, | ker𝜑| и | im𝜑| делят |𝐺1|. □

Пример 10.6 (знакопеременные группы)

Согласно сл. 8.2 на стр. 128 имеется мультипликативный гомоморфизм sgn∶ 𝑆𝑛 → {±1}, сопо-
ставляющий перестановке её знак. Ядро этого гомоморфизма ker sgn = 𝐴𝑛 представляет собою
группу чётных перестановок, имеющую порядок |𝐴𝑛| = 𝑛!∕2.

Пример 10.7 (линейные группы)

Все линейные автоморфизмы любого векторного пространства 𝑉 над произвольным полем 𝕜
образуют полную линейную группу GL(𝑉). В силу мультипликативности определителя1 отобра-
жение

det∶ GL(𝑉) → 𝕜× , 𝐹 ↦ det𝐹 , (10-8)

является гомоморфизмом полной линейной группы в мультипликативную группу 𝕜× поля 𝕜.
Его ядро называется специальной линейной группой и обозначается

SL(𝑉) = ker det = {𝐹∶ 𝑉 ⥲ 𝑉 det𝐹 = 1} .

Если поле 𝕜 = 𝔽𝑞 состоит из 𝑞 элементов и dim𝑉 = 𝑛, полная линейная группа конечна и

|GL𝑛(𝔽𝑞)| = (𝑞𝑛 − 1)(𝑞𝑛 − 𝑞)(𝑞𝑛 − 𝑞2) … (𝑞𝑛 − 𝑞𝑛−1) ,

Упражнение 10.17. Убедитесь в этом.

Так как гомоморфизм (10-8) сюрьективен2 порядок специальной линейной группы

|SL𝑛(𝔽𝑞)| = |GL𝑛(𝔽𝑞)|∕|𝕜×| = (𝑞𝑛 − 1)(𝑞𝑛 − 𝑞) … (𝑞𝑛 − 𝑞𝑛−1)
𝑞 − 1 .

1См. предл. 8.2 на стр. 133.
2Диагональный оператор 𝐹 с собственными числами (𝜆,1, … ,1) имеет det𝐹 = 𝜆.
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Пример 10.8 (проективные группы)

Напомню1, что с каждым векторным пространством 𝑉 ассоциировано проективное простран-

a

b

c

d

x

y

z

Рис. 10⋄9. Четырёхвешинник и
ассоциированный треугольник.

ство ℙ(𝑉), точками которого являются одномерные векторные подпространства в 𝑉 или, что
то же самое, классы пропорциональности ненулевых векторов в 𝑉. Каждый линейный опера-
тор 𝐹 ∈ GL(𝑉) корректно задаёт биекцию 𝐹∶ ℙ(𝑉) → ℙ(𝑉), переводящую класс вектора 𝑣 ≠ 0 в
класс вектора 𝐹(𝑣). Таким образом возникает гомоморфизм 𝐹 ↦ 𝐹 группыGL(𝑉) в группу биек-
тивных преобразований проективного пространства ℙ(𝑉). Образ этого гомоморфизма обозна-
чается PGL(𝑉)иназывается проективной линейной группой пространства𝑉. Из курса геометрии
известно, что два оператора 𝐹,𝐺 ∈ GL(𝑉) тогда и только тогда задают одинаковые преобразо-
вания 𝐹 = 𝐺 проективного пространства ℙ(𝑉), когда они пропорциональны, т. е. 𝐹 = 𝜆𝐺 для
некоторого 𝜆 ∈ 𝕜×. Поэтому ядром эпиморфизма групп

𝜋∶ GL(𝑉) ↠ PGL(𝑉) , 𝐹 ↦ 𝐹 (10-9)

является подгруппа гомотетий 𝛤 ≃ 𝕜×, состоящая из
скалярных диагональных операторов. Таким образом,
группа PGL(𝑉) образована классами пропорционально-
сти линейных операторов. Классы пропорционально-
сти операторов с единичным определителем образуют
в ней подгруппу, обозначаемую PSL(𝑉) ⊂ PGL(𝑉). Огра-
ничивая эпиморфизм (10-9) на SL(𝑉) ⊂ GL(𝑉) получаем
эпиморфизм

𝜋′ ∶ SL(𝑉) ↠ PSL(𝑉) , 𝐹 ↦ 𝐹 (10-10)

ядром которого является конечная мультипликативная
подгруппа 𝞵𝑛(𝕜) ⊂ 𝕜× содержащихся в поле 𝕜 корней
степени2 𝑛 = dim𝑉 = dimℙ(𝑉) + 1 из единицы.

Пример 10.9 (эпиморфизм 𝑆4 ↠ 𝑆3)

На проективной плоскости ℙ2 над любым полем 𝕜 с каждой четвёркой точек 𝑎, 𝑏, 𝑐, 𝑑, никакие
три из которых не коллинеарны связана фигура, образованная тремя парами проходящих через
эти точки прямых3

(𝑎𝑏) и (𝑐𝑑), (𝑎𝑐) и (𝑏𝑑), (𝑎𝑑) и (𝑏𝑐) (10-11)

и называемая четырёхвершинником, см. рис. 10⋄9. Пары прямых (10-11) называются противо-
положными сторонами четырёхвершинника. С четырёхвершинником 𝑎𝑏𝑐𝑑 ассоциирован тре-
угольник 𝑥𝑦𝑧 с вершинами в точках пересечения пар противоположных сторон

𝑥 = (𝑎𝑏) ∩ (𝑐𝑑), 𝑦 = (𝑎𝑐) ∩ (𝑏𝑑), 𝑧 = (𝑎𝑑) ∩ (𝑏𝑐) (10-12)

Каждая перестановка вершин 𝑎, 𝑏, 𝑐, 𝑑 однозначно определяет линейное проективное преобра-
зование4 плоскости, что даёт вложение 𝑆4 ↪ PGL3(𝕜). Преобразования из 𝑆4 переводят ассоци-

1Мы предполагаем, что читатель знаком с проективными пространствами и проективными преобра-
зованиями по курсу геометрии, см. лекции http://gorod.bogomolov-lab.ru/ps/stud/geom_ru/2122/lec_
16.pdf и http://gorod.bogomolov-lab.ru/ps/stud/geom_ru/2122/lec_17.pdf.

2Напомню, что по определению dimℙ(𝑉) ≝ dim𝑉 − 1.
3Они отвечают трём возможным способам разбить точки 𝑎,𝑏, 𝑐,𝑑 на две пары.
4Напомню, что каждое линейное проективное преобразование 𝐹 ∈ PGL(𝑉) однозначно определяется

своим действием на любые dim𝑉 + 1 точек пространства ℙ(𝑉), никакие dim𝑉 из которых не лежат в
одной гиперплоскости.

http://gorod.bogomolov-lab.ru/ps/stud/geom_ru/2122/lec_16.pdf
http://gorod.bogomolov-lab.ru/ps/stud/geom_ru/2122/lec_16.pdf
http://gorod.bogomolov-lab.ru/ps/stud/geom_ru/2122/lec_17.pdf
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ированныйтреугольник𝑥𝑦𝑧 в себя, переставляя его вершины𝑥,𝑦, 𝑧 согласноформулам (10-12).
Например, 3-цикл (𝑏, 𝑐, 𝑎,𝑑) ∈ 𝑆4 задаёт циклическую перестановку (𝑦, 𝑧, 𝑥), а транспозиции
(𝑏, 𝑎, 𝑐,𝑑), (𝑎, 𝑐, 𝑏,𝑑) и (𝑐, 𝑏, 𝑎,𝑑) дают транспозиции (𝑥, 𝑧, 𝑦), (𝑦, 𝑥, 𝑧) и (𝑧, 𝑦, 𝑥) соответственно.
Таким образом, мы получаем сюрьективный гомоморфизм 𝑆4 ↠ 𝑆3. Его ядро имеет порядок
4! ∕3! = 4 и состоит из тождественной перестановки и трёх пар независимых транспозиций
(𝑏, 𝑎,𝑑, 𝑐), (𝑐,𝑑, 𝑎, 𝑏), (𝑑, 𝑐, 𝑏, 𝑎).

Пример 10.10 (𝑆4 и собственная группа куба)

Линейные преобразования евклидова пространстваℝ3, составляющие собственную группу ку-
ба с центром в нуле, действуют на четырёх прямых 𝑎, 𝑏, 𝑐, 𝑑, соединяющих противоположные
вершины куба, а также на трёх прямых 𝑥, 𝑦, 𝑧, соединяющих центры его противоположных гра-
ней, см. рис. 10⋄10. На проективной плоскости ℙ2 = ℙ(ℝ3) эти 7 прямых становятся вершина-
ми четырёхвершинника 𝑎𝑏𝑐𝑑 и ассоциированного с ним треугольника 𝑥𝑦𝑧, как на рис. 10⋄9.
Поворот на 180∘ вокруг оси, соединяющей середины противоположных рёбер куба, меняет ме-
стами примыкающие к этому ребру диагонали и переводит в себя каждую их двух оставших-
ся диагоналей. Тем самым, вращения куба осуществляют транспозиции любых двух соседних
диагоналей, и мы имеем сюрьективный гомоморфизм SOкуб → 𝑆4. Так как обе группы име-
ют порядок 24, это изоморфизм. Он переводит 6 поворотов на ±90∘ вокруг прямых 𝑥, 𝑦, 𝑧 в 6
циклов длины 4 циклового типа , 3 поворота на 180∘ вокруг тех же прямых — в 3 па-
ры независимых транспозиций циклового типа , 8 поворотов на ±120∘ вокруг прямых 𝑎,
𝑏, 𝑐, 𝑑 — в 8 циклов длины 3 циклового типа , а 6 поворотов на 180∘ вокруг осей, прохо-
дящих через середины противоположных рёбер — в 6 простых транспозиций циклового типа

. Гомоморфизм SOкуб → 𝑆3, возникающий из действия группы куба на прямых 𝑥, 𝑦, 𝑧, со-
гласован с изоморфизмом SOкуб ⥲ 𝑆4 и эпиморфизмом 𝑆4 ↠ 𝑆3 из предыдущего прим. 10.9.
Его ядро состоит из собственных ортогональных преобразований евклидова пространства ℝ3,
переводящих в себя каждую из декартовых координатных осей 𝑥, 𝑦, 𝑧 в ℝ3, и совпадает, таким
образом, с группой двуугольника 𝐷2 с осями 𝑥, 𝑦, 𝑧. В таком контексте эту группу иногда на-
зывают четвертной группой Клейна и обозначают 𝑉4. Изоморфизм SOкуб ⥲ 𝑆4 переводит её в
ядро эпиморфизма 𝑆4 ↠ 𝑆3 из прим. 10.9.

Рис. 10⋄10. От куба к
четырёхвершиннику.

Рис. 10⋄11. Один из пяти кубов на
додекаэдре.

Пример 10.11 (собственная группа додекаэдра и 𝐴5)

Любая диагональ любой грани додекаэдра единственным образом достраивается до лежащего
на поверхности додекаэдра куба, образованного диагоналями граней так, что в каждой грани
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рисуется ровно одна диагональ1, как на рис. 10⋄11. Всего таких кубов на поверхности додека-
эдра имеется ровно пять, и они биективно соответствуют пяти диагоналям какой-нибудь фик-
сированной грани. Собственная группа додекаэдра переставляет эти кубы друг с другом, что
даёт гомоморфизм собственной группы додекаэдра в симметрическую группу 𝑆5

𝜓дод ∶ SOдод → 𝑆5 . (10-13)

Глядя намодель додекаэдра, легко видеть, что образами 20⋅3 = 60поворотов, из которых состо-
ит группа SOдод являются 60 чётных перестановок: тождественное преобразование додекаэдра
задаёт тождественную перестановку кубов; 6 ⋅ 4 = 24 поворота на углы 2𝜋𝑘∕5, 1 ⩽ 𝑘 ⩽ 4,
вокруг осей, проходящих через центры противоположных граней, переходят во всевозможные
циклы длины 5, т. е. в 24 перестановки циклового типа ; 10 ⋅ 2 = 20 поворотов на уг-
лы ±2𝜋∕3 вокруг осей, проходящих через противоположные вершины додекаэдра, переходят

во всевозможные циклы длины 3, т. е. в 20 перестановок циклового типа ; 15 поворотов

на 180∘ вокруг осей, проходящих через середины противоположных рёбер додекаэдра, перехо-
дят во всевозможные пары независимых транспозиций, т. е. в 10 перестановок циклового типа

. Таким образом, гомоморфизм (10-13) является изоморфизмом собственной группы доде-

каэдра со знакопеременной подгруппой 𝐴5 ⊂ 𝑆5. В отличие от прим. 10.4 переход от собствен-
ной группы додекаэдра к полной не добавляет новых перестановок кубов, поскольку каждое
несобственное движение является композицией собственного движения и центральной сим-
метрии, которая переводит каждый из кубов в себя.

Упражнение 10.18. Покажите, что симметрическая группа 𝑆5 не изоморфна полной группе до-
декаэдра.

10.4. Действие группы на множестве. Пусть 𝐺— группа, а 𝑋—множество. Обозначим через
Aut(𝑋) группу всех взаимно однозначных отображений из 𝑋 в себя. Гомоморфизм

𝜑∶ 𝐺 → Aut(𝑋)

называется действием группы 𝐺 на множестве 𝑋 или представлением группы 𝐺 автоморфиз-
мами множества 𝑋. Отображение 𝜑(𝑔)∶ 𝑋 → 𝑋, отвечающее элементу 𝑔 ∈ 𝐺 при действии 𝜑
часто бывает удобно обозначать через 𝜑𝑔 ∶ 𝑋 → 𝑋. Тот факт, что сопоставление 𝑔 ↦ 𝜑𝑔 яв-
ляется гомоморфизмом групп, означает, что 𝜑𝑔ℎ = 𝜑𝑔 ∘ 𝜑ℎ для всех 𝑔, ℎ ∈ 𝐺. Если понятно,
о каком действии идёт речь, мы часто будем сокращать 𝜑𝑔(𝑥) до 𝑔𝑥. При наличии действия
группы 𝐺 на множестве 𝑋 мы пишем 𝐺 ∶ 𝑋. Действие называется транзитивным, если любую
точку множества 𝑋 можно перевести в любую другую точку каким-нибудь преобразованием
из группы 𝐺, т. е. ∀ 𝑥, 𝑦 ∈ 𝑋 ∃𝑔 ∈ 𝐺 ∶ 𝑔𝑥 = 𝑦. Более общим образом, действие называется
𝑚-транзитивным, если любые два упорядоченных набора из𝑚 различных точек множества 𝑋
можно перевести друг в друга подходящими преобразованиями из 𝐺. Действие называется сво-
бодным, если каждый отличный от единицы элемент группы действует на 𝑋 без неподвижных
точек, т. е. ∀𝑔 ∈ 𝐺 ∀ 𝑥 ∈ 𝑋 𝑔𝑥 = 𝑥 ⇒ 𝑔 = 𝑒. Действие 𝜑∶ 𝐺 → Aut𝑋 называется точным (или

1Проще всего это увидеть на модели додекаэдра, которую я ещё раз настоятельно рекомендую изго-
товить — см. упр. 10.10 на стр. 170.
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эффективным), если каждый отличный от единицы элемент группы действует на 𝑋 не тожде-
ственно, т. е. когда ker𝜑 = 𝑒. Точное представление отождествляет𝐺 с группойпреобразований
𝜑(𝐺) ⊂ Aut(𝑋) множества 𝑋. Отметим, что любое свободное действие точно.

Если группа 𝐺 действует на множестве 𝑋, то она действует и на подмножествах множе-
ства 𝑋: элемент 𝑔 ∈ 𝐺 переводит подмножество𝑀 ⊂ 𝑋 в подмножество 𝑔𝑀 = {𝑔𝑚 | 𝑚 ∈ 𝑀}.
При этом отображение 𝑔∶ 𝑀 → 𝑔𝑀, 𝑥 ↦ 𝑔𝑥 биективно, и обратным к нему является отобра-
жение 𝑔−1 ∶ 𝑔𝑀 → 𝑔, ↦ 𝑔−1𝑦, ибо 𝑔−1𝑔𝑥 = 𝑒𝑥 = 𝑥. Говорят, что элемент 𝑔 ∈ 𝐺 нормализует1

подмножество 𝑀 ⊂ 𝑋, если 𝑔𝑀 = 𝑀, т. е. 𝑔𝑥 ∈ 𝑀 для каждого 𝑥 ∈ 𝑀. Каждый такой элемент
задаёт биекцию 𝑔|𝑀 ∶ 𝑀 → 𝑀. Если эта биекция тождественна, т. е. 𝑔𝑥 = 𝑥 для всех 𝑥 ∈ 𝑀,
то говорят, что элемент 𝑔 централизует подмножество 𝑀. Множество всех элементов 𝑔 ∈ 𝐺,
нормализующих (соотв. централизующих) данное подмножество 𝑀 ⊂ 𝑋 обозначается 𝑁(𝑀)
(соотв. 𝑍(𝑀)) и называется нормализатором (соотв. централизатором) подмножества 𝑀 ⊂ 𝑋
при заданном действии группы 𝐺 на 𝑋.

Упражнение 10.19. Убедитесь, что 𝑁(𝑀) и 𝑍(𝑀) являются подгруппами в 𝐺.

Пример 10.12 (регулярные действия)

Обозначим через 𝑋 множество элементов группы 𝐺, а через Aut(𝑋) — группу автоморфизмов
этого множества2. Отображение 𝜆∶ 𝐺 → Aut𝑋, переводящее элемент 𝑔 ∈ 𝐺 в преобразование3

𝜆𝑔 ∶ 𝑥 ↦ 𝑔𝑥 левого умножения на 𝑔 является гомоморфизмом групп, поскольку

𝜆𝑔ℎ(𝑥) = 𝑔ℎ𝑥 = 𝜆𝑔(ℎ𝑥) = 𝜆𝑔 (𝜆ℎ(𝑥)) = 𝜆𝑔 ∘ 𝜆ℎ (𝑥) .

Оно называется левым регулярным действием группы 𝐺 на себе. Так как равенство 𝑔ℎ = ℎ в
группе 𝐺 влечёт равенство 𝑔 = 𝑒, левое регулярное действие свободно и, в частности, точно.
Симметричным образом, правое регулярное действие 𝜚𝑔 ∶ 𝐺 → Aut(𝑋) сопоставляет элементу
𝑔 ∈ 𝐺 преобразование 𝑥 ↦ 𝑥𝑔−1 правого умножения на обратный4 к 𝑔 элемент.

Упражнение 10.20. Убедитесь, что 𝜚𝑔 является свободным действием.

Тем самым, любая абстрактная группа 𝐺 может быть реализована как группа преобразований
некоторого множества. Например, левые регулярные представления числовых групп реализу-
ют аддитивную группуℝ группой сдвигов 𝜆𝑣 ∶ 𝑥 ↦ 𝑥 + 𝑣 числовой прямой , а мультипликатив-
ную группу ℝ∗ — группой гомотетий 𝜆𝑐 ∶ 𝑥 ↦ 𝑐𝑥 проколотой прямой ℝ∗ = ℝ −{0}.

Пример 10.13 (присоединённое действие)

Отображение Ad∶ 𝐺 → Aut(𝐺), сопоставляющее элементу 𝑔 ∈ 𝐺 автоморфизм сопряжения
этим элементом

Ad𝑔 ∶ 𝐺 → 𝐺 , ℎ ↦ 𝑔ℎ𝑔−1 , (10-14)

называется присоединённым действием группы 𝐺 на себе.

1В этом случае также говорят, что подмножество𝑀 ⊂ 𝑋 является 𝑔-инвариантным.
2Возможно, не перестановочных с имеющейся в 𝐺 композицией, т. е. не обязательно являющихся ав-

томорфизмами группы 𝐺.
3Обратите внимание, что это преобразование множества 𝑋 не является гомоморфизмом группы 𝐺,

поскольку равенство 𝑔(ℎ1ℎ2) = (𝑔ℎ1)(𝑔ℎ2), вообще говоря, не выполняется.
4Появление 𝑔−1 не случайно: проверьте, что сопоставление элементу 𝑔 ∈ 𝐺 отображения правого

умножения на 𝑔 является не гомоморфизмом, а антигомоморфизмом (т. е. оборачивает порядок сомно-
жителей в произведениях).
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Упражнение 10.21. Убедитесь, что ∀𝑔 ∈ 𝐺 сопряжение (10-14) является гомоморфизмом из 𝐺
в 𝐺 и что отображение 𝑔 ↦ Ad𝑔 является гомоморфизмом из 𝐺 в Aut𝐺.

Образ присоединённого действия Ad(𝐺) ⊂ Aut𝐺 обозначается Int(𝐺) и называется группой
внутренних автоморфизмов группы 𝐺. Не лежащие в Int(𝐺) автоморфизмы группы 𝐺 называ-
ются внешними. В отличие от левого и правого регулярных действий присоединённое действие,
вообще говоря, не свободно и не точно. Например, если группа𝐺 абелева, все внутренние авто-
морфизмы (10-14) тождественные, и ядро присоединённого действия в этом случае совпадает
со всей группой. В общем случае ker(Ad) образовано такими 𝑔 ∈ 𝐺, что 𝑔ℎ𝑔−1 = ℎ для всех
ℎ ∈ 𝐺. Последнее равенство равносильно равенству 𝑔ℎ = ℎ𝑔 и означает, что 𝑔 коммутиру-
ет со всеми элементами группы. Подгруппа элементов, перестановочных со всеми элементами
группы 𝐺 называется центром группы 𝐺 и обозначается

𝑍(𝐺) = ker(Ad) = {𝑔 ∈ 𝐺 | ∀ ℎ ∈ 𝐺 𝑔ℎ = ℎ𝑔} .

Стабилизатор заданного элемента𝑔 ∈ 𝐺 вприсоединённомдействии состоитиз всех элементов
группы, коммутирующих с 𝑔. Он называется централизатором элемента 𝑔 и обозначается

𝑍(𝑔) = {ℎ ∈ 𝐺 | ℎ𝑔 = 𝑔ℎ} .

10.4.1. Орбиты. Со всякой группой преобразований 𝐺 множества 𝑋 связано бинарное от-
ношение 𝑦 ∼ 𝑥 на 𝑋, означающее, что 𝑦 = 𝑔𝑥 для некоторого 𝑔 ∈ 𝐺. Это отношение рефлек-
сивно, ибо 𝑥 = 𝑒𝑥, симметрично, поскольку 𝑦 = 𝑔𝑥 ⟺ 𝑥 = 𝑔−1𝑦, и транзитивно, т. к. из
равенств 𝑦 = 𝑔𝑥 и 𝑧 = ℎ𝑦 вытекает равенство 𝑧 = (ℎ𝑔)𝑥. Таким образом, это отношение яв-
ляется эквивалентностью. Класс эквивалентности точки 𝑥 ∈ 𝑋 состоит из всех точек, которые
можно получить из 𝑥, применяя всевозможные преобразования из группы 𝐺. Он обозначается
𝐺𝑥 = {𝑔𝑥 | 𝑔 ∈ 𝐺} и называется орбитой 𝑥 под действием 𝐺. Согласно n∘ 0.4 на стр. 10 мно-
жество 𝑋 распадается в дизъюнктное объединение орбит. Множество всех орбит называется
фактором множества 𝑋 по действию группы 𝐺 и обозначается 𝑋/𝐺. С каждой орбитой 𝐺𝑥 свя-
зано сюрьективное отображение1 множеств ev𝑥 ∶ 𝐺 ↠ 𝐺𝑥, 𝑔 ↦ 𝑔𝑥, слой которого над точкой
𝑦 ∈ 𝐺𝑥 состоит из всех преобразований группы 𝐺, переводящих 𝑥 в 𝑦. Он называется транспор-
тёром 𝑥 в 𝑦 и обозначается 𝐺𝑦𝑥 = {𝑔 ∈ 𝐺 | 𝑔𝑥 = 𝑦}. Слой над самой точкой 𝑥 состоит из всех
преобразований, оставляющих 𝑥 на месте. Он называется стабилизатором точки 𝑥 в группе 𝐺
и обозначается Stab𝐺(𝑥) = 𝐺𝑥𝑥 = {𝑔 ∈ 𝐺 | 𝑔𝑥 = 𝑥} или просто Stab(𝑥), если понятно, о какой
группе 𝐺 идёт речь.

Упражнение 10.22. Убедитесь, что Stab𝐺(𝑥) является подгруппой в группе 𝐺.
Если 𝑦 = 𝑔𝑥 и 𝑧 = ℎ𝑥, то для любого 𝑠 ∈ Stab(𝑥) преобразование ℎ𝑠𝑔−1 ∈ 𝐺𝑧𝑦. Наоборот,
если 𝑓𝑦 = 𝑧, то ℎ−1𝑓𝑔 ∈ Stab(𝑥). Таким образом, мы имеем обратные друг другу отображения
множеств:

Stab(𝑥)
𝑠↦ℎ𝑠𝑔−1

,, 𝐺𝑧𝑦 ,
ℎ−1𝑓𝑔↤𝑓

ll (10-15)

и стало быть, для любых трёх точек 𝑥, 𝑦, 𝑧 из одной 𝐺-орбиты имеется биекция между 𝐺𝑧𝑦 и
Stab(𝑥).

1При желании его можно воспринимать как «некоммутативное»отображения вычисления.
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Предложение 10.2 (формула для длины орбиты)

Длина орбиты произвольной точки 𝑥 при действии на неё конечной группы преобразований 𝐺
равна |𝐺𝑥| = |𝐺| ∶ |Stab𝐺(𝑥)|. В частности, длины всех орбит и порядки стабилизаторов всех
точек являются делителями порядка группы.

Доказательство. Группа 𝐺 является дизъюнктным объединением множеств 𝐺𝑦𝑥 по всем 𝑦 ∈ 𝐺𝑥
и согласно предыдущему все эти множества состоят из |Stab(𝑥)| элементов. □

Предложение 10.3

Стабилизаторы всех точек, лежащих в одной орбите конечной группы, сопряжены:

𝑦 = 𝑔𝑥 ⇒ Stab(𝑦) = 𝑔 Stab(𝑥)𝑔−1 = {𝑔ℎ𝑔−1 | ℎ ∈ Stab(𝑥)} .

В частности, все они имеют одинаковый порядок.

Доказательство. Это сразу следует из диаграммы (10-15). □

Пример 10.14 (действие перестановок букв на словах)

Зафиксируем какой-нибудь 𝑘-буквенный алфавит 𝐴 = {𝑎1, … , 𝑎𝑘} и рассмотрим множество 𝑋
всех 𝑛-буквенных слов 𝑤, которые можно написать с его помощью. Иначе 𝑋 можно восприни-
мать как множество всех отображений 𝑤∶ {1, … , 𝑛} → 𝐴. Сопоставим каждой перестановке
𝜎 ∈ 𝑆𝑛 преобразование 𝑤 ↦ 𝑤𝜎−1, которое переставляет буквы в словах так, как предписы-
вает1 𝜎. Таким образом, мы получили действие симметрической группы 𝑆𝑛 на множестве слов.
Орбита слова 𝑤 ∈ 𝑋 под действием этой группы состоит из всех слов, где каждая буква алфа-
вита встречается столько же раз, сколько в слове 𝑤. Стабилизатор Stab(𝑤) слова 𝑤, в котором
буква 𝑎𝑖 встречается 𝑚𝑖 раз (для каждого 𝑖 = 1, … , 𝑘), состоит из перестановок между собою
одинаковых букв и имеет порядок |Stab(𝑤)| = 𝑚1! …𝑚𝑘!. Тем самым, длина орбиты такого
слова равна мультиномиальному коэффициенту

|𝑆𝑛𝑤| = |𝑆𝑛|
|Stab(𝑤)| = 𝑛!

𝑚1! …𝑚𝑘! = (
𝑛

𝑚1 …𝑚𝑘) .

Этот пример показывает, что разные орбиты могут иметь разную длину, и порядки стабилиза-
торов точек из разных орбит могут быть разными.

Упражнение 10.23. Для каждого из пяти платоновых тел рассмотрите действие группы этого
тела на его гранях и по формуле для длины орбиты найдите порядок собственной и несоб-
ственной группы каждого из платоновых тел.

Пример 10.15 (классы сопряжённости в симметрической группе)

Перестановка Ad𝑔(𝜎) = 𝑔𝜎𝑔−1, сопряжённая перестановке 𝜎 = (𝜎1, … ,𝜎𝑛) ∈ 𝑆𝑛, для каж-
дого 𝑖 = 1, 2, … , 𝑛 переводит элемент 𝑔(𝑖) в элемент 𝑔(𝜎𝑖). Поэтому при сопряжении цикла
𝜏 = |𝑖1, … , 𝑖𝑘⟩ ∈ 𝑆𝑛 перестановкой 𝑔 = (𝑔1, … ,𝑔𝑛) получится цикл 𝑔𝜏𝑔−1 = |𝑔𝑖1 , … ,𝑔𝑖𝑘⟩. Если
перестановка 𝜎 ∈ 𝑆𝑛 имеет цикловой тип 𝜆 и является произведением независимых циклов,
записанных по строкам диаграммы 𝜆, то действие на такую перестановку внутреннего авто-
морфизма Ad𝑔 заключается в применении отображения 𝑔 к заполнению диаграммы 𝜆, т. е. в
замене каждого числа 𝑖 числом 𝑔𝑖.

1Т. е. переводит слово 𝑤 = 𝑎𝜈1 …𝑎𝜈𝑛 в слово 𝑎𝜈𝜎−1 (1)
𝑎𝜈𝜎−1 (2)

… 𝑎𝜈𝜎−1 (𝑛)
, на 𝑖-том месте которого стоит

та буква, номер которой в исходном слове𝑤 переводится перестановкой 𝜎 в номер 𝑖.
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Таким образом, орбиты присоединённого действия симметрической группы 𝑆𝑛 на себе вза-
имно однозначно соответствуют 𝑛-клеточным диаграммам Юнга, и орбита, отвечающая диа-
грамме 𝜆, состоит из всех перестановок циклового типа 𝜆. Если диаграмма 𝜆 имеет 𝑚𝑖 строк
длины 𝑖 для каждого 𝑖 = 1, … , 𝑛, то централизатор любой перестановки 𝜎 циклового типа 𝜆 со-
стоит из таких перестановок элементов заполнения диаграммы 𝜆 независимыми циклами пе-
рестановки 𝜎, которые не меняют 𝜎, т. е. циклически переставляют элементы вдоль строк или
произвольным образом переставляют строки одинаковой длины между собой как единое це-
лое. Тем самым, порядок стабилизатора перестановки циклового типа 𝜆 зависит только от 𝜆 и
равен 𝑧𝜆 = 1𝑚1 ⋅𝑚1!⋅2𝑚2 ⋅𝑚2!⋅…⋅𝑛𝑚𝑛 ⋅𝑚𝑛! = ∏𝑛

𝑖=1𝑚𝑖! 𝑖𝑚𝑖 . Количество перестановок циклового
типа 𝜆, т. е. длина соответствующей орбиты присоединённого действия, равна 𝑛!∕𝑧𝜆.

10.4.2. Перечисление орбит. Подсчёт числа элементов в факторе 𝑋/𝐺 конечного множе-
ства𝑋 по действию конечной группы𝐺 наталкивается на очевидную трудность: поскольку дли-
ны у орбит могут быть разные, число орбит «разного типа» придётся подсчитывать по отдель-
ности, заодно уточняя по ходу дела, что именно имеется в виду под «типом орбиты». Разом пре-
одолеть обе эти трудности позволяет

Теорема 10.2 (формула Полиа – Бернсайда)

Пусть конечная группа 𝐺 действует на конечном множестве 𝑋. Для каждого 𝑔 ∈ 𝐺 обозначим
через 𝑋𝑔 = {𝑥 ∈ 𝑋 | 𝑔𝑥 = 𝑥} = {𝑥 ∈ 𝑋 | 𝑔 ∈ Stab(𝑥)} множество неподвижных точек преобра-
зования 𝑔. Тогда |𝑋/𝐺| = |𝐺|−1 ∑𝑔∈𝐺 |𝑋𝑔|.

Доказательство. Обозначим через 𝐹 ⊂ 𝐺 × 𝑋 множество всех таких пар (𝑔, 𝑥), что 𝑔𝑥 = 𝑥. Ина-
че 𝐹 можно описать как 𝐹 = ⨆𝑥∈𝑋 Stab(𝑥) = ⨆𝑔∈𝐺 𝑋𝑔. Первое из этих описаний получается
из рассмотрения проекции 𝐹 ↠ 𝑋, второе — из рассмотрения проекции 𝐹 ↠ 𝐺. Согласно вто-
рому описанию, |𝐹| = ∑𝑔∈𝐺 |𝑋𝑔|. С другой стороны, из первого описания мы заключаем, что
|𝐹| = |𝐺| ⋅ |𝑋/𝐺|. В самом деле, стабилизаторы всех точек, принадлежащих одной орбите, име-
ют одинаковый порядок, и сумма этих порядков по всем точкам орбиты равна произведению
порядка стабилизатора на длину орбиты, т. е. |𝐺|. Складывая по всем |𝑋/𝐺| орбитам, получаем
требуемое. □

Пример 10.16 (ожерелья)

Пусть имеется неограниченный запас одинаковых по форме бусин 𝑛 различных цветов. Сколь-
ко различных ожерелийможно сделать из 6 бусин?Ответомна этот вопрос является количество
орбит группы диэдра𝐷6 на множестве всех раскрасок вершин правильногошестиугольника в 𝑛
цветов. Группа 𝐷6 состоит из 12 элементов: тождественного преобразования 𝑒, двух поворотов
𝜏±1 на ±60∘, двух поворотов 𝜏±2 на ±120∘, центральной симметрии 𝜏3, трёх отражений 𝜎14, 𝜎23,
𝜎36 относительно больших диагоналей и трёх отражений 𝜎14, 𝜎23, 𝜎36 относительно срединных
перпендикуляров к сторонам. Единица оставляет наместе все𝑛6 раскрасок. Раскраски, симмет-
ричные относительно остальных преобразований, показаны на рис. 10⋄12 на стр. 182. Беря на
этих рисунках все допустимые сочетания цветов, получаем, соответственно, 𝑛, 𝑛2, 𝑛3, 𝑛4 и 𝑛3
раскрасок. По теор. 10.2 число 6-бусинных ожерелий равно (𝑛6 + 3𝑛4 + 4𝑛3 + 2𝑛2 + 2𝑛)∕12.

Упражнение 10.24. Подсчитайте количество ожерелий из 7, 8, 9, и 10 бусин.
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10.5. Смежные классы и факторизация.Каждая подгруппа𝐻 ⊂ 𝐺 задаёт на группе𝐺 два отно-
шения эквивалентности, происходящиеиз левого иправого регулярного действия подгруппы𝐻
на группе 𝐺. Левое действие 𝜆ℎ ∶ 𝑔 ↦ ℎ𝑔 приводит к эквивалентности

𝑔1 ∼
𝐿
𝑔2 ⟺ 𝑔1 = ℎ𝑔2 для некоторого ℎ ∈ 𝐻, (10-16)

разбивающей группу 𝐺 в дизъюнктное объединение орбит вида 𝐻𝑔 ≝ {ℎ𝑔 | ℎ ∈ 𝐻}, называе-
мых правыми смежными классами (или правыми сдвигами) подгруппы𝐻 в группе𝐺. Множество
правых смежных классов обозначается 𝐻\𝐺.

Упражнение 10.25. Покажите, что равенство 𝐻𝑔1 = 𝐻𝑔2 равносильно любому из эквивалент-
ных друг другу включений 𝑔2𝑔−1

1 ∈ 𝐻, 𝑔1𝑔−1
2 ∈ 𝐻.
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Рис. 10⋄12. Симметричные ожерелья из шести бусин.

С правым действием 𝜚ℎ ∶ 𝑔 ↦ 𝑔ℎ−1 связано отношение эквивалентности

𝑔1 ∼
𝑅
𝑔2 ⟺ 𝑔1 = 𝑔2ℎ для некоторого ℎ ∈ 𝐻, (10-17)

разбивающее группу𝐺 в дизъюнктное объединение орбит 𝑔𝐻 ≝ {𝑔ℎ | ℎ ∈ 𝐻}, которые называ-
ются левыми смежными классами (или левыми сдвигами) подгруппы 𝐻 в группе 𝐺. Множество
левых смежных классов обозначается 𝐺/𝐻.

Поскольку и левое и правое действия подгруппы 𝐻 на группе 𝐺 свободны, все орбиты каж-
дого из них состоят из |𝐻| элементов. Тем самым, число орбит в обоих действиях одинако-
во и равно |𝐺| ∕ |𝐻|. Это число называется индексом подгруппы 𝐻 в группе 𝐺 и обозначается
[𝐺 ∶ 𝐻] ≝ |𝐺/𝐻|. Нами установлена



10.5. Смежные классы и факторизация 183

Теорема 10.3 (теорема Лагранжа об индексе подгруппы)

Порядок и индекс любой подгруппы 𝐻 в произвольной конечной группе 𝐺 нацело делят поря-
док 𝐺 и [𝐺 ∶ 𝐻] = |𝐺| ∶ |𝐻|.

Следствие 10.3

Порядок любого элемента конечной группы нацело делит порядок группы.

Доказательство. Порядок элемента 𝑔 ∈ 𝐺 равен порядку порождённой им циклической под-
группы ⟨𝑔⟩ ⊂ 𝐺. □

10.5.1. Нормальные погруппы.Подгруппа𝐻 ⊂ 𝐺 называется нормальной (илиинвариант-
ной), если для любого 𝑔 ∈ 𝐺 выполняется равенство 𝑔𝐻𝑔−1 = 𝐻 или, что то же самое, 𝑔𝐻 = 𝐻𝑔.
Иначе можно сказать, что подгруппа 𝐻 ⊂ 𝐺 нормальна тогда и только тогда, когда левая и пра-
вая эквивалентности (10-16) и (10-17) совпадают друг с другом и, в частности,𝐻\𝐺 = 𝐺/𝐻. Если
подгруппа 𝐻 ⊂ 𝐺 нормальна, мы пишем 𝐻 ◁ 𝐺.

Пример 10.17 (ядра гомоморфизмов)

Ядро любого гомоморфизма групп𝜑∶ 𝐺1 → 𝐺2 является нормальной подгруппой в𝐺1, посколь-
ку при 𝜑(ℎ) = 𝑒 для любого 𝑔 ∈ 𝐺 имеем равенство

𝜑(𝑔ℎ𝑔−1) = 𝜑(𝑔)𝜑(ℎ)𝜑(𝑔)−1 = 𝜑(𝑔)𝜑(𝑔)−1 = 𝑒 ,

означающее, что 𝑔 (ker𝜑)𝑔−1 ⊂ ker𝜑. Это согласуется с равенством правых и левых смежных
классов 𝑔 (ker𝜑) = (ker𝜑)𝑔, установленным нами в предл. 10.1.

Пример 10.18 (𝑉4 ◁ 𝑆4)

Подгруппа Клейна 𝑉4 ⊂ 𝑆4 состоящая из перестановок циклового типа и тождественной
перестановки нормальна.

Пример 10.19 (внутренние автоморфизмы)

Подгруппа внутренних автоморфизмов Int(𝐺) = Ad(𝐺) нормальна в группе Aut(𝐺) всех автомор-
физмов группы 𝐺, поскольку сопрягая внутренний автоморфизм Ad𝑔 ∶ ℎ ↦ 𝑔ℎ𝑔−1 произволь-
ным автоморфизмом 𝜑∶ 𝐺 ⥲ 𝐺, мы получаем внутренний автоморфизм 𝜑 ∘Ad𝑔 ∘𝜑−1 = Ad𝜑(𝑔).

Упражнение 10.26. Убедитесь в этом.

Пример 10.20 (параллельные переносы)

Подгруппа параллельных переносов нормальна в группе Aff(𝔸𝑛) всех биективных аффинных
преобразований аффинного пространства 𝔸𝑛, т. к. сопрягая параллельный перенос 𝜏𝑣 на век-
тор 𝑣 любым аффинным преобразованием 𝜑∶ 𝔸𝑛 → 𝔸𝑛, получаем перенос1 𝜏𝐷𝜑(𝑣) на век-
тор 𝐷𝜑(𝑣).

Упражнение 10.27. Убедитесь в этом.

1Напомню, что преобразование 𝜑∶ 𝔸(𝑉) → 𝔸(𝑉) аффинного пространства 𝔸(𝑉), ассоциированного
с векторным пространством 𝑉, называется аффинным, если отображение 𝐷𝜑 ∶ ⃖⃖⃖⃗𝑝𝑞 ↦ ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝜑(𝑝)𝜑(𝑞) являет-
ся корректно определённым линейным преобразованием векторного пространства 𝑉 (оно называется
дифференциалом отображения𝜑).
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Пример 10.21 (нормализатор и централизатор, ср. с упр. 10.19 на стр. 178)

Пусть группа 𝐺 действует на множестве 𝑋 и𝑀 ⊂ 𝑋—произвольное подмножество. Напомню1,
что подгруппы 𝑁(𝑀) ≝ {𝑔 ∈ 𝐺 | ∀ 𝑥 ∈ 𝑀 𝑔𝑥 ∈ 𝑀} и 𝑍(𝑀) ≝ {𝑔 ∈ 𝐺 | ∀ 𝑥 ∈ 𝑀 𝑔𝑥 = 𝑥}
называются соответственно нормализатором и централизатором подмножества 𝑀. Посколь-
ку для любых 𝑔 ∈ 𝑁(𝑀), ℎ ∈ 𝑍(𝑀) и 𝑥 ∈ 𝑀 выполняется равенство 𝑔ℎ𝑔−1𝑥 = 𝑔𝑔−1𝑥 = 𝑥, ибо
ℎ(𝑔−1𝑥) = 𝑔−1𝑥, так как 𝑔−1𝑥 ∈ 𝑀, централизатор является нормальной подгруппой в норма-
лизаторе.

10.5.2. Фактор группы.Попыткаопределить умножениенамножестве левых смежныхклас-
сов 𝐺/𝐻 неабелевой группы 𝐺 формулой

(𝑔1𝐻) ⋅ (𝑔2𝐻) ≝ (𝑔1𝑔2)𝐻 , (10-18)

вообще говоря, некорректна: различные записи 𝑔1𝐻 = 𝑓1𝐻 и 𝑔2𝐻 = 𝑓2𝐻 одних и тех же классов
могут приводить к различным классам (𝑔1𝑔2)𝐻 ≠ (𝑓1𝑓2)𝐻.

Упражнение 10.28. Убедитесь, что для группы 𝐺 = 𝑆3 и подгруппы второго порядка 𝐻 ⊂ 𝐺,
порождённой транспозицией 𝜎12, формула (10-18) некорректна.

Предложение 10.4

Для того, чтобы правило 𝑔1𝐻 ⋅ 𝑔2𝐻 = (𝑔1𝑔2)𝐻 корректно определяло на 𝐺/𝐻 структуру группы,
необходимо и достаточно, чтобы подгруппа 𝐻 была нормальна в 𝐺.

Доказательство. Если формула (10-18) корректна, то она задаёт на множестве смежных левых
классов 𝐺/𝐻 групповую структуру: ассоциативность композиции наследуется из2 𝐺, единицей
служит класс 𝑒𝐻 = 𝐻, обратным к классу 𝑔𝐻 — класс 𝑔−1𝐻. Факторизация 𝐺 ↠ 𝐺/𝐻, 𝑔 ↦ 𝑔𝐻,
является гомоморфизмом групп с ядром𝐻. Поэтому подгруппа𝐻 нормальна в силу прим. 10.17.
Наоборот, если 𝐻 нормальна и 𝑓1𝐻 = 𝑔1𝐻, 𝑓2𝐻 = 𝑔2𝐻, то 𝑓1𝑓2𝐻 = 𝑓1𝑔2𝐻 = 𝑓1𝐻𝑔2 = 𝑔1𝐻𝑔2 =
= 𝑔1𝑔2𝐻 в силу равенства 𝑔2𝐻 = 𝐻𝑔2. □

Определение 10.2

Множество смежных классов 𝐺/𝐻 нормальной подгруппы 𝐻 ◁ 𝐺 c операцией

𝑔1𝐻 ⋅ 𝑔2𝐻 ≝ (𝑔1𝑔2)𝐻

называется фактором (или факторгруппой) группы 𝐺 по нормальной подгруппе 𝐻. Гомомор-
физм групп 𝐺 ↠ 𝐺/𝐻, 𝑔 ↦ 𝑔𝐻, называется гомоморфизмом факторизации.

Следствие 10.4

Каждый гомоморфизм групп 𝜑∶ 𝐺1 → 𝐺2 является композицией эпиморфизма факторизации
𝐺1 ↠ 𝐺1/ ker𝜑имономорфизма𝐺1/ ker𝜑 ↪ 𝐺2, переводящего смежныйкласс𝑔 ker𝜑 ∈ 𝐺1/ ker𝜑
в элемент 𝜑(𝑔) ∈ 𝐺2. В частности, im𝜑 ≃ 𝐺/ ker𝜑.

Доказательство. Следствие утверждает, что слой 𝜑−1(𝜑(𝑔)) гомоморфизма 𝜑 над каждой точ-
кой 𝜑(𝑔) ∈ im𝜑 ⊂ 𝐺2 является левым сдвигом ядра ker𝜑 на элемент 𝑔, что мы уже видели в
предл. 10.1 на стр. 173. □

1См. n∘ 10.4 на стр. 177.
2(𝑔1𝐻⋅𝑔2𝐻)⋅𝑔3𝐻 = (𝑔1𝑔2)𝐻⋅𝑔3𝐻 = ((𝑔1𝑔2)𝑔3)𝐻 = (𝑔1(𝑔2𝑔3))𝐻 = 𝑔1𝐻⋅(𝑔2𝑔3)𝐻 = 𝑔1𝐻⋅(𝑔2𝐻⋅𝑔3𝐻).
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Предложение 10.5

Если подгруппа𝐻 ⊂ 𝐺 нормализует1 подгруппу𝑁 ⊂ 𝐺, то множества𝐻𝑁 = {ℎ𝑛 | ℎ ∈ 𝐻, 𝑛 ∈ 𝑁}
и 𝑁𝐻 = {𝑛ℎ | 𝑛 ∈ 𝑁, ℎ ∈ 𝐻} совпадают друг с другом и являются подгруппой в 𝐺, причём
𝑁 ◁ 𝐻𝑁, 𝐻 ∩ 𝑁 ◁ 𝐻 и 𝐻𝑁/𝑁 ≃ 𝐻/(𝐻 ∩ 𝑁).

Доказательство. 𝑁𝐻 = 𝐻𝑁 ибо 𝑛ℎ = ℎ(ℎ−1𝑛ℎ) ∈ 𝐻𝑁 и ℎ𝑛 = (ℎ𝑛ℎ−1)ℎ ∈ 𝑁𝐻 для всех 𝑛 ∈ 𝑁,
ℎ ∈ 𝐻. Это подгруппа, так как (𝑛ℎ)−1 = ℎ−1𝑛−1 ∈ 𝐻𝑁 = 𝑁𝐻 и

(𝑛1ℎ1)(𝑛2ℎ2) = 𝑛1(ℎ1𝑛2)ℎ2 = 𝑛1(𝑛3ℎ3)ℎ2 = (𝑛1𝑛3)(ℎ3ℎ2) ∈ 𝑁𝐻

(существование таких 𝑛3 ∈ 𝑁 и ℎ3 ∈ 𝐻, что ℎ1𝑛2 = 𝑛3ℎ3, вытекает из равенства 𝐻𝑁 = 𝑁𝐻).
Подгруппы 𝐻 ∩ 𝑁 ◁ 𝐻 и 𝑁 ◁ 𝐻𝑁 нормальны, так как по условию ℎ𝑁ℎ−1 ⊂ 𝑁 для всех ℎ ∈ 𝐻.
Отображение𝐻∕(𝐻∩𝑁) → 𝐻𝑁∕𝑁, ℎ(𝐻∩𝑁) ↦ ℎ𝑁, очевидно корректно определено, биективно
и является гомоморфизмом групп. □

Упражнение 10.29. Пусть 𝜑∶ 𝐺1 ↠ 𝐺2 — сюрьективный гомоморфизм групп. Покажите, что
полный прообраз 𝑁1 = 𝜑−1(𝑁2) любой нормальной подгруппы 𝑁2 ◁ 𝐺2 является нормаль-
ной подгруппой в 𝐺1 и 𝐺1/𝑁1 ≃ 𝐺2/𝑁2.

10.6. Коммутант.В группе𝐺 произведение (𝑔, ℎ) ≝ 𝑔ℎ𝑔−1ℎ−1 называется коммутатором2 эле-
ментов 𝑔, ℎ. Название связано с тем, что (𝑔, ℎ)ℎ𝑔 = 𝑔ℎ. В частности, 𝑔ℎ = ℎ𝑔 если и только если
(𝑔, ℎ) = 𝑒. Очевидно, что (𝑔, ℎ)−1 = (ℎ,𝑔) и Ad𝑓(𝑔, ℎ) = (Ad𝑓 𝑔,Ad𝑓 ℎ), где

Ad𝑓 ∶ 𝐺 → 𝐺 , 𝑥 ↦ 𝑓𝑥𝑓−1 ,

автоморфизм сопряжения. Поэтому всевозможные конечные произведения коммутаторов эле-
ментов группы 𝐺 образуют нормальную подгруппу, которая обозначается 𝐺′ ◁ 𝐺 и называется
коммутантом группы 𝐺. Так как (𝑔, ℎ) = Ad𝑔(ℎ)ℎ−1, коммутаторы элементов 𝑔 ∈ 𝐺 с элемен-
тами ℎ из любой нормальной подгруппы𝑁◁𝐺 лежат в𝑁, т. е. (𝐺,𝑁) = (𝑁,𝐺) ⊂ 𝑁. В частности,
(𝐺,𝐺′) ⊂ 𝐺′. Всякий гомоморфизм 𝜑∶ 𝐺 → 𝐻 ограничивается в гомоморфизм 𝜑|𝐺′ ∶ 𝐺′ → 𝐻′,
и если 𝜑 сюрьективен, то сюрьективен и 𝜑|𝐺′ .

Предложение 10.6 (универсальное свойство фактора по коммутанту)

Всякий гомоморфизм𝜑∶ 𝐺 → 𝐴 в абелеву группу 𝐴 единственным образом пропускается через
гомоморфизм факторизации 𝜋∶ 𝐺 ↠ 𝐺/𝐺′, т. е. существует единственный такой гомоморфизм
𝜑′ ∶ 𝐺/𝐺′ → 𝐴, что 𝜑 = 𝜑′𝜋.

Доказательство. Гомоморфизм𝜑′ обязан действовать по правилу 𝑔𝐺′ ↦ 𝜑(𝑔). Оно корректно,
так как 𝐺′ ⊂ ker𝜑, поскольку в 𝐴 все коммутаторы тривиальны. □

Следствие 10.5

Фактор группа 𝐺/𝑁 абелева если и только если 𝑁 ⊇ 𝐺′.

Доказательство. Применяем предл. 10.6 к эпиморфизму 𝐺 ↠ 𝐺/𝑁. □

1Т. е. ℎ𝑁ℎ−1 = 𝑁 для всех ℎ ∈ 𝐻.
2Или групповым коммутатором, который не следует путать с коммутатором [𝑓,𝑔] = 𝑓𝑔 − 𝑔𝑓 эле-

ментов ассоциативной алгебры.
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Пример 10.22 (коммутанты симметрических и знакопеременных групп)

Поскольку каждый коммутатор в 𝑆𝑛 является чётной перестановкой, 𝑆′
𝑛 ◁ 𝐴𝑛. Так как |𝐴3| = 3

и группа 𝑆3 не абелева, 𝑆′
3 = 𝐴3. Тем самым, при любом 𝑛 коммутант 𝑆′

𝑛 содержит все 3-циклы.
Упражнение 10.30. Убедитесь, что группа 𝐴𝑛 порождается 3-циклами.

Мы заключаем, что 𝑆′
𝑛 = 𝐴𝑛. Поскольку |𝐴4/𝑉4| = 3, группа𝐴4/𝑉4 ≃ ℤ∕(3) абелева, откуда𝐴′

4 ⊆ 𝑉4
по сл. 10.5. Так как группа 𝐴4 не абелева, 𝐴′

4 содержит пару независимых транспозиций, а зна-
чит, и все сопряжённые ей пары, т. е.𝐴′

4 = 𝑉4. Отсюда вытекает, что при любом 𝑛 коммутатор𝐴′
𝑛

содержит все пары независимых транспозиций.

Упражнение 10.31. Убедитесь, что при 𝑛 ⩾ 5 группа 𝐴𝑛 порождается парами независимых
транспозиций.

Мы заключаем, что 𝐴′
𝑛 = 𝐴𝑛 при 𝑛 ⩾ 5.

Пример 10.23 (коммутанты линейных групп)

Пусть 𝕜— произвольное поле. Так как det(𝑓,𝑔) = 1 для всех 𝑓,𝑔 ∈ GL𝑛(𝕜), мы заключаем, что
GL′

𝑛(𝕜) ⊴ SL𝑛(𝕜). Покажем, что SL′
𝑛(𝕜) = SL𝑛(𝕜) за исключением SL2(𝔽2) и SL2(𝔽3).

Упражнение 10.32. Убедитесь, что SL2(𝔽2) = GL2(𝔽2) ≃ 𝑆3 и SL2(𝔽3)∕{±𝐸} ≃ 𝐴4.
Легко видеть, что любую матрицу из SL𝑛(𝕜) можно превратить в единичную элементарными
преобразованиями, заключающимися в прибавлении к одной из строк другой строки, умно-
женной на произвольное число, т. е. в умножении матрицы слева на матрицу вида1

𝑇𝑖𝑗(𝛼) ≝ 𝐸 + 𝛼𝐸𝑖𝑗 , где 𝑖 ≠ 𝑗 . (10-19)

Упражнение 10.33. Убедитесь в этом и покажите, что (𝑇𝑖𝑗(𝛼),𝑇𝑗𝑘(𝛽)) = 𝑇𝑖𝑘(𝛼𝛽) для любых трёх
различных индексов 𝑖, 𝑗, 𝑘.

Из упражнения вытекает, что при 𝑛 ⩾ 3 коммутант SL′
𝑛(𝕜) содержит все трансвекции, и тем

самым GL′
𝑛(𝕜) = SL′

𝑛(𝕜) = SL𝑛(𝕜) при 𝑛 ⩾ 3.
Упражнение 10.34. Покажите, что при 𝑛 = 2 и {𝑖, 𝑗} = {1, 2} коммутатор трансвекции 𝑇𝑖𝑗(𝛼) c

диагональной матрицей 𝛽𝐸𝑖𝑖 + 𝛽−1𝐸𝑗𝑗 ∈ SL2(𝕜) равен 𝑇𝑖𝑗(𝛼(1 − 𝛽2)).
Мы заключаем, что при 𝕜 ≠ 𝔽2,𝔽3 коммутант SL′

2(𝕜) тоже содержит все трансвекции. Таким
образом, GL′

𝑛(𝕜) = SL′
𝑛(𝕜) = SL𝑛(𝕜) за исключением групп GL2 и SL2 над полями 𝔽2 и 𝔽3.

Упражнение 10.35. Вычислите коммутанты GL′
2(𝔽2) = SL′

2(𝔽2), GL′
2(𝔽3) и SL′

2(𝔽3).

1Такие матрицы называются трансвекциями.



Ответы и указания к некоторым упражнениям

Упр. 10.1. Если 𝑓𝑔 = 𝑒 и 𝑔ℎ = 𝑒, то 𝑓 = 𝑓𝑒 = 𝑓(𝑔ℎ) = (𝑓𝑔)ℎ = 𝑒ℎ = ℎ.
Упр. 10.2. Для двух единичных элементов 𝑒′ и 𝑒″ выполнены равенства 𝑒′ = 𝑒′𝑒″ = 𝑒″.

Упр. 10.4. Ответ: либо 𝑟 = 1 и Tors(𝐺) = 0 (т. е. 𝐺 ≃ ℤ), либо 𝑟 = 0 (т. е. 𝐺 конечна) и каждое
простое число 𝑝 ∈ ℕ присутствует в каноническом разложении

𝐺 = ℤ
(𝑝𝑛11 )

⊕ … ⊕ ℤ
(𝑝𝑛𝛼𝛼 )

не более одного раза. Доказательство аналогично доказательству предл. 9.2 на стр. 155.

Упр. 10.5. Пусть 𝑘 = 𝑑𝑟,𝑚 = ord(𝜏) = 𝑑𝑠, где нод(𝑟, 𝑠) = 1. Если 𝑑 > 1, то 𝜏𝑑 является произведе-
нием 𝑑 независимых циклов длины 𝑠, и 𝜏𝑘 = (𝜏𝑑)

𝑟
будет произведением 𝑠-тых степеней этих

циклов. Остаётся показать, что когда ord(𝜏) = 𝑚 взаимно прост с 𝑘, то 𝜏𝑘 тоже цикл длины𝑚.
Если для какого-то элемента 𝑎 цикла 𝜏 выполняется равенство (𝜏𝑘)

𝑟 (𝑎) = 𝑎, то 𝑘𝑟 делится на
𝑚, что при нод(𝑘,𝑚) = 1 возможно только когда 𝑟 делится на 𝑚. Поэтому 𝑟 ⩾ 𝑚, т. е. длина
содержащего 𝑎 цикла перестановки 𝜏𝑘 не меньше𝑚.

Упр. 10.6. Ответ: 𝑛(𝑛 − 1) … (𝑛 − 𝑘 + 1)∕𝑘 (в числителе дроби 𝑘 сомножителей).

Упр. 10.7. Непересекающиеся циклы очевидно коммутируют. Если коммутирующие циклы 𝜏1 и
𝜏2 пересекаются по элементу 𝑎, то 𝜏1(𝑎) является элементом цикла 𝜏2, поскольку в противном
случае 𝜏2𝜏1(𝑎) = 𝜏1(𝑎), а 𝜏1𝜏2(𝑎) ≠ 𝜏1(𝑎), так как 𝜏2(𝑎) ≠ 𝑎. По той же причине 𝜏2(𝑎) является
элементом цикла 𝜏1, и значит, оба цикла состоят из одних и тех же элементов. Пусть 𝜏1(𝑎) =
𝜏𝑠2(𝑎). Любой элемент 𝑏, на который оба цикла реально действуют имеет вид 𝑏 = 𝜏𝑟2(𝑎), и цикл
𝜏1 действует на него как 𝜏𝑠2:

𝜏1(𝑏) = 𝜏1𝜏𝑟2(𝑎) = 𝜏𝑟2𝜏1(𝑎) = 𝜏𝑟2𝜏𝑠2(𝑎) = 𝜏𝑠2𝜏𝑟2(𝑎) = 𝜏𝑠2(𝑏) .

Второе утверждение следует из упр. 10.5.

Упр. 10.8. Ответ: 𝑛! ∕ ∏𝑛
𝑖=1 𝑖𝑚𝑖𝑚𝑖! (ср. с форм. (0-11) на стр. 9). Решение: сопоставим каждому

заполнению диаграммы циклов 𝜆 неповторяющимися числами от 1 до 𝑛 произведение незави-
симых циклов, циклически переставляющих элементы каждой строки слева направо; получаем
сюрьективное отображение множества заполнений на множество всех перестановок циклово-
го типа 𝜆; прообраз каждой перестановки состоит из ∏𝑛

𝑖=1 𝑖𝑚𝑖𝑚𝑖! заполнений, получающихся
друг из друга независимыми циклическими перестановками элементов в каждой строке и про-
извольными перестановками строк одинаковой длины между собою как единого целого.

Упр. 10.9. |1, 6, 3, 4⟩15 ⋅ |2, 5, 8⟩15 ⋅ |7, 9⟩15 = |1, 6, 3, 4⟩−1 ⋅ |7, 9⟩ = (4, 2, 6, 3, 5, 1, 9, 8, 7)
Упр. 10.14. Ответ: |1, 2, 3, 4⟩ = 𝜎12𝜎23𝜎34, |1, 2, 4, 3⟩ = 𝜎12𝜎24𝜎34, |1, 3, 2, 4⟩ = 𝜎13𝜎23𝜎24, |1, 3, 4, 2⟩ =
𝜎13𝜎34𝜎24, |1, 4, 2, 3⟩ = 𝜎24𝜎23𝜎13, |1, 4, 3, 2⟩ = 𝜎34𝜎23𝜎12.

Упр. 10.15. Подсчёт для группы куба дословно тот же, что и для группы додекаэдра. Группы октаэд-
ра и икосаэдра изоморфны группам куба и додекадра с вершинами в центрах граней октаэдра
и икосаэдра соответственно.

Упр. 10.17. Зафиксируем в 𝑉 какой-либо базис и сопоставим оператору 𝐹 ∈ GL(𝑉) базис, состоя-
щий из векторов 𝑓𝑖 = 𝐹(𝑒𝑖). Для выбора первого базисного вектора 𝑓1 имеется |𝑉| − 1 = 𝑞𝑛 − 1
возможностей, для выбора второго— |𝑉|−|𝕜⋅𝑓1| = 𝑞𝑛−𝑞 возможностей, для выбора третьего—
|𝑉| − |𝕜 ⋅ 𝑓1 ⊕ 𝕜 ⋅ 𝑓2| = 𝑞𝑛 − 𝑞2 возможностей и т. д.
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Упр. 10.18. Подсказка: центральная симметрия коммутирует со всеми элементами полной группы
додекаэдра; покажите, что единственная перестановка в 𝑆5, коммутирующая со всеми переста-
новками из 𝑆5 — это тождественное преобразование.

Упр. 10.23. Проиллюстрируем рассуждение на примере икосаэдра. И собственная и полная груп-
пы транзитивно действуют на 20 его треугольных гранях. Стабилизатор грани в собственной
и полной группах представляет собой собственную и полную группу треугольника на плоско-
сти, состоящую, соответственно из 3 и из 6 преобразований. По формуле для длины орбиты
получаем | SOико | = 20 ⋅ 3 = 60 и |Oико | = 20 ⋅ 6 = 120.

Упр. 10.25. Равенство ℎ1𝑔1 = ℎ2𝑔2 влечёт равенства 𝑔2𝑔−1
1 = ℎ−1

2 ℎ1 ∈ 𝐻 и 𝑔1𝑔−1
2 = ℎ−1

1 ℎ2 ∈ 𝐻. С
другой стороны, если один из обратных друг другу элементов 𝑔2𝑔−1

1 и 𝑔1𝑔−1
2 лежит в 𝐻, то в 𝐻

лежит и второй, и 𝐻𝑔1 = 𝐻(𝑔2𝑔−1
1 )𝑔2 = 𝐻𝑔2.

Упр. 10.26. 𝜑 ∘ Ad𝑔 ∘𝜑−1 ∶ ℎ ↦ 𝜑(𝑔𝜑−1(ℎ)𝑔−1) = 𝜑(𝑔) ℎ 𝜑(𝑔)−1.

Упр. 10.27. Для любой точки 𝑥 ∈ ℝ𝑛 положим 𝑝 = 𝜑−1(𝑥). Так как 𝜑∶ ℝ𝑛 → ℝ𝑛 аффинно, 𝜑(𝑝 +
𝑣) = 𝑥 + 𝐷𝜑(𝑣). Поэтому 𝜑 ∘ 𝜏𝑣 ∘ 𝜑−1 ∶ 𝑥 ↦ 𝜑(𝑝 + 𝑣) = 𝑥 + 𝐷𝜑(𝑣).

Упр. 10.29. Если 𝜑(𝑥) ∈ 𝑁2, то 𝜑(𝑔𝑥𝑔−1) = 𝜑(𝑔)𝜑(𝑥)𝜑(𝑔)−1 ∈ 𝑁2 в силу нормальности 𝑁2 ◁ 𝐺2.
Поэтому 𝑁1 = 𝜑−1(𝑁2) ◁ 𝐺1. Композиция сюрьективных гомоморфизмов 𝐺1 ↠ 𝐺2 ↠ 𝐺2/𝑁2
является сюрьективным гомоморфизмом с ядром 𝑁1.

Упр. 10.30. Поскольку 𝑆𝑛 порождается транспозициями, подгруппа𝐴𝑛 порождается парами транс-
позиций. Но |𝑖𝑗⟩|𝑗𝑘⟩ = |𝑖𝑗𝑘⟩ и |𝑖𝑗⟩|𝑘𝓁⟩ = |𝑖𝑗𝑘⟩|𝑗𝑘𝓁⟩ при различных 𝑖, 𝑗, 𝑘, 𝓁.

Упр. 10.31. Воспользуйтесь равенством |𝑖𝑗⟩|𝑗𝑘⟩ = |𝑖𝑗⟩|𝓁𝑚⟩|𝑗𝑘⟩|𝓁𝑚⟩ для различных 𝑖, 𝑗, 𝑘, 𝓁,𝑚.

Упр. 10.32. Первый изоморфизм задаётся действием группы SL2(𝔽2) ≃ GL2(𝔽2) на трёх ненулевых
векторах координатной плоскости 𝔽22, второй—действием группы PSL2(𝔽3) ≝ SL2(𝔽3)/{±𝐸} на
четырёх одномерных векторных подпространствах в𝔽23 или, что тоже самое, действием дробно
линейных преобразований 𝑡 ↦ (𝑎𝑡+𝑏)∕(𝑐𝑡+𝑑), где 𝑎, 𝑏, 𝑐,𝑑 ∈ 𝔽3 и 𝑎𝑑 ≠ 𝑏𝑐, на четырёх точках
проективной прямой ℙ1(𝔽3) = {−1, 0, 1, ∞}.

Упр. 10.33. Модифицируйте метод Гаусса: используя только операцию прибавления к одной из
строк матрицы некоторой кратности другой строки, сначала добейтесь того, чтобы в первом
столбце было хотя бы два ненулевых элемента, причём одиниз них стоял в первой строке, затем
добейтесь того, чтобы в левом верхнем углу матрицы оказалась единица, и наконец занулите
первый столбец ниже первой строки, после чего повторите процедуру со вторым столбцом и
второй строкой, и т. д. Для вычисления коммутатора воспользуйтесь равенствами

𝑇−1
𝑖𝑗 (𝛼) = (𝐸 + 𝛼𝐸𝑖𝑗)−1 = 𝐸 − 𝛼𝐸𝑖𝑗 = 𝑇𝑖𝑗(−𝛼)
𝑇𝑖𝑗(𝛼)𝑇𝑗𝑘(𝛽) = 𝐸 + 𝐸𝑖𝑗(𝛼) + 𝐸𝑗𝑘(𝛽) + 𝐸𝑖𝑘(𝛼𝛽)

Упр. 10.34. Прямое вычисление:

(𝐸 + 𝛼𝐸𝑖𝑗)(𝛽𝐸𝑖𝑖 + 𝛽−1𝐸𝑗𝑗)(𝐸 − 𝛼𝐸𝑖𝑗)(𝛽−1𝐸𝑖𝑖 + 𝛽𝐸𝑗𝑗) = (𝐸 + 𝛼𝐸𝑖𝑗)(𝐸 − 𝛼𝛽2𝐸𝑖𝑗) = 𝐸 + 𝛼(1 − 𝛽2)𝐸𝑖𝑗 .

Упр. 10.35. Так как SL2(𝔽2) = GL2(𝔽2) = 𝑆3, коммутанты GL′
2(𝔽2) = SL′

2 = {𝐸,𝑇,𝑇2} ≃ 𝐴3, где

𝑇 = (
0 1
1 1) и 𝑇2 = 𝑇−1 = (

1 1
1 0)
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циклически переставляют ненулевые векторы (1, 0), (0, 1), (1, 1) пространства 𝔽22. Поскольку
(𝑇𝑖𝑗(𝛼),𝐸𝑖𝑖 − 𝐸𝑗𝑗) = 𝑇𝑖𝑗(−𝛼), коммутант GL′

2(𝔽3) содержит все трансвекции и равен SL2(𝔽3). Для
вычисления SL′

2(𝔽3) воспользуйтесь факторизацией SL2(𝔽3) ↠ PSL2(𝔽3) ≃ 𝐴4 по нормальной
подгруппе {±𝐸} ◁ SL2(𝔽3). Она сюрьективно отображает коммутант SL′

2(𝔽3) на группу Клейна
𝐴′
4 = 𝑉4, состоящую независимых транспозиций двух пар точек проективной прямой

ℙ1(𝔽3) = {(1 ∶ 0), (0 ∶ 1), (1 ∶ 1), (1 ∶ −1)} ,

которые задаются следующими матрицами из SL2(𝔽3) с точностью до знака

𝐼 = (
0 −1
1 0 ) , 𝐽 = (

1 1
1 −1) , 𝐾 = (

−1 1
1 1) .

Убедитесь, что 𝐼2 = 𝐽2 = 𝐾2 = −𝐸 и 𝐼𝐽 = −𝐽𝐼 = 𝐾, 𝐽𝐾 = −𝐾𝐽 = 𝐼, 𝐾𝐼 = −𝐼𝐾 = 𝐽. Таким
образом, коммутант SL2(𝔽3)′ имеет порядок 8 и изоморфен группе кватернионных единиц𝑄8 ≝
≝ {±𝐸, ±𝐼, ±𝐽, ±𝐾}.
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