
§11. Композиционные факторы, произведения и силовские подгруппы

11.1. Простые группы. Группа 𝐺 называется простой, если она не содержит нормальных под-
групп, отличных от {𝑒} и 𝐺. Например, любая группа простого порядка проста, поскольку по
теореме Лагранжа1 вообще не содержит никаких подгрупп кроме {𝑒} и 𝐺. Согласно сл. 10.1
на стр. 174 простота группы 𝐺 равносильна тому, что всякий гомоморфизм 𝐺 → 𝐻 либо инъ-
ективен, либо тривиален2. Одним из выдающихся достижений математики XX века является
перечисление всех конечных простых групп. Этот список состоит из нескольких бесконечных
серий и 26 так называемых спорадических групп, не входящих в серии. Бесконечные серии де-
лятся на три семейства: циклические группы ℤ∕(𝑝) простого порядка, знакопеременные груп-
пы 𝐴𝑛 с 𝑛 ≠ 4 и простые линейные алгебраические группы над конечными полями3, такие
как PSL𝑛(𝔽𝑞), PSO𝑛(𝔽𝑞), PSp𝑛(𝔽𝑞) и т. п. Описание конечных простых групп стало итогом сотен
работ десятков авторов по различным, напрямую не связанным друг с другом направлениям
математики. Никакой универсальной концепции, позволяющей единообразно классифициро-
вать все конечные простые группы не известно.

11.1.1. Простота знакопеременных групп. Покажем, что знакопеременная группа𝐴5 про-
ста. Так как перестановки сопряжены если и только если у них одинаковый цикловой тип4, клас-
сы сопряжённости чётных перестановок в 𝑆5 состоят из перестановок цикловых типов

и (11-1)

(5-циклы, 3-циклы, пары независимых транспозиций и тождественное преобразование), коих
имеется5 соответственно 24 = 5!∕5, 20 = 5!∕(3 ⋅ 2), 15 = 5!∕(22 ⋅ 2) и 1.

Упражнение 11.1. Покажите, что класс сопряжённости чётной перестановки 𝑔 в 𝑆𝑛 либо сов-
падает с её классом сопряжённости в 𝐴𝑛, либо является объединением двух классов сопря-
жённости в 𝐴𝑛, причём второе происходит если и только если все циклы перестановки 𝑔
имеют разные нечётные длины.

Мы заключаем, что 3-циклы, пары независимых транспозиций и тождественная перестановка
являются классами сопряжённости в 𝐴5, а 5-циклы разбиваются на два класса сопряжённости
в𝐴5, состоящие из12циклов, сопряжённых |1, 2, 3, 4, 5⟩, и12циклов, сопряжённых |2, 1, 3, 4, 5⟩.
Поскольку нормальная подгруппа𝐻 ⊴ 𝐴5 вместе с каждой перестановкой содержит и все ей со-
пряжённые, её порядок |𝐻| = 12𝜀1 +12𝜀2 +20𝜀3 +15𝜀4 +1, где каждый 𝜀𝑖 равен либо 1, либо 0,
при этом по теореме Лагранжа |𝐻| делит |𝐴5| = 60 = 3 ⋅ 4 ⋅ 5.

Упражнение 11.2. Убедитесь, что такое возможно ровно в двух случаях: когда все 𝜀𝑖 = 1 или
когда все 𝜀𝑖 = 0.

Тем самым, в 𝐴5 нет нетривиальных собственных нормальных подгрупп.

1См. теор. 10.3 на стр. 183.
2Т. е. отображает всю группу 𝐺 в единицу.
3Описанию таких групп посвящены спецкурсы по линейным алгебраическим и арифметическим

группам, например, см. книгу Дж. Хамфри. Линейные алгебраические группы. М., «Наука», 1980.
4См. прим. 10.15 на стр. 180.
5См. упр. 10.8 на стр. 169.
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Теорема 11.1

Все знакопеременные группы 𝐴𝑛 с 𝑛 ⩾ 5 просты.

Доказательство. Индукция по 𝑛. Случай 𝑛 = 5 был разобран выше. Рассмотрим нормальную
подгруппу 𝑁 ⊴ 𝐴𝑛. Так как стабилизатор элемента 1 в группе 𝐴𝑛 изоморфен 𝐴𝑛−1, его пере-
сечение с 𝑁, будучи нормальной подгруппой в 𝐴𝑛−1, либо совпадает с 𝐴𝑛−1, либо тривиально.
Поскольку стабилизаторы всех элементов сопряжены, подгруппа 𝑁 либо содержит стабилиза-
торы всех элементов, либо действует свободно1. В первом случае 𝑁 содержит все 3-циклы и по
упр. 10.30 на стр. 186 совпадает с 𝐴𝑛. Рассмотрим второй случай и допустим, что 𝑁 содержит
нетождественную перестановку 𝑔. Так как она действует без неподвижных точек, при 𝑛 ⩾ 6
найдутся такие различные элементы {1, 𝑖, 𝑗, 𝑘, 𝓁,𝑚}, что 𝑔(1) = 𝑖 и 𝑔(𝑗) = 𝑘. Сопрягая 𝑔 циклом
|𝑘, 𝓁,𝑚⟩ ∈ 𝐴𝑛, получаем перестановку ℎ ∈ 𝑁 с ℎ(1) = 𝑖 и ℎ(𝑗) = 𝓁 ≠ 𝑘. Перестановка 𝑔ℎ−1 ∈ 𝑁
не тождественна и оставляет 1 на месте. Противоречие. □

11.1.2. Простота групп PSL𝒏(𝕜). Фактор полной линейной группы координатного вектор-
ного пространства 𝕜𝑛 по её центру, состоящему из скалярных матриц 𝜆𝐸, где 𝜆 ∈ 𝕜×, назы-
вается проективной линейной группой и обозначается PGL𝑛(𝕜) ≝ GL𝑛(𝕜) ∕𝕜× ⋅ 𝐸. Эта группа
естественным образом действует на множестве одномерных векторных подпространств в 𝕜𝑛,
которое обозначаетсяℙ𝑛−1(𝕜) и называется (𝑛−1)-мерным проективным пространством2 над
полем 𝕜. Состоящая из классов пропорциональных матриц определителя 1 подгруппа

PSL𝑛(𝕜) = SL𝑛(𝕜)∕𝞵𝑛(𝕜) ⋅ 𝐸 ⊂ PGL𝑛(𝕜) ,

где 𝞵𝑛(𝕜) ⊂ 𝕜× — мультипликативная группа корней 𝑛-той степени из 1 в поле 𝕜, называется
специальной проективной линейной группой.

Упражнение 11.3. Убедитесь, что PSL𝑛 действует 2-транзитивно3 на ℙ𝑛−1.

Если𝕜 = 𝔽𝑞 состоит из𝑞 элементов, то мультипликативная группа𝔽×
𝑞 циклическая порядка𝑞−1

и корни уравнения 𝑥𝑛 = 1 образуют в ней циклическую подгруппу порядка нод(𝑞 − 1, 𝑛).
Упражнение 11.4. Убедитесь, корни уравнения 𝑛𝑥 = 0 в ℤ∕(𝑚) составляют циклическую под-

группу порядка нод(𝑚, 𝑛).
Таким образом, | PSL𝑛(𝔽𝑞)| = | SL𝑛(𝔽𝑞)|∕нод(𝑞 − 1, 𝑛) = ∏𝑛

𝑘=0(𝑞𝑛 − 𝑞𝑘)∕((𝑞 − 1) нод(𝑞 − 1, 𝑛)).

Теорема 11.2

Все группы PSL𝑛(𝕜) просты, за исключением4 PSL2(𝔽2) = GL2(𝔽2) ≃ 𝑆3 и PSL2(𝔽3) ≃ 𝐴4.

Доказательство. Обозначим через 𝑃 ⊂ PSL𝑛 стабилизатор одномерного подпространства, по-
рождённого первым вектором стандартного базиса 𝑒1, … , 𝑒𝑛 в 𝕜𝑛. Группа 𝑃 состоит из классов
пропорциональных матриц вида

⎛
⎜
⎜
⎜
⎝

∗ ∗ ⋯ ∗
0
⋮ ∗
0

⎞
⎟
⎟
⎟
⎠

(11-2)

1Т. е. никакой отличный от единицы элемент не имеет неподвижных точек, см. n∘ 10.4 на стр. 177.
2См. стр. 204 и 222 курса http://gorod.bogomolov-lab.ru/ps/stud/geom_ru/2122/lec_total.pdf.
3Т. е. транзитивно действует на упорядоченных парах точек, см. n∘ 10.4 на стр. 177.
4См. упр. 10.32 на стр. 186.

http://gorod.bogomolov-lab.ru/ps/stud/geom_ru/2122/lec_total.pdf
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с определителем1и содержит нормальную абелеву подгруппу𝐴◁𝑃матриц, пропорциональных
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= 𝐸 + 𝛼2𝐸12 + … + 𝛼𝑛𝐸1𝑛 ,

которая является ядром гомоморфизма 𝑃 → PGL𝑛−1, переводящего матрицу (11-2) в её правую
нижнюю угловую подматрицу размера (𝑛 − 1) × (𝑛 − 1).

Упражнение 11.5. Убедитесь, что это и в самом деле гомоморфизм групп.

Так как подгруппа 𝐴 содержит все трансвекции вида 𝑇1𝑗(𝛼), сопряжённые ей подгруппы 𝑔𝐴𝑔−1,
где 𝑔 ∈ PSL𝑛, содержат вообще все трансвекции и порождают1 PSL𝑛.

Упражнение 11.6. Убедитесь, что 𝑇𝑖𝑗(𝛼) = 𝑔𝑇1𝑗(𝛼)𝑔−1, где 𝑔 ∈ SL𝑛 переводит 𝑒1 в 𝑒𝑖, а 𝑒𝑖 в −𝑒1,
оставляя все остальные базисные векторы на месте.

Мы заключаем, что произведения элементов вида 𝑔𝑎𝑔−1, 𝑎 ∈ 𝐴, 𝑔 ∈ PSL𝑛 исчерпывают PSL𝑛.
Рассмотрим теперь отличную от единичной нормальную подгруппу 𝑁 ⊴ PSL𝑛. Простран-

ство ℙ𝑛−1 является дизъюнктным объединением орбит подгруппы 𝑁, и в силу нормальности 𝑁
каждый элемент 𝑔 ∈ PSL𝑛 переводит 𝑁-орбиту точки 𝑥 в 𝑁-орбиту точки 𝑔𝑥, ибо

𝑦 = ℎ𝑥 ⟺ 𝑔𝑦 = (𝑔ℎ𝑔−1)𝑔𝑥 .

Таким образом, группа PSL𝑛, с одной стороны, не может перевести пару точек, лежащих в одной
𝑁-орбите, в пару точек, лежащих в разных 𝑁-орбитах, а с другой стороны, действует 2-транзи-
тивно по упр. 11.3 на стр. 188. Такое возможно, только если𝑁-орбита всего одна, т. е. для любого
𝑔 ∈ PSL𝑛 существует такое ℎ ∈ 𝑁, что 𝑔𝑒1 = ℎ𝑒1, откуда ℎ−1𝑔 ∈ 𝑃 и 𝑔 ∈ ℎ𝑃. Мы заключаем,
что PSL𝑛 = 𝑁𝑃 = 𝑃𝑁. Поскольку сопряжение элементами из 𝑃 оставляет подгруппу 𝐴 ◁ 𝑃 на
месте, каждый элемент из PSL𝑛 является произведением элементов вида ℎ𝑎ℎ−1 с 𝑎 ∈ 𝐴, ℎ ∈ 𝑁 и
в силу равенства 𝐴𝑁 = 𝑁𝐴 лежит в 𝐴𝑁. В прим. 10.23 на стр. 186 мы видели, что все группы SL𝑛
за исключением двух, указанных в условии теоремы, совпадают со своими коммутантами. Но
коммутатор элементов вида 𝑎ℎ с 𝑎 ∈ 𝐴, ℎ ∈ 𝑁 в силу абелевости 𝐴 и нормальности𝑁 лежит в𝑁.

Упражнение 11.7. Убедитесь в этом.

Поэтому PSL𝑛 = PSL′
𝑛 = 𝑁 во всех случаях, кроме двух исключительных. □

11.2. Композиционные факторы. Конечная строго убывающая последовательность подгрупп

𝐺 = 𝐺0 ⊋ 𝐺1 ⊋ 𝐺2 ⊋ … ⊋ 𝐺𝑛−1 ⊋ 𝐺𝑛 = {𝑒} (11-3)

называется композиционным рядом или рядом Жордана – Гёльдера группы 𝐺, если при каждом 𝑖
подгруппа 𝐺𝑖+1 нормальна в 𝐺𝑖 и фактор 𝐺𝑖∕𝐺𝑖+1 прост. В этой ситуации неупорядоченный на-
бор простых групп 𝐺𝑖 ∕𝐺𝑖+1 (в котором возможны повторения) называется набором компози-
ционных факторов (или факторов Жордана – Гёльдера) группы 𝐺 и обозначается CF(𝐺), а чис-
ло 𝑛 = | CF(𝐺)| называется длиной композиционного ряда (11-3) или группы 𝐺 и обозначает-
ся length(𝐺). В теор. 11.3 на стр. 190 ниже мы покажем, что набор композиционных факторов
не зависит от выбора композиционного ряда, и тем самым CF(𝐺) и length(𝐺) корректно опреде-
лены.

1См. упр. 10.33 на стр. 186.
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Пример 11.1 (композиционные факторы 𝑆4)

Выше мы видели, что симметрическая группа 𝑆4 имеет композиционный ряд

𝑆4 ▷ 𝐴4 ▷ 𝑉4 ▷ ℤ∕(2) ▷ {𝑒} ,

в котором 𝐴4 ◁ 𝑆4 — подгруппа чётных перестановок, 𝑉4 ◁ 𝐴4 — подгруппа Клейна, состоящая
из тождественной перестановки и трёх перестановок циклового типа , а

ℤ∕(2) ◁ 𝑉4 ≃ ℤ∕(2) × ℤ∕(2)

любая из трёх циклических подгрупп второго порядка, порождённых неединичными элемента-
ми. Таким образом, симметрическая группа 𝑆4 имеет композиционные факторы ℤ∕(2) = 𝑆4∕𝐴4,
ℤ∕(3) = 𝐴4∕𝑉4, ℤ∕(2) = 𝑉4∕(ℤ∕(2)) и ℤ∕(2) = ℤ∕(2)∕{𝑒}.

Упражнение 11.8. Убедитесь, что 𝐴4∕𝑉4 ≃ ℤ∕(3).

Теорема 11.3 (теорема Жордана – Гёльдера)

Если группа𝐺 имеет конечный композиционный ряд, то неупорядоченный набор CF(𝐺) его фак-
торов не зависит от выбора композиционного ряда. В частности, все ряды Жордана – Гёльдера
имеют одинаковую длину length(𝐺).

Доказательство. Пусть у группы 𝐺 есть два композиционных ряда

𝐺 = 𝑃0 ⊋ 𝑃1 ⊋ 𝑃2 ⊋ … ⊋ 𝑃𝑛−1 ⊋ 𝑃𝑛 = {𝑒} (11-4)

𝐺 = 𝑄0 ⊋ 𝑄1 ⊋ 𝑄2 ⊋ … ⊋ 𝑄𝑚−1 ⊋ 𝑄𝑚 = {𝑒} . (11-5)

Мы собираемся вставить между последовательными членами этих рядов дополнительные це-
почки нестрого убывающих подгрупп так, чтобы получившиеся удлинённые ряды стали рав-
ной длины, и установить между их последовательными факторами биекцию, при которой со-
ответствующие друг другу факторы будут изоморфны. Для этого заменим каждое звено𝑃𝑖▷𝑃𝑖+1
верхней цепочки (11-4) цепочкой

𝑃𝑖 ⊇ (𝑄1 ∩ 𝑃𝑖)𝑃𝑖+1 ⊇ (𝑄2 ∩ 𝑃𝑖)𝑃𝑖+1 ⊇ … ⊇ (𝑄𝑚−1 ∩ 𝑃𝑖)𝑃𝑖+1 ⊇ 𝑃𝑖+1 , (11-6)

которая получается пересечением нижней цепочки (11-5) с подгруппой 𝑃𝑖 и умножением всех
полученных групп на нормальную в 𝑃𝑖 подгруппу 𝑃𝑖+1. В предл. 10.5 на стр. 185 мы видели, что
если подгруппа 𝐻 нормализует подгруппу 𝑁, то 𝑁𝐻 = 𝐻𝑁 тоже является подгруппой, причём
𝑁𝐻 ▷ 𝑁, 𝐻 ▷ (𝐻 ∩ 𝑁) и 𝐻𝑁∕𝑁 ≃ 𝐻∕(𝐻 ∩ 𝑁). Применяя это к подгруппам

𝐻 = 𝑄𝑘 ∩ 𝑃𝑖 и 𝑁 = (𝑄𝑘+1 ∩ 𝑃𝑖)𝑃𝑖+1 ,

мы получаем 𝐻𝑁 = (𝑄𝑘 ∩ 𝑃𝑖)𝑃𝑖+1 и 𝐻 ∩ 𝑁 = (𝑄𝑘+1 ∩ 𝑃𝑖)(𝑄𝑘 ∩ 𝑃𝑖+1).
Упражнение 11.9. Убедитесь, что 𝐻 нормализует 𝑁, и проверьте последние два равенства.

Таким образом, (𝑄𝑘 ∩ 𝑃𝑖)𝑃𝑖+1 ⊵ (𝑄𝑘+1 ∩ 𝑃𝑖)𝑃𝑖+1 и

(𝑄𝑘 ∩ 𝑃𝑖)𝑃𝑖+1
(𝑄𝑘+1 ∩ 𝑃𝑖)𝑃𝑖+1

≃ (𝑄𝑘 ∩ 𝑃𝑖)
(𝑄𝑘+1 ∩ 𝑃𝑖)(𝑄𝑘 ∩ 𝑃𝑖+1) . (11-7)
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Группа 𝑃𝑖+1 является нормальной подгруппой во всех группах цепочки (11-6). Факторизуя по
ней, получаем цепочку фактор групп

𝑃𝑖
𝑃𝑖+1

⊵ (𝑄1 ∩ 𝑃𝑖)𝑃𝑖+1
𝑃𝑖+1

⊵ (𝑄2 ∩ 𝑃𝑖)𝑃𝑖+1
𝑃𝑖+1

⊵ … ⊵ (𝑄𝑚−1 ∩ 𝑃𝑖)𝑃𝑖+1
𝑃𝑖+1

⊵ {𝑒} , (11-8)

в которой каждая подгруппа нормальна в предыдущей, а последовательные факторы

(𝑄𝑘 ∩ 𝑃𝑖)𝑃𝑖+1∕𝑃𝑖+1
(𝑄𝑘+1 ∩ 𝑃𝑖)𝑃𝑖+1∕𝑃𝑖+1

≃ (𝑄𝑘 ∩ 𝑃𝑖)𝑃𝑖+1
(𝑄𝑘+1 ∩ 𝑃𝑖)𝑃𝑖+1

≃ (𝑄𝑘 ∩ 𝑃𝑖)
(𝑄𝑘+1 ∩ 𝑃𝑖)(𝑄𝑘 ∩ 𝑃𝑖+1)

совпадают с (11-7). Так как группа 𝑃𝑖∕𝑃𝑖+1 проста, мы заключаем, что в цепочке (11-8) имеется
ровно одно нестрогое включение, а все остальные включения — равенства. Тем самым, ровно
один из факторов (11-7) отличен от единицы и изоморфен 𝑃𝑖∕𝑃𝑖+1.

Те же самые рассуждения с заменой 𝑃 на 𝑄 позволяют вставить между последовательными
группами 𝑄𝑘 ▷ 𝑄𝑘+1 композиционного ряда (11-5) убывающую цепочку подгрупп

𝑄𝑘 ⊇ (𝑃1 ∩ 𝑄𝑘)𝑄𝑘+1 ⊇ (𝑃2 ∩ 𝑄𝑘)𝑄𝑘+1 ⊇ … ⊇ (𝑃𝑛−1 ∩ 𝑄𝑘)𝑄𝑘+1 ⊇ 𝑄𝑘+1 , (11-9)

каждая из которых нормальна в предыдущей, а последовательные факторы имеют вид

(𝑃𝑖 ∩ 𝑄𝑘)𝑄𝑘+1
(𝑃𝑖+1 ∩ 𝑄𝑘)𝑄𝑘+1

≃ (𝑃𝑖 ∩ 𝑄𝑘)
(𝑃𝑖+1 ∩ 𝑄𝑘)(𝑃𝑖 ∩ 𝑄𝑘+1) (11-10)

и изоморфны соответствующим факторам (11-7), поскольку

(𝑃𝑖+1 ∩ 𝑄𝑘)(𝑃𝑖 ∩ 𝑄𝑘+1) = (𝑄𝑘+1 ∩ 𝑃𝑖)(𝑄𝑘 ∩ 𝑃𝑖+1) ,

так как заключённые в скобки пересечения нормализуют друг друга. Таким образом, вставляя
между последовательными элементами композиционного ряда (11-4) цепочки (11-6), а между
последовательными элементами ряда (11-5) — цепочки (11-9), мы получим ряды одинаковой
длины, в которых не все включения строгие, но факторы находятся в биективном соответствии,
сопоставляющем друг другу изоморфные факторы (11-10) и (11-7). Поскольку 𝑄𝑘+1 является
нормальной подгруппой всех групп цепочки (11-9), те же аргументы, что применялись выше к
подгруппе𝑃𝑖+1 и цепочке (11-6), показывают, что при фиксированном 𝑘 среди факторов (11-10)
имеется ровно один отличный от единицы, и он изоморфен 𝑄𝑘∕𝑄𝑘+1. □

Замечание 11.1. Непростая группа может иметь несколько разных композиционных рядов с оди-
наковым набором факторов, а группы с одинаковыми наборами факторов Жордана-Гёльдера не
обязательно изоморфны.

Предложение 11.1

Если группа 𝐺 обладает конечным композиционным рядом, то любая её нормальная подгруппа
𝑁 ◁ 𝐺 и факторгруппа 𝐺 ∕𝑁 тоже обладают конечными композиционными рядами, причём
CF(𝐺) = CF(𝑁) ⊔ CF(𝐺∕𝑁). В частности, length(𝐺) = length(𝑁) + length(𝐺∕𝑁).

Доказательство. Пересечение композиционного ряда группы 𝐺 с подгруппой 𝑁 ◁ 𝐺 имеет вид

𝑁 ⊇ 𝐺1 ∩ 𝑁 ⊇ … ⊇ 𝐺𝑛−1 ∩ 𝑁 ⊇ {𝑒} , (11-11)
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где (𝐺𝑖 ∩ 𝑁) ▷ (𝐺𝑖+1 ∩ 𝑁) , так как 𝐺𝑖 ▷ 𝐺𝑖+1. Согласно предл. 10.5 на стр. 185,

𝐺𝑖 ∩ 𝑁
𝐺𝑖+1 ∩ 𝑁 = 𝐺𝑖 ∩ 𝑁

(𝐺𝑖 ∩ 𝑁) ∩ 𝐺𝑖+1
≃ (𝐺𝑖 ∩ 𝑁)𝐺𝑖+1

𝐺𝑖+1
.

Поскольку 𝐺𝑖 ⊵ (𝐺𝑖 ∩ 𝑁)𝐺𝑖+1 ⊵ 𝐺𝑖+1 и фактор 𝐺𝑖∕𝐺𝑖+1 прост, одно включение строгое, другое —
равенство. Если (𝐺𝑖 ∩ 𝑁)𝐺𝑖+1 = 𝐺𝑖, то (𝐺𝑖 ∩ 𝑁)∕(𝐺𝑖+1 ∩ 𝑁) ≃ 𝐺𝑖∕𝐺𝑖+1. Если (𝐺𝑖 ∩ 𝑁)𝐺𝑖+1 = 𝐺𝑖+1,
то 𝐺𝑖 ∩ 𝑁 = 𝐺𝑖+1 ∩ 𝑁. Таким образом, убирая из цепочки (11-11) все равенства, получаем ряд
Жордана – Гёльдера, факторы которого содержатся среди композиционных факторов группы𝐺.
Аналогично, применяя к композиционному ряду группы𝐺 эпиморфизм 𝜋∶ 𝐺 ↠ 𝐺∕𝑁, получаем
цепочку 𝐺∕𝑁 ⊵ 𝜋(𝐺1) ⊵ … ⊵ 𝜋(𝐺𝑛−1) ⊵ {𝑒}, в которой

𝜋(𝐺𝑖)
𝜋(𝐺𝑖+1) ≃ 𝜋−1(𝜋(𝐺𝑖))

𝜋−1(𝜋(𝐺𝑖+1)) = 𝐺𝑖𝑁
𝐺𝑖+1𝑁

≃ 𝐺𝑖
𝐺𝑖 ∩ (𝐺𝑖+1𝑁) = 𝐺𝑖

𝐺𝑖+1(𝐺𝑖 ∩ 𝑁) = 𝐺𝑖
(𝐺𝑖 ∩ 𝑁)𝐺𝑖+1

и возникает противоположная альтернатива: если (𝐺𝑖 ∩ 𝑁)𝐺𝑖+1 = 𝐺𝑖, то 𝜋(𝐺𝑖) = 𝜋(𝐺𝑖+1), а если
(𝐺𝑖 ∩ 𝑁)𝐺𝑖+1 = 𝐺𝑖+1, то 𝜋(𝐺𝑖)∕𝜋(𝐺𝑖+1) ≃ 𝐺𝑖∕𝐺𝑖+1. Поэтому, убирая из цепочки равенства, полу-
чаем композиционный ряд для группы 𝐺∕𝑁, факторы которого суть композиционные факторы
группы 𝐺, не вошедшие в набор композиционных факторов подгруппы 𝑁 ◁ 𝐺. □

Предложение 11.2

Если нормальная подгруппа𝑁◁𝐺 и факторгруппа𝑄 = 𝐺∕𝑁 имеют конечные длины, то группа𝐺
тоже имеет конечную длину, и length(𝐺) = length(𝑁) + length(𝑄), CF(𝐺) = CF(𝑁) ⊔ CF(𝑄).

Доказательство. Пусть группы 𝑁 и 𝑄 имеют композиционные ряды

𝑁 ▷ 𝑁1 ▷ … ▷ 𝑁𝑛−1 ▷ {𝑒}
𝑄 ▷ 𝑄1 ▷ … ▷ 𝑄𝑚−1 ▷ {𝑒} .

Обозначим через 𝑃𝑖 = 𝜋−1(𝑄𝑖) полный прообраз группы 𝑄𝑖 при гомоморфизме факторизации
𝜋∶ 𝐺 ↠ 𝑄 с ядром 𝑁. Цепочка подгрупп

𝐺 ▷ 𝑃1 ▷ … ▷ 𝑃𝑚−1 ▷ 𝑁1 ▷ … ▷ 𝑁𝑛−1 ▷ {𝑒}

является рядом Жордана – Гёльдера с требуемыми свойствами. □

Следствие 11.1

Каждая конечная группа обладает конечным композиционным рядом. □

Упражнение 11.10. Постройте композиционный ряд аддитивной группы ℤ∕(𝑝𝑛), где 𝑝 — про-
стое.

11.3. Полупрямые произведения. Для пары подгрупп 𝑁, 𝐻 группы 𝐺 отображение

𝑁 × 𝐻 → 𝑁𝐻 , (𝑥, ℎ) ↦ 𝑥ℎ ,

биективно если и только если 𝑁 ∩ 𝐻 = {𝑒}. В самом деле, при 𝑥1ℎ1 = 𝑥2ℎ2 элемент

𝑥−1
2 𝑥1 = ℎ2ℎ−1

1 ∈ 𝑁 ∩ 𝐻 ,
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и если 𝑁 ∩ 𝐻 = {𝑒}, то 𝑥2 = 𝑥1 и ℎ2 = ℎ1, а если в 𝑁 ∩ 𝐻 есть элемент 𝑧 ≠ 𝑒, то разные пары
(𝑒, 𝑒), (𝑧, 𝑧−1) ∈ 𝑁 × 𝐻 перейдут в один и тот же элемент 𝑒 ∈ 𝑁𝐻. Будем называть подгруппы
𝑁,𝐻 ⊂ 𝐺 дополнительными, если 𝑁 ∩ 𝐻 = {𝑒} и 𝑁𝐻 = 𝐺. В этом случае группа 𝐺 как мно-
жество находится в биекции с прямым произведением 𝑁 × 𝐻. Если подгруппа 𝑁 ◁ 𝐺 при этом
нормальна, то композиция элементов 𝑔1 = 𝑥1ℎ1 и 𝑔2 = 𝑥2ℎ2 может быть выражена в терминах
пар (𝑥1, ℎ1), (𝑥2, ℎ2) ∈ 𝑁 × 𝐻. А именно, так как

𝑔1𝑔2 = 𝑥1ℎ1𝑥2ℎ2 = 𝑥1(ℎ1𝑥2ℎ−1
1 ) ⋅ ℎ1ℎ2 и ℎ1𝑥2ℎ−1

1 ∈ 𝑁 ,

группу 𝐺 можно описать как множество 𝑁 × 𝐻 с операцией

(𝑥1, ℎ1) ⋅ (𝑥2, ℎ2) = (𝑥1 Adℎ1(𝑥2), ℎ1ℎ2) , (11-12)

где через Adℎ ∶ 𝑁 ⥲ 𝑁, 𝑥 ↦ ℎ𝑥ℎ−1, обозначено присоединённое действие элемента ℎ на нор-
мальной подгруппе𝑁. В этой ситуации говорят, что группа𝐺 является полупрямым произведени-
ем нормальной подгруппы𝑁◁𝐺 и дополнительной к ней подгруппы𝐻 ⊂ 𝐺 и пишут 𝐺 = 𝑁⋊𝐻.
Если сопряжение элементами из подгруппы 𝐻 действует на подгруппе 𝑁 тривиально, что рав-
носильно перестановочности 𝑥ℎ = 𝑥ℎ любых двух элементов 𝑥 ∈ 𝑁 и ℎ ∈ 𝐻, то полупрямое
произведение называется прямым. В этом случае (𝑥1, ℎ1) ⋅ (𝑥2, ℎ2) = (𝑥1𝑥2, ℎ1ℎ2) для всех пар
(𝑥1, ℎ1), (𝑥2, ℎ2) ∈ 𝑁 × 𝐻.

Пример 11.2 (𝐷𝑛 = ℤ∕(𝑛) ⋊ ℤ∕(2))

Группа диэдра 𝐷𝑛 содержит нормальную подгруппу поворотов, изоморфную аддитивной груп-
пе ℤ∕(𝑛). Подгруппа второго порядка, порождённая любым отражением, дополнительна к груп-
пе поворотов и изоморфна аддитивной группе ℤ∕(2). Присоединённое действие отражения на
группе поворотов меняет знак у угла поворота. При отождествлении группы поворотов с ℤ∕(𝑛)
это действие превращается в умножение на −1. Таким образом,𝐷𝑛 = ℤ∕(𝑛)⋊ℤ∕(2) и в терминах
пар (𝑥, 𝑦) ∈ ℤ∕(𝑛) × ℤ∕(2) композиция на группе диэдра задаётся правилом

(𝑥1, 𝑦1) ⋅ (𝑥2, 𝑦2) = (𝑥1 + (−1)𝑦1𝑥2, 𝑦1 + 𝑦2) , 𝑥1, 𝑥2 ∈ ℤ∕(𝑛) , 𝑦1, 𝑦2 ∈ ℤ∕(2) .

Пример 11.3 (Aff(𝑉) = 𝑉 ⋊ GL(𝑉), продолжение прим. 10.20 на стр. 183)

Аффинная группа1 Aff(𝑉) содержит нормальную подгруппу параллельных переносов, которая
изоморфна аддитивной группе векторного пространства 𝑉 и является ядром сюрьективного
гомоморфизма групп

𝐷∶ Aff(𝑉) ↠ GL(𝑉) , 𝜑 ↦ 𝐷𝜑 , (11-13)

сопоставляющего аффинному преобразованию 𝜑∶ 𝔸(𝑉) → 𝔸(𝑉) его дифференциал

𝐷𝜑 ∶ 𝑉 → 𝑉 , ⃖⃖⃖⃗𝑝𝑞 ↦ ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝜑(𝑝)𝜑(𝑞) .

Если зафиксировать в 𝔸(𝑉) какую-нибудь точку 𝑝, то ограничение гомоморфизма (11-13) на
стабилизатор Stab𝑝 ⊂ Aff(𝑉) задаст изоморфизм 𝐷𝑝 ∶ Stab𝑝 ⥲ GL(𝑉). Обратный изоморфизм
сопоставляет линейному оператору 𝑓∶ 𝑉 ⥲ 𝑉 аффинное преобразование

𝜑𝑓 ∶ 𝔸(𝑉) → 𝔸(𝑉) , 𝑥 ↦ 𝑝 + 𝑓(⃖⃖⃖⃗𝑝𝑥) ,

оставляющее на месте точку 𝑝. Поскольку каждое преобразование𝜑 ∈ Aff(𝑉) раскладывается в
композицию𝜑 = 𝜏𝑣 ∘(𝜏−𝑣 ∘𝜑) параллельного переноса 𝜏𝑣 на вектор 𝑣 = ⃖⃖⃖⃖⃖⃖⃖⃗𝑝𝜑(𝑝) и преобразования
𝜏−𝑣 ∘ 𝜑 ∈ Stab(𝑝), группа Aff(𝑉) = 𝑉 ⋊ Stab𝑝 ≃ 𝑉 ⋊ GL(𝑉). Согласно прим. 10.20 на стр. 183,
композиция в группе 𝑉 ⋊ GL(𝑉) задаётся правилом (𝑢, 𝑓) ⋅ (𝑤,𝑔) = (𝑢 + 𝑓(𝑤), 𝑓𝑔).

1См. прим. 10.20 на стр. 183.
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11.3.1. Полупрямое произведение групп. Предыдущую конструкцию можно применить к
двум абстрактным группам 𝑁 и 𝐻 как только задано действие группы 𝐻 на группе 𝑁, т. е. гомо-
морфизм группы 𝐻 в группу автоморфизмов группы 𝑁:

𝜓∶ 𝐻 → Aut𝑁 , ℎ ↦ 𝜓ℎ ∶ 𝑁 ⥲ 𝑁 , (11-14)

По аналогии с форм. (11-12) на стр. 193 зададим на множестве 𝑁 × 𝐻 операцию правилом

(𝑥1, ℎ1) ⋅ (𝑥2, ℎ2) ≝ (𝑥1𝜓ℎ1(𝑥2), ℎ1ℎ2) . (11-15)

Упражнение 11.11. Проверьте, что формула (11-15) задаёт на 𝑁 × 𝐻 структуру группы с еди-
ницей (𝑒, 𝑒) и обращением (𝑥, ℎ)−1 = (𝜓−1

ℎ (𝑥−1), ℎ−1), где 𝜓−1
ℎ = 𝜓ℎ−1 — автоморфизм,

обратный к 𝜓ℎ ∶ 𝑁 ⥲ 𝑁.

Полученная таким образом группа называется полупрямым произведением групп 𝑁 и 𝐻 по дей-
ствию 𝜓∶ 𝐻 → Aut𝑁 и обозначается 𝑁⋊𝜓 𝐻. Подчеркнём, что результат зависит от выбора
действия 𝜓. Если действие тривиально, т. е. 𝜓ℎ = Id𝑁 для всех ℎ ∈ 𝐻, мы получаем прямое
произведение 𝑁 × 𝐻 с покомпонентными операциями.

Упражнение 11.12. Убедитесь, что подмножество 𝑁′ ≝ {(𝑥, 𝑒) | 𝑥 ∈ 𝑁} является изоморфной
группе 𝑁 нормальной подгруппой в 𝐺 = 𝑁⋊𝜓 𝐻 с фактором 𝐺∕𝑁′ ≃ 𝐻, а подмножество
𝐻′ ≝ {(𝑒, ℎ) | ℎ ∈ 𝐻} является изоморфной 𝐻 и дополнительной к 𝑁′ подгруппой в 𝐺,
причём 𝐺 = 𝑁′ ⋊𝐻′ является полупрямым произведением своих подгрупп 𝑁′ и 𝐻′.

Предложение 11.3

Для любых гомоморфизма 𝜓∶ 𝐻 → Aut(𝑁), ℎ ↦ 𝜓ℎ, и автоморфизмов 𝛼∶ 𝐻 ⥲ 𝐻 и 𝛽∶ 𝑁 ⥲ 𝑁
отображения (𝑛, ℎ) ↦ (𝑛,𝛼−1ℎ) и (𝑛, ℎ) ↦ (𝛽𝑛, ℎ) задают изоморфизмы полупрямых произве-
дений 𝑁⋊𝜓 𝐻 ⥲ 𝑁⋊𝜓∘𝛼 𝐻 и 𝑁⋊𝜓 𝐻 ⥲ 𝑁⋊Ad𝛽(𝜓) 𝐻, где Ad𝛽(𝜓)∶ 𝐻 → Aut(𝑁), ℎ ↦ 𝛽𝜓ℎ𝛽−1.

Доказательство. Отображение (𝑛, ℎ) ↦ (𝑛,𝛼−1ℎ) переводит сомножители из левой части ра-
венства (𝑛1, ℎ1)(𝑛2, ℎ2) = (𝑛1𝜓ℎ1𝑛2, ℎ1ℎ2) в (𝑛1,𝛼−1ℎ1) и (𝑛2,𝛼−1ℎ2), произведение которых в
𝑁⋊𝜓∘𝛼 𝐻 равно (𝑛1𝜓ℎ1𝑛2,𝛼−1(ℎ1ℎ2)). Отображение (𝑛, ℎ) ↦ (𝛽𝑛, ℎ) переводит те же самые со-
множители в (𝛽𝑛1, ℎ1) и (𝛽𝑛2, ℎ2). Их произведение в 𝑁⋊Ad𝛽(𝜓) 𝐻 равно (𝛽(𝑛1𝜓ℎ1𝑛2), ℎ1ℎ2). □

Пример 11.4 (голоморф)

Группа автоморфизмов Aut𝐺 произвольной группы 𝐺 тавтологически действует на 𝐺. Полупря-
мое произведение Hol𝐺 ≝ 𝐺⋊ Aut𝐺 по этому действию называется голоморфом группы 𝐺. Вло-
жение 𝐺 ↪ Hol𝐺 замечательно тем, что любой автоморфизм группы 𝐺 является сужением на 𝐺
внутреннего автоморфизма объемлющей группы Hol𝐺.

Пример 11.5 (сплетение)

Для любых двух групп 𝐻, 𝑁 множество 𝑁𝐻 всех функций 𝑓∶ 𝐻 → 𝑁 имеет естественную струк-
туры группы, в которой 𝑓1𝑓2 ∶ 𝐻 → 𝑁, 𝑥 ↦ 𝑓1(𝑥)𝑓2(𝑥). Эту группу можно воспринимать как
прямое произведение одинаковых копий группы𝑁, занумерованных элементами1 𝑥 ∈ 𝐻. Груп-
па 𝐻 действует на 𝑁𝐻 по следующему правилу: элемент ℎ ∈ 𝐻 переводит функцию 𝑓∶ 𝐻 → 𝑁 в
функцию ℎ𝑓∶ 𝑥 ↦ 𝑓(𝑥ℎ).

Упражнение 11.13. Убедитесь, что ℎ(𝑓1𝑓2) = (ℎ𝑓1)(ℎ𝑓2) и (ℎ1ℎ2)𝑓 = ℎ1(ℎ2𝑓).
1Ср. с n∘ 1.6 на стр. 34.



11.4.𝑝-группы и теоремы Силова 195

Полупрямое произведение 𝑁 ≀ 𝐻 ≝ 𝑁𝐻 ⋊𝐻 по этому действию называется сплетением1 груп-
пы 𝑁 с группой 𝐻. Сплетение замечательно тем, что любая группа 𝐺 с нормальной подгруппой
𝑁◁ 𝐺 и фактор группой 𝐻 = 𝐺∕𝑁 допускает гомоморфное вложение Фробениуса 𝜑∶ 𝐺 ↪ 𝑁 ≀𝐻.
Чтобы задать его, зафиксируем какое-нибудь теоретико множественное сечение 𝜎∶ 𝐻 ↪ 𝐺
гомоморфизма факторизации 𝜋∶ 𝐺 ↠ 𝐻 = 𝐺∕𝑁, выбирающее в каждом классе ℎ ∈ 𝐺∕𝑁 неко-
торый представитель 𝜎(ℎ) ∈ 𝐺. Тогда для любых 𝑔 ∈ 𝐺 и ℎ ∈ 𝐻 элемент 𝜎(ℎ)𝑔𝜎(ℎ𝜋(𝑔))−1 ∈ 𝑁,
поскольку 𝜋(𝜎(ℎ)𝑔𝜎(ℎ𝜋(𝑔))−1) = ℎ𝜋(𝑔)(ℎ𝜋(𝑔))−1 = 𝑒. Рассмотрим функцию

𝜎𝑔 ∶ 𝐻 → 𝑁 , ℎ ↦ 𝜎(ℎ)𝑔𝜎(ℎ𝜋(𝑔))−1 ,

как элемент группы 𝑁𝐻 и положим 𝜑𝜎(𝑔) = (𝜎𝑔,𝜋(𝑔)) ∈ 𝑁𝐻 ⋊𝐻.

Упражнение 11.14. Убедитесь, что𝜑𝜎(𝑔1𝑔2) = 𝜑𝜎(𝑔1)𝜑𝜎(𝑔2) в𝑁𝐻 ⋊𝐻 и что образы двух вложе-
ний𝜑𝜎,𝜑𝜏 ∶ 𝐺 ↪ 𝑁 ≀𝐻, построенных при помощи разных сечений 𝜎, 𝜏∶ 𝐻 ↪ 𝐺, сопряжены
в группе 𝑁 ≀ 𝐻.

11.4. 𝒑-группы и теоремы Силова. Группа порядка 𝑝𝑛, где 𝑝 ∈ ℕ — простое, называется 𝑝-
группой. Поскольку все нетривиальные подгруппы𝑝-группы также являются𝑝-группами, длина
любой орбиты 𝑝-группы при любом её действии на любом множестве либо делится на 𝑝, либо
равна единице. Мы получаем простое, но полезное

Предложение 11.4

Пусть 𝑝-группа 𝐺 действует на конечном множестве 𝑋, число элементов в котором не делится
на 𝑝. Тогда 𝐺 имеет на 𝑋 неподвижную точку. □

Предложение 11.5

Любая 𝑝-группа имеет нетривиальный центр.

Доказательство. Рассмотрим присоединённое действие группы на себе. Центр группы является
множеством одноточечных орбит этого действия. Так как число элементов в группе и длины
всех неодноточечных орбит делятся на 𝑝, одноточечные орбиты не могут исчерпываться одной
орбитой элемента 𝑒. □

Упражнение 11.15. Покажите, что любая группа 𝐺 порядка 𝑝2, где 𝑝 простое, абелева.

Определение 11.1 (силовские подгруппы)

Пусть 𝐺 — произвольная конечная группа. Запишем её порядок в виде |𝐺| = 𝑝𝑛𝑚, где 𝑝 —
простое, 𝑛 ⩾ 1, и 𝑚 взаимно просто с 𝑝. Всякая подгруппа 𝑆 ⊂ 𝐺 порядка |𝑆| = 𝑝𝑛 называется
силовской 𝑝-подгруппой в 𝐺. Количество силовских 𝑝-подгрупп в 𝐺 обозначается через 𝑁𝑝(𝐺).

Теорема 11.4 (теорема Силова)

Для любого простого 𝑝 ∣ |𝐺| силовские 𝑝-подгруппы в 𝐺 существуют. Все они сопряжены друг
другу, и любая 𝑝-подгруппа в 𝐺 содержится в некоторой силовской 𝑝-подгруппе.

Доказательство (Ж. – П. Серр). Пусть |𝐺| = 𝑝𝑛𝑚 и 𝑝 ∤ 𝑚. Обозначим через ℰ множество 𝑝𝑛-
элементных подмножеств в 𝐺 и рассмотрим действие 𝐺 на ℰ, индуцированное левым регуляр-
ным действием 𝐺 на себе. Стабилизатор точки 𝐹 ∈ ℰ состоит из всех элементов 𝑔 ∈ 𝐺, левое

1По английски wreath product.



196 §11 Композиционные факторы, произведения и силовские подгруппы

умножение на которые переводит множество 𝐹 ⊂ 𝐺 в себя: Stab(𝐹) = {𝑔 ∈ 𝐺 | 𝑔𝐹 ⊂ 𝐹}. Так как
𝑔𝑥 = 𝑥 в группе 𝐺 только при 𝑔 = 𝑒, группа Stab(𝐹) свободно действует на множестве 𝐹 и все
орбиты этого действия состоят из |Stab(𝐹)| точек. Поэтому |𝐹| = 𝑝𝑛 делится на |Stab(𝐹)|, откуда
|Stab(𝐹)| = 𝑝𝑘, и имеется следующая альтернатива: либо 𝑘 < 𝑛, и в этом случае длина𝐺-орбиты
элемента 𝐹 ∈ ℰ делится на 𝑝, либо 𝑘 = 𝑛, и в этом случае подгруппа Stab(𝐹) ⊂ 𝐺 силовская, а
𝐺-орбита элемента 𝐹 ∈ ℰ состоит из 𝑚 элементов. Во втором случае по предл. 11.4 каждая 𝑝-
подгруппа 𝐻 ⊂ 𝐺 (в частности, каждая силовская подгруппа), имеет на 𝐺-орбите элемента 𝐹
неподвижную точку 𝑔𝐹, а значит, содержится в силовской подгруппе Stab(𝑔𝐹) = 𝑔 Stab(𝐹)𝑔−1,
сопряжённой к Stab(𝐹), и совпадает с ней, если𝐻 силовская. Таким образом, для доказательства
теоремы остаётся убедиться, что в множестве ℰ есть 𝐺-орбита, длина которой не делится на 𝑝.
Это следует из лем. 11.1 ниже. □

Лемма 11.1

|ℰ| = (𝑝
𝑛𝑚
𝑝𝑛 ) ≡ 𝑚 (mod 𝑝) не делится на 𝑝.

Доказательство. Класс вычетов (𝑝
𝑛𝑚
𝑝𝑛 ) (mod 𝑝) равен коэффициенту при 𝑥𝑝𝑛 , возникающему

при раскрытии бинома (1 + 𝑥)𝑝𝑛𝑚 над полем 𝔽𝑝 = ℤ ∕ (𝑝). Так как над 𝔽𝑝 возведение в 𝑝-

тую степень является аддитивным гомоморфизмом, (1 + 𝑥)𝑝𝑛 = 1 + 𝑥𝑝𝑛 , откуда (1 + 𝑥)𝑝𝑛𝑚 =
= (1 + 𝑥𝑝𝑛)

𝑚
= 1 + 𝑚𝑥𝑝𝑛 + старшие степени. □

Следствие 11.2 (дополнение к теореме Силова)

В условиях теоремы Силова число𝑁𝑝 силовских 𝑝-подгрупп в 𝐺 делит𝑚 и сравнимо c единицей
по модулю 𝑝.

Доказательство. Обозначим множество силовских 𝑝-подгрупп в 𝐺 через 𝒮 и рассмотрим дей-
ствие 𝐺 на 𝒮, индуцированное присоединённым действием 𝐺 на себе. По теореме Силова это
действие транзитивно, откуда |𝒮| = |𝐺|∕|Stab(𝑃)|, где 𝑃 ∈ 𝒮 — произвольно взятая силовская
𝑝-подгруппа. Поскольку 𝑃 ⊂ Stab(𝑃), порядок |Stab(𝑃)| делится на |𝑃| = 𝑝𝑛, а значит |𝒮| делит
|𝐺|∕𝑝𝑛 = 𝑚, что доказывает первое утверждение.

Для доказательства второго утверждения достаточно проверить, что 𝑃, действуя сопряже-
ниями на 𝒮, имеет там ровно одну неподвижную точку, а именно, саму себя. Тогда порядки всех
остальных 𝑃-орбит будут делиться на 𝑝, и мы получим |𝒮| ≡ 1 (mod 𝑝).

Пусть силовская подгруппа𝐻 ∈ 𝒮 неподвижна при сопряжении подгруппой𝑃. Это означает,
что 𝑃 ⊂ Stab(𝐻) = {𝑔 ∈ 𝐺 | 𝑔𝐻𝑔−1 ⊂ 𝐻} и |Stab(𝐻)| = 𝑝𝑛𝑚′, где 𝑚′|𝑚 взаимно просто с 𝑝. Так
как 𝐻 ⊂ Stab(𝐻), подгруппы 𝑃 и 𝐻 являются силовскими в Stab(𝐻). Поскольку 𝐻 нормальна в
Stab(𝐻), и все силовские подгруппы сопряжены, мы заключаем, что 𝐻 = 𝑃. □

Пример 11.6 (группы порядка 𝑝𝑞 c простыми 𝑝 > 𝑞)

Пусть |𝐺| = 𝑝𝑞, где 𝑝 > 𝑞 простые. Тогда в𝐺 есть ровно одна, автоматически нормальная силов-
ская 𝑝-подгруппа 𝐻𝑝 ≃ ℤ∕(𝑝). Рассмотрим любую силовскую 𝑞-подгруппу 𝐻𝑞 ≃ ℤ∕(𝑞). Посколь-
ку𝐻𝑝 и𝐻𝑞 просты,𝐻𝑝 ∩𝐻𝑞 = 𝑒 и 𝐺 = 𝐻𝑝𝐻𝑞. Согласно n∘ 11.3 𝐺 = ℤ∕(𝑝) ⋊𝜓 ℤ∕(𝑞) для некоторого
гомоморфизма 𝜓∶ ℤ∕(𝑞) → Aut(ℤ∕(𝑝)).

Упражнение 11.16. Убедитесь, что Aut(ℤ∕(𝑝)) ≃ 𝔽×
𝑝 ≃ ℤ∕(𝑝 − 1).

Гомоморфизм 𝜓∶ ℤ∕(𝑞) → Aut(ℤ∕(𝑝)) ≃ 𝔽×
𝑝 однозначно задаётся своим значением на образую-

щей [1]𝑞, которая является элементом порядка 𝑞. Поэтому элемент 𝜂 = 𝜓([1]𝑞) ∈ 𝞵𝑞(𝔽𝑝) ⊂ 𝔽×
𝑝
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является корнем 𝑞-й степени из 1 в поле 𝔽𝑝. По упр. 11.4 на стр. 188 группа 𝞵𝑞(𝔽𝑝) цикли-
ческая порядка нод(𝑞, 𝑝 − 1). Мы заключаем, что если 𝑞 ∤ (𝑝 − 1), то всякий гомоморфизм
ℤ∕(𝑞) → Aut(ℤ∕(𝑝)) тривиален и, стало быть, единственной группой порядка 𝑝𝑞 в этом случае
является ℤ∕(𝑝) × ℤ∕(𝑞). Если же 𝑞 ∣ (𝑝 − 1), то существует нетривиальный гомоморфизм

𝜓∶ → Aut(ℤ∕(𝑝)) , [1]𝑞 ↦ 𝜂 , (11-16)

где 𝜂 ∈ 𝔽×
𝑝 порождает мультипликативную группу 𝞵𝑞(𝔽𝑝). Гомоморфизм (11-16) сопоставляет

каждому элементу [𝑦]𝑞 ∈ ℤ∕(𝑞) автоморфизм 𝜓𝑦 ∶ ℤ∕(𝑝) ⥲ ℤ∕(𝑝), [𝑥]𝑝 ↦ [𝜂𝑦𝑥]𝑝, и задаёт
полупрямое произведение ℤ∕(𝑝) ⋊𝜓 ℤ∕(𝑞) с операцией

([𝑥1]𝑝, [𝑦1]𝑞) ⋅ ([𝑥2]𝑝, [𝑦2]𝑞) = ([𝑥1 + 𝜂𝑦1𝑥2]𝑝, [𝑦1 + 𝑦2]𝑞) . (11-17)

Любой другой нетривиальный гомоморфизм ℤ∕(𝑞) → Aut(ℤ∕(𝑝)) имеет вид𝜓𝑚 ∶ [1]𝑞 ↦ 𝜂𝑚, где
1 ⩽ 𝑚 ⩽ 𝑞 − 1, и является композицией гомоморфизма (11-16) с автоморфизмом умножения
на 𝑚∶ ℤ∕(𝑞) ⥲ ℤ∕(𝑞), [𝑦]𝑞 ↦ [𝑚𝑦]𝑞. По предл. 11.3 на стр. 194 задаваемое им полупрямое
произведение ℤ∕(𝑝) ⋊𝜓∘𝑚 ℤ∕(𝑞) ≃ ℤ∕(𝑝) ⋊𝜓 ℤ∕(𝑞). Мы заключаем, что при 𝑞 ∣ (𝑝 − 1) кроме
абелевой группыℤ∕(𝑝)×ℤ∕(𝑞) существует единственная с точностью до изоморфизма неабелева
группа порядка 𝑝𝑞. Она изоморфнаℤ∕(𝑝) ⋊ℤ∕(𝑞) с операцией (11-17). В частности, для простого
𝑝 > 2 единственной с точностью до изоморфизма неабелевой группой порядка 2𝑝 является
группа диэдра1 𝐷𝑝.

1См. прим. 11.2 на стр. 193.



Ответы и указания к некоторым упражнениям

Упр. 11.1. Пусть 𝑔 ∈ 𝐴𝑛, ℎ ∈ 𝑆𝑛 −𝐴𝑛. Всякая перестановка, сопряжённая 𝑔 в 𝑆𝑛, сопряжена в 𝐴𝑛
либо 𝑔, либо Adℎ 𝑔. Равенство Ad𝑝 𝑔 = Adℎ 𝑔 равносильно равенству Ad𝑝−1ℎ 𝑔 = 𝑔. Поэто-
му существование чётной перестановки 𝑝 удовлетворяющей первому равенству равносильно
существованию нечётной перестановки 𝑝−1ℎ, коммутирующей с 𝑔, т. е. класс сопряжённости
перестановки 𝑔 в 𝑆𝑛 не распадается на два класса сопряжённости в 𝐴𝑛 если и только если цен-
трализатор 𝑍(𝑔) содержит нечётную перестановку. Когда в цикловом типе 𝑔 есть строка чётной
длины или две строки одинаковой нечётной длины, то такая перестановка есть, а если 𝑔 явля-
ется произведением попарно разных циклов нечётной длины, то — нет.

Упр. 11.2. Правая часть равенства |𝐻| = 12𝜀1 + 12𝜀2 + 20𝜀3 + 15𝜀4 + 1, приведённая по модулям 2,
3 и 5, равна, соответственно, 1+ 𝜀4, 1− 𝜀3 и 1+2(𝜀1 + 𝜀2). Она делится на 2 или на 3 только если
𝜀4 = 1 или 𝜀3 = 1. В обоих случаях |𝐻| ⩾ 16, так что |𝐻| ≠ 2, 3, 4, 3 ⋅ 2, 3 ⋅ 4. Если |𝐻| делится
на 5, то 𝜀1 = 𝜀2 = 1 и |𝐻| ⩾ 25, так что |𝐻| ≠ 5, 2 ⋅ 5, 3 ⋅ 5, 4 ⋅ 5. Если |𝐻| делится на 2 ⋅ 3 ⋅ 5, то
все 𝜀𝑖 = 1 и |𝐻| = 60. Последняя возможность: |𝐻| = 1.

Упр. 11.3. Чтобы перевести одномерные подпространства, порождённые непропорциональными
векторами 𝑒1, 𝑒2, в одномерные подпространства, порождённые непропорциональными векто-
рами 𝑣1, 𝑣2, дополним эти пары векторов до базисов 𝒆 = (𝑒1, … , 𝑒𝑛) и 𝒗 = (𝑣1, … , 𝑣𝑛). Матрица
перехода 𝐶𝒆𝒆 имеет ненулевой определитель 𝛿. Умножая её первый столбец на 𝛿−1 получаем
матрицу 𝐹 ∈ SL𝑛. Оператор 𝑥 ↦ 𝐹𝑥 переводит 𝑒1 в 𝛿−1𝑣1, а 𝑒2 в 𝑣2.

Упр. 11.4. Пусть 1 ⩽ 𝑘 ⩽ 𝑚. Класс [𝑘] ∈ ℤ∕(𝑚) удовлетворяет уравнению 𝑛[𝑘] = 0 если и только
если 𝑚 ∣ 𝑘𝑛. Полагая 𝑚 = 𝜇 нод(𝑚, 𝑛), 𝑛 = 𝜈 нод(𝑚, 𝑛), где нод(𝜇, 𝜈) = 1, заключаем, что 𝑚 ∣ 𝑘𝑛
если и только если 𝜇 ∣ 𝑘, откуда 𝑘 = 𝑖𝜇, где 𝑖 = 1, … , нод(𝑚, 𝑛).

Упр. 11.7. 𝑎1𝑛1𝑎2𝑛2𝑛−1
1 𝑎−1

1 𝑛−1
2 𝑎−1

2 = (𝑎1𝑛1𝑎−1
1 )(𝑎1𝑎2𝑛2𝑛−1

1 𝑎−1
1 𝑎−1

2 )(𝑎2𝑛−1
2 𝑎−1

2 ). Так как 𝑁 нормаль-
на, а 𝐴 абелева, заключённые в скобки слагаемые лежат в 𝑁.

Упр. 11.8. При эпиморфизме 𝑆4 на группу треугольника из прим. 10.9 подгруппа чётных переста-
новок 𝐴4 ⊂ 𝑆4 переходит в группу вращений треугольника.

Упр. 11.9. Не вполне очевидно, разве что последнее равенство

(𝑄𝑘 ∩ 𝑃𝑖) ∩ ((𝑄𝑘+1 ∩ 𝑃𝑖)𝑃𝑖+1) = (𝑄𝑘+1 ∩ 𝑃𝑖)(𝑄𝑘 ∩ 𝑃𝑖+1) .

Левая часть содержит правую, поскольку 𝑄𝑘+1𝑄𝑘 ⊂ 𝑄𝑘 и 𝑃𝑖𝑃𝑖+1 ⊂ 𝑃𝑖. Правая часть содержит
левую, так как если элемент 𝑐 ∈ 𝑄𝑘 ∩ 𝑃𝑖 имеет вид 𝑐 = 𝑎𝑏, где 𝑎 ∈ 𝑄𝑘+1 ∩ 𝑃𝑖, 𝑏 ∈ 𝑃𝑖+1, то
𝑏 = 𝑎−1𝑐 лежит в 𝑄𝑘, а значит, и в 𝑄𝑘 ∩ 𝑃𝑖+1.

Упр. 11.10. ℤ∕(𝑝𝑛) ⊋ 𝐴1 ⊋ … ⊋ 𝐴𝑛−1 ⊋ 0, где 𝐴𝑘 = {[𝑧𝑝𝑘−1] ∈ ℤ∕(𝑝𝑛) | 𝑧 ∈ ℤ}.

Упр. 11.11. Проверка ассоциативности:

((𝑥1, ℎ1) ⋅ (𝑥2, ℎ2)) ⋅ (𝑥3, ℎ3) = (𝑥1𝜓ℎ1(𝑥2) , ℎ1ℎ2) ⋅ (𝑥3, ℎ3) = (𝑥1𝜓ℎ1(𝑥2)𝜓ℎ1ℎ2(𝑥3) , ℎ1ℎ2ℎ3)
(𝑥1, ℎ1) ⋅ ((𝑥2, ℎ2) ⋅ (𝑥3, ℎ3)) = (𝑥1, ℎ1) ⋅ (𝑥2𝜓ℎ2(𝑥3) , ℎ2ℎ3) = (𝑥1𝜓ℎ1(𝑥2𝜓ℎ2(𝑥3)) , ℎ1ℎ2ℎ3) .

Но 𝜓ℎ1(𝑥2𝜓ℎ2(𝑥3)) = 𝜓ℎ1(𝑥2)𝜓ℎ1 ∘ 𝜓ℎ2(𝑥3) = 𝜓ℎ1(𝑥2)𝜓ℎ1ℎ2(𝑥3). Существование единицы:

(𝑥, ℎ) ⋅ (𝑒, 𝑒) = (𝑥,𝜓ℎ(𝑒), ℎ𝑒) = (𝑥, ℎ) ,
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поскольку 𝜓ℎ(𝑒) = 𝑒 в силу того, что 𝜓ℎ гомоморфизм. Существование обратного:

(𝜓−1
ℎ (𝑥−1) , ℎ−1) ⋅ (𝑥, ℎ) = (𝜓−1

ℎ (𝑥−1)𝜓−1
ℎ (𝑥−1) , ℎ−1ℎ) = (𝑒, 𝑒) .

Упр. 11.12. Так как 𝜓∶ 𝐻 → Aut𝑁 — гомоморфизм, 𝜓𝑒 = Id𝑁 и

(𝑥1, 𝑒) ⋅ (𝑥2, 𝑒) = (𝑥1𝜓𝑒(𝑥2), 𝑒) = (𝑥1𝑥2, 𝑒) ,

т. е. элементы (𝑥, 𝑒) образуют подгруппу, изоморфную 𝑁. Она нормальна, поскольку

(𝑦, ℎ) ⋅ (𝑥, 𝑒) ⋅ (𝜓−1
ℎ (𝑦−1), ℎ−1) = (𝑦𝜓ℎ(𝑥), ℎ) ⋅ (𝜓−1

ℎ (𝑦−1), ℎ−1) = (𝑦𝜓ℎ(𝑥)𝑦−1, 𝑒) .

Элементы (𝑒, ℎ) очевидно образуют дополнительную подгруппу, изоморфную 𝐻, и

Ad(𝑒,ℎ)(𝑥, 𝑒) = (𝜓ℎ(𝑥), 𝑒) .

Упр. 11.15. Пусть центр 𝑍(𝐺) = 𝐶. Если |𝐶| = 𝑝, то 𝐶 ≃ ℤ∕ (𝑝) ≃ 𝐺 ∕𝐶. Пусть 𝑎 ∈ 𝐶 — образу-
ющая центра, а 𝑏 ∈ 𝐺 — такой элемент, что смежный класс 𝑏𝐶 является образующей в 𝐺∕𝐶.
Тогда любой элемент группы имеет вид 𝑏𝑘𝑎𝑚. Так как 𝑎 централен, любые два таких элемента
коммутируют.

Упр. 11.16. Аддитивные автоморфизмы группы ℤ∕(𝑝) суть линейные автоморфизмы одномерного
векторного пространства над полем 𝔽𝑝. Они образуют группу GL1(𝔽𝑝) ≃ 𝔽×

𝑝 ненулевых элемен-
тов поля 𝔽𝑝 по умножению. Как и всякая конечная мультипликативная подгруппа поля, она
циклическая1.

1См. сл. 2.3 на стр. 52.
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