
§12. Задание групп образующими и соотношениями

12.1. Свободные группы и соотношения. С любым множеством 𝑀 можно связать группу 𝐹𝑀,
которая называется свободной группой, порождённой множеством𝑀. Она состоит из классов эк-
вивалентных слов, которые можно написать буквами 𝑥 и 𝑥−1, где 𝑥 ∈ 𝑀, по наименьшему отно-
шению эквивалентности, отождествляющему между собою слова, отличающиеся друг от друга
вставкой или удалением1 двубуквенного фрагмента 𝑥𝑥−1 или 𝑥−1𝑥. Композиция определяется
как приписывание одного слова к другому. Единицей служит класс пустого слова. Обратным к
классу слова 𝑤 = 𝑥1 … 𝑥𝑚 является класс слова 𝑤−1 = 𝑥−1

𝑚 … 𝑥−1
1 , где каждая из букв 𝑥𝑖 равна 𝑥

или 𝑥−1 для некоторого 𝑥 ∈ 𝑀, и (𝑥−1)
−1 ≝ 𝑥.

Упражнение 12.1. Убедитесь, что композиция корректно определена на классах эквивалент-
ности слов и что в каждом классе содержится ровно одно несократимое2 слово, которое
одновременно является и самым коротким словом в своём классе.

Элементы множества𝑀 называются образующими свободной группы 𝐹𝑀. Свободная группа с 𝑘
образующими обозначается𝐹𝑘. Группа𝐹1 ≃ ℤ— это циклическая группа бесконечного порядка.
Группа 𝐹2 классов слов на четырёхбуквенном алфавите 𝑥, 𝑦, 𝑥−1, 𝑦−1 уже трудно обозрима.

Упражнение 12.2. Постройте инъективный гомоморфизм групп 𝐹ℕ ↪ 𝐹2.

Предложение 12.1 (универсальное свойство свободных групп)

Отображение 𝑖𝑀 ∶ 𝑀 → 𝐹𝑀, переводящее элемент 𝑥 ∈ 𝑀 в класс однобуквенного слова 𝑥 ∈ 𝐹𝑀,
обладает следующим универсальным свойством: для любых группы𝐺 и отображения множеств
𝜑𝑀 ∶ 𝑀 → 𝐺 существует единственный такой гомоморфизм групп𝜑∶ 𝐹𝑀 → 𝐺, что𝜑𝑀 = 𝜑 ∘ 𝑖𝑀.
Для любого обладающего этим свойством отображения 𝑖′𝑀 ∶ 𝑀 → 𝐹′ множества 𝑀 в группу 𝐹′

имеется единственный такой изоморфизм групп 𝑖′ ∶ 𝐹𝑀 ⥲ 𝐹′, что 𝑖′𝑀 = 𝑖′ ∘ 𝑖𝑀.

Доказательство. Гомоморфизм 𝜑 единствен, так как обязан переводить слово 𝑥𝜀11 … 𝑥𝜀𝑚𝑚 ∈ 𝐹𝑀,
где 𝑥𝜈 ∈ 𝑀, 𝜀𝜈 = ±1, в произведение 𝜑𝑀(𝑥1)𝜀1…𝜑𝑀(𝑥𝑚)𝜀𝑚 ∈ 𝐺. С другой стороны, это правило
корректно задаёт гомоморфизм групп, что доказывает первое утверждение. Если отображение
𝑖′ ∶ 𝑀 → 𝐹′ множества 𝑀 в группу 𝐹′ обладает универсальным свойством из предл. 12.1, то
существуют единственные гомоморфизмы 𝑖′ ∶ 𝐹𝑀 → 𝐹′ и 𝑖∶ 𝐹′ → 𝐹𝑀, встраивающиеся в ком-
мутативные диаграммы
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Разложения вида 𝑖𝑀 = 𝜑 ∘ 𝑖𝑀, 𝑖′𝑀 = 𝜓 ∘ 𝑖′𝑀 в силу их единственности возможны только с𝜑 = Id𝐹𝑀 ,
𝜓 = Id𝐹′ . Поэтому 𝑖′ ∘ 𝑖 = Id𝐹′ , 𝑖 ∘ 𝑖′ = Id𝐹𝑀 . □

1В начале, в конце, или же между произвольными двумя последовательными буквами слова.
2Т. е. не содержащее двубуквенных фрагментов 𝑥𝑥−1 и 𝑥−1𝑥.
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12.1.1. Задание групп образующими и соотношениями. Если гомоморфизм групп

𝜑∶ 𝐹𝑀 ↠ 𝐺 , (12-1)

заданный отображением 𝜑𝑀 ∶ 𝑀 → 𝐺 множества 𝑀 в группу 𝐺, является сюрьективным, то
говорят, что группа 𝐺 порождается элементами 𝑔𝑚 = 𝜑𝑀(𝑚), 𝑚 ∈ 𝑀, а сами элементы 𝑔𝑚
называются образующими группы 𝐺. В этом случае 𝐺 исчерпывается всевозможными произ-
ведениями 𝑔𝜀11 …𝑔𝜀𝑘𝑘 , 𝜀 = ±1, образующих и обратных к ним элементов. Группа 𝐺 называется
конечно порождённой, если она допускает конечное множество образующих. Ядро ker𝜑 ◁ 𝐹𝑀
эпиморфизма (12-1) называется группой соотношений между образующими 𝑔𝑚. Набор слов
𝑅 ⊂ ker𝜑 называется набором определяющих соотношений, если ker𝜑 — это наименьшая нор-
мальная подгруппа в 𝐹𝑀, содержащая 𝑅. Это означает, что любое соотношение можно получить
из слов множества 𝑅 конечным числом умножений, обращений и сопряжений произвольными
элементами из свободной группы 𝐹𝑀. Группа, допускающая конечное число образующих с ко-
нечным набором определяющих соотношений называется конечно определённой.

Всякую группу можно задать образующими и соотношениями, например, взяв в качестве𝑀
множество всех элементов группы. Удачный выбор образующих с простыми определяющими
соотношениями может значительно прояснить устройство группы и её гомоморфизмов в дру-
гие группы. Однако в общем случае выяснить, изоморфны ли две группы, заданные своими об-
разующими и определяющими соотношениями, или отлична ли группа, заданная образующи-
ми и соотношениями, от тривиальной группы {𝑒}, может оказаться очень непросто. Более того,
обе эти задачи являются алгоритмически неразрешимыми1 даже в классе конечно определён-
ных групп.

Предложение 12.2

Пусть группа 𝐺1 задана множеством образующих 𝑀 и набором определяющих соотношений 𝑅,
а 𝐺2 — произвольная группа. Отображение 𝜑∶ 𝑀 → 𝐺2 тогда и только тогда корректно задаёт
гомоморфизм групп𝐺1 → 𝐺2 правилом 𝑥𝜀11 … 𝑥𝜀𝑚𝑚 ↦ 𝜑(𝑥1)𝜀1…𝜑(𝑥𝑚)𝜀𝑚 , когда для каждого слова
𝑦𝜀11 … 𝑦𝜀𝑚𝑚 ∈ 𝑅 в группе 𝐺2 выполняется соотношение 𝜑(𝑦1)𝜀1…𝜑(𝑦𝑚)𝜀𝑚 = 1.

Доказательство. Отображения множеств 𝜑𝑀 ∶ 𝑀 → 𝐺2 биективно соответствуют гомоморфиз-
мам групп 𝜑∶ 𝐹𝑀 → 𝐺2. Такой гомоморфизм 𝜑 факторизуется до гомоморфизма из группы
𝐺1 = 𝐹𝑀∕𝑁𝑅, где𝑁𝑅◁𝐹𝑀 — наименьшая нормальная подгруппа, содержащая 𝑅, тогда и только
тогда, когда 𝑁𝑅 ⊂ ker𝜓. Так как ker𝜓 ◁ 𝐹𝑀, для этого необходимио и достаточно включения
𝑅 ⊂ ker𝜓. □

Пример 12.1 (образующие и соотношения группы диэдра)

Покажем, что группа диэдра 𝐷𝑛 задаётся двумя образующими 𝑥1, 𝑥2 и соотношениями

𝑥21 = 𝑥22 = (𝑥1𝑥2)𝑛 = 𝑒 . (12-2)

Оси симметрии правильного 𝑛-угольника разбивают его на 2𝑛 конгруэнтных прямоугольных
треугольников как на рис. 12⋄1 ниже. Обозначим один из них через 𝑒. Поскольку любое движе-
ние плоскости однозначно задаётся своим действием на треугольник 𝑒, треугольники разбие-
ния находятся в биекции с движениями 𝑔 ∈ 𝐷𝑛, и каждый из них можно однозначно пометить

1В формальном смысле, принятом в математической логике.
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тем единственным преобразованием 𝑔, которое переводит треугольник 𝑒 в этот треугольник.
При этом каждое преобразование ℎ ∈ 𝐷𝑛 переводит каждый треугольник 𝑔 в треугольник ℎ𝑔.

Упражнение 12.3. Для любого движения 𝐹 евклидова пространства ℝ𝑛 и отражения 𝜎𝜋 в про-
извольной гиперплоскости 𝜋 ⊂ ℝ𝑛 докажите соотношения

𝜎𝐹(𝜋) = 𝐹 ∘ 𝜎𝜋 ∘ 𝐹−1 и 𝜎𝐹(𝜋) ∘ 𝐹 = 𝐹 ∘ 𝜎𝜋 . (12-3)

Обозначим через 𝓁1 и 𝓁2 боковые стороны треугольника 𝑒, а отражения плоскости в этих сто-
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Рис. 12⋄1. Образующие группы диэдра.

ронах обозначим через 𝜎1 = 𝜎𝓁1 и 𝜎2 = 𝜎𝓁2 . Тогда по второму из равенств (12-3) треугольники,
получающиеся из 𝑒 последовательными отражениями в направлении часовой стрелки пометят-
ся элементами

𝜎𝓁1 = 𝜎1 ,

𝜎𝜎1(𝓁2)𝜎1 = 𝜎1𝜎2 ,

𝜎𝜎1𝜎2(𝓁1)𝜎1𝜎2 = 𝜎1𝜎2𝜎1 ,

𝜎𝜎1𝜎2𝜎1(𝓁2)𝜎1𝜎2𝜎1 = 𝜎1𝜎2𝜎1𝜎2 , …

а треугольники, получающиеся из 𝑒 после-
довательными отражениями против часо-
вой стрелки пометятся элементами

𝜎𝓁2 = 𝜎2 ,

𝜎𝜎2(𝓁1)𝜎2 = 𝜎2𝜎1 ,

𝜎𝜎2𝜎1(𝓁2)𝜎2𝜎1 = 𝜎2𝜎1𝜎2 ,

𝜎𝜎2𝜎1𝜎2(𝓁1)𝜎2𝜎1𝜎2 = 𝜎2𝜎1𝜎2𝜎1 , …

В результате каждый треугольник по-
метится словом вида 𝜎1𝜎2𝜎1𝜎2 … или
𝜎2𝜎1𝜎2𝜎1 … Так как композиция 𝜎1 ∘ 𝜎2
является поворотом на угол 2𝜋∕𝑛, в группе 𝐷𝑛 выполняются соотношения

𝜎21 = 𝜎22 = (𝜎1𝜎2)𝑛 = 𝑒 , (12-4)

и правило 𝑥1 ↦ 𝜎1, 𝑥2 ↦ 𝜎2 корректно задаёт сюрьективный гомоморфизм 𝜑∶ 𝐹2 ∕𝐻 ↠ 𝐷𝑛
из фактора свободной группы 𝐹2 с образующими 𝑥1, 𝑥2 по наименьшей нормальной подгруппе
𝐻◁ 𝐹2, содержащей слова 𝑥21 , 𝑥22 и (𝑥1𝑥2)𝑛. Покажем, что он инъективен. Поскольку последнее
соотношение в (12-2) равносильно равенству

𝜎1𝜎2𝜎1 …⏟⏟⏟⏟⏟⏟⏟
𝑘

= 𝜎2𝜎1𝜎2 …⏟⏟⏟⏟⏟⏟⏟
2𝑛−𝑘

, (12-5)

каждое слово в алфавите {𝑥1, 𝑥2, 𝑥−1
1 , 𝑥−1

2 } записывается по модулю соотношений (12-2) словом

𝑥1𝑥2𝑥1 … или 𝑥2𝑥1𝑥2 … (12-6)
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из не более 𝑛 букв, причём два 𝑛-буквенных слова равны друг другу в 𝐹2∕𝐻. Согласно предыду-
щему, все эти слова переводятся гомоморфизмом 𝜑 в разные треугольники, т. е. в разные эле-
менты 𝑔 ∈ 𝐷𝑛. Мы заключаем, что гомоморфизм 𝜑∶ 𝐹2∕𝐻 ⥲ 𝐷𝑛 биективен, а все слова (12-6),
за исключением двух равных 𝑛-буквенных слов, различны по модулю 𝐻 и являются самими ко-
роткими выражениями элементов группы 𝐷𝑛 через образующие 𝜎1, 𝜎2.

Рис. 12⋄2. Тетраэдр, октаэдр и икосаэдр.

12.2. Пример: группы платоновых тел. Обозначим через 𝑀 платоново тело с треугольными

Рис. 12⋄3. Барицентрическое
разбиение тетраэдра

плоскостями симметрии.

гранями, т. е. правильный тетраэдр, октаэдр или икосаэдр, см. рис. 12⋄2. Плоскости симмет-
рии многогранника 𝑀 задают барицентрическое разбиение каждой грани на 6 конгруэнтных
друг другу треугольников с вершинами в центре грани, в середине ребра этой грани и в одном из
концов этого ребра, см. рис. 12⋄3. Обозначим, соответствен-
но, через 𝜋1, 𝜋2, 𝜋3 плоскости симметрии, высекающие про-
тиволежащие этим вершинам стороны в одном из треуголь-
ников, который пометим единичным элементом 𝑒 группы𝑂𝑀
многогранника 𝑀. Двугранный угол между плоскостями 𝜋𝑖
и 𝜋𝑗 обозначим через

𝜋∕𝑚𝑘 = ∡(𝜋𝑖,𝜋𝑗) , где 𝑘 = {1, 2, 3} −{𝑖, 𝑗} .

Числа 𝑚𝑖, а также число 𝛾 граней многогранника 𝑀 и общее
число треугольников 𝑁 = 6𝛾 представлены в таблице1:

𝑀 𝑚1 𝑚2 𝑚3 𝛾 𝑁
тетраэдр 3 2 3 4 24
октаэдр 3 2 4 8 48

икосаэдр 3 2 5 20 120 .

Обозначим через𝜎𝑖 отражение в плоскости𝜋𝑖. Так как каждое преобразование из группы O𝑀 од-
нозначно определяется своим действием на тройку векторов с концами в вершинах треугольни-
ка 𝑒, каждый треугольник триангуляции является образом треугольника 𝑒 под действием един-
ственного преобразования 𝑔 ∈ O𝑀. Надпишем каждый треугольник этим преобразованием 𝑔,

1Обратите внимание, что помещённый в пространство 𝑛-угольный диэдр из прим. 12.1 тоже можно
включить в этот список со значениями 𝑚1 = 𝑛, 𝑚2 = 2, 𝑚3 = 2, 𝛾 = 2 и 𝑁 = 4𝑛, если условиться, что
плоский диэдр имеет две двумерные грани: «верхнюю» и «нижнюю».
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и пометим его стороны, высекаемые плоскостями 𝑔(𝜋1), 𝑔(𝜋2), 𝑔(𝜋3) соответствующими номе-
рами 1, 2, 3. Отметим, что каждое преобразование ℎ ∈ O𝑀 переводит каждый треугольник 𝑔 в
треугольник ℎ𝑔. На рис. 12⋄4 изображена стереографическая проекция картинки, которую 24
трёхгранных угла барицентрического разбиения тетраэдра с рис. 12⋄3 высекают на описанной
около этого тетраэдра сфере. На каждом сферическом треугольнике написана композиция от-
ражений 𝜎1,𝜎2,𝜎3, переводящая треугольник 𝑒 в этот треугольник. Стороны треугольников, по-
меченные номерами 1, 2 и 3, изображены на рисунке в красным, зелёным и жёлтым цветом.
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Рис. 12⋄4. Триангуляция описанной сферы плоскостями симметрии тетраэдра в
стереографической проекции из диаметрально противоположного к вершине «0» полюса

сферы на экваториальную плоскость, параллельную грани «123».

Чтобы явно написать композицию отражений 𝜎1,𝜎2,𝜎3, переводящую треугольник 𝑒 в тре-
угольник 𝑔, выберем внутри опирающихся на эти треугольники трёхгранных углов векторы 𝑢
и𝑤 с концами на описанной около𝑀 сфере так, чтобы𝑤 ≠ −𝑢 и натянутая на них плоскость𝛱𝑢𝑤
не содержала линий пересечения плоскостей симметрии многогранника 𝑀. Пройдём из 𝑢 в 𝑤
по кратчайшей из двух дуг окружности, высекаемой плоскостью 𝛱𝑢𝑤 на описанной около 𝑀
сфере. Пусть мы при этом последовательно побываем в треугольниках

𝑔1 = 𝑒, 𝑔2, 𝑔3, … , 𝑔𝑚+1 = 𝑔 .
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Обозначим через 𝜈𝑖 ∈ {1, 2, 3} номер, надписанный на той стороне треугольника 𝑔𝑖, сквозь
которую осуществляется проход из 𝑔𝑖 в 𝑔𝑖+1. Это означает, что общая сторона треугольников 𝑔𝑖
и 𝑔𝑖+1 высекается плоскостью 𝑔𝑖(𝜋𝜈𝑖), т. е. образом плоскости 𝜋𝜈𝑖 при отображении 𝑔𝑖. Тогда

𝑔2 = 𝜎𝜈1 , 𝑔3 = 𝜎𝑔2(𝜋𝜈2 )𝑔2 = 𝜎𝜈1𝜎𝜈2 , 𝑔4 = 𝜎𝑔3(𝜋𝜈3 )𝑔3 = 𝜎𝜈1𝜎𝜈2𝜎𝜈3 , …

по второму равенству из форм. (12-3) на стр. 200. Таким образом, последовательность индексов
𝜈𝑖 ∈ {1, 2, 3} в разложении 𝑔 = 𝜎𝜈1 …𝜎𝜈𝑚 состоит из выписанных по порядку номеров сторон,
которые приходится пересекать по пути из 𝑒 = 𝑔1 в 𝑔 = 𝑔𝑚+1 по дуге 𝑢𝑤, как на рис. 12⋄5,
где стороны с номерами 1, 2, 3 изображены соответственно красным, зелёным и жёлтым цве-
тами. Отметим, что полученное нами разложение элемента 𝑔 ∈ O𝑀 в композицию отражений
𝜎1,𝜎2,𝜎3 не единственно и зависит от выбора векторов 𝑢 и 𝑤 внутри трёхгранных углов 𝑒 и 𝑔.
При изменении любого из этих векторов последовательность 𝜈1, … , 𝜈𝑚 номеров зеркал, пересе-
каемых по дороге из𝑢 в𝑤, не меняется до тех пор, пока натянутая на эти векторы плоскость𝛱𝑢𝑤
не натолкнётся на линию пересечения зеркал, а в момент пересечения такой линии в последо-
вательности 𝜈1, … , 𝜈𝑚 некоторый фрагмент вида 𝜎𝑖𝜎𝑗𝜎𝑖𝜎𝑗 … длины𝑚𝑘 заменяется симметрич-
ным фрагментом 𝜎𝑗𝜎𝑖𝜎𝑗𝜎𝑖 … той же самой длины 𝑚𝑘, как показано на рис. 12⋄5.

𝑒

𝑔𝜎1𝜎2𝜎3

Рис. 12⋄5. 𝜎2𝜎3𝜎2𝜎3𝝈1𝝈2𝜎3𝜎2𝜎3𝜎2𝝈3𝝈1𝝈3𝜎2 = 𝑔 = 𝜎2𝜎3𝜎2𝜎3𝝈2𝝈1𝜎3𝜎2𝜎3𝜎2𝝈1𝝈3𝝈1𝜎2.

Разложения, отвечающие верхней и нижней траекториям на рис. 12⋄5 отличаются друг от дру-
га тем, что линии пересечения зеркал обходятся в противоположных направлениях. Компози-
ции возникающих при этом отражений удовлетворяют соотношениям

𝜎1𝜎2 = 𝜎2𝜎1 и 𝜎1𝜎3𝜎1 = 𝜎3𝜎1𝜎3
той же самой природы, что соотношения (12-4) в группе диэдра: так как композиция отражений
𝜎𝑖 ∘𝜎𝑗 является поворотом вокруг прямой 𝜋𝑖∩𝜋𝑗 на угол 2𝜋∕𝑚𝑘, равный удвоенному углу между
плоскостями 𝜋𝑖 и 𝜋𝑗, в группе O𝑀 выполняются соотношения 𝜎2𝑖 = 𝑒 и (𝜎𝑖𝜎𝑗)𝑚𝑘 = 𝑒, где тройка
(𝑖, 𝑗, 𝑘) пробегает три циклические перестановки номеров (1, 2, 3).

Отсюда вытекает, во-первых, что длина представления 𝑔 = 𝜎𝜈1…𝜎𝜈𝑚 , считанного вдоль
кратчайшей из двух дуг, соединяющих векторы 𝑢 и𝑤, не зависит от выбора этих векторов внут-
ри трёхгранных углов, опирающихся на треугольники 𝑒 и 𝑔, при условии, что плоскость𝛱𝑢𝑤 не
проходит через линии пересечения зеркал, а во-вторых, что правило 𝑥𝑖 ↦ 𝜎𝑖 задаёт сюрьектив-
ный гомоморфизм 𝜑∶ 𝐹3∕𝐻 ↠ O𝑀 из фактора свободной группы 𝐹3 с образующими 𝑥1, 𝑥2, 𝑥3
по наименьшей нормальной подгруппе 𝐻 ◁ 𝐹3, содержащей шесть слов

𝑥2𝑖 и (𝑥𝑖𝑥𝑗)𝑚𝑘 . (12-7)
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Докажем, что этот гомоморфизм инъективен. Для этого индукцией по 𝑘 ∈ ℕ установим, что
каждый элемент 𝑦 ∈ 𝐹3∕𝐻, представимый в 𝐹3 словом из ⩽ 𝑘 букв, — это единственный среди
представимых словами из ⩽ 𝑘 букв элемент группы 𝐹3∕𝐻, переводимый гомоморфизмом 𝜑 в
треугольник 𝑔 = 𝜑(𝑦), причём представления 𝑦 = 𝑥𝜈1… 𝑥𝜈𝑚 , считанные со всевозможных крат-
чайших дуг, соединяющих треугольник 𝑒 с треугольником 𝑔 = 𝜑(𝑦) так, как это объяснялось
выше, являются самыми короткими по модулю соотношений (12-7) представлениями элемен-
та 𝑦 ∈ 𝐹3∕𝐻.

Для представимых однобуквенными словами элементов 𝑦 = 𝑥1, 𝑥2, 𝑥3 это очевидно. Пусть
это так для всех 𝑦 ∈ 𝐹3∕𝐻, представимых словами из ⩽ 𝑘 букв. Рассмотрим в𝐹3∕𝐻 элемент, пред-
ставимый словом из 𝑘 + 1 букв и не представимый более коротким словом. Он имеет вид 𝑦𝑥𝑗,
где 𝑗 = 1, 2, 3, а 𝑦 представляется словом длины ⩽ 𝑘. Пусть 𝑔 = 𝜑(𝑦) и ℎ = 𝜑(𝑦𝑥𝑗) = 𝑔𝜎𝑗. Выбе-
рем в треугольниках 𝑒 и 𝑔 векторы 𝑢 ∈ 𝑒 и 𝑤 ∈ 𝑔 так, чтобы окружность, высекаемая из сферы
плоскостью 𝛱𝑢𝑤, пересекала плоскость 𝐻 = 𝑔(𝜋𝑗). Кратчайшая дуга этой окружности, ведущая
из 𝑢 в 𝑤, либо не пересекает плоскость 𝐻, как на рис. 12⋄6, либо пересекает, как на рис. 12⋄7.

𝑢

𝑤
𝑣

𝐻 = 𝑔(𝜋𝑗)

𝑒

𝑔

ℎ = 𝑔𝜎𝑗

𝑢

𝑣
𝑤

𝐻 = 𝑔(𝜋𝑗)

𝑒

ℎ = 𝑔𝜎𝑗

𝑔

Рис. 12⋄6. 𝐻 не разделяет 𝑒 и 𝑔. Рис. 12⋄7. 𝐻 разделяет 𝑒 и 𝑔.

Во втором случае обозначим через 𝑣 какую-нибудь точку дуги [𝑢,𝑤], лежащую в предыдущем
треугольнике 𝜎𝑔(𝜋𝑗)𝑔 = 𝑔𝜎𝑗𝑔−1𝑔 = 𝑔𝜎𝑗 = ℎ. По предположению индукции, одно из мини-
мальных по длине представлений 𝑦 = 𝑥𝜈1 … 𝑥𝜈𝑚 имеет в качестве 𝜈1, … , 𝜈𝑚 номера последо-
вательных рёбер, которые приходится пересекать по пути из 𝑢 в 𝑤 по дуге [𝑢,𝑤], и его длина
𝑚 ⩽ 𝑘. В частности, последняя буква 𝑥𝜈𝑚 = 𝑥𝑗. Поэтому элемент 𝑦𝑥𝑗 = 𝑥𝜈1 … 𝑥𝜈𝑚−1

записы-
вается более коротким, чем 𝑦, словом из < 𝑘 букв, вопреки нашему предположению. Таким
образом, имеет место первый случай, изображённый на рис. 12⋄6. Обозначим через 𝑣 ∈ ℎ ка-
кой-нибудь вектор, лежащий на продолжении дуги [𝑢,𝑤] за точку𝑤. По предположению индук-
ции, одно из минимальных по количеству букв представлений 𝑦 = 𝑥𝜈1 … 𝑥𝜈𝑚 имеет в качестве
𝜈1, … , 𝜈𝑚 номера последовательных рёбер, которые приходится пересекать по пути из 𝑢 в 𝑤
по дуге [𝑢,𝑤], и его длина 𝑚 ⩽ 𝑘. При этом ℎ = 𝜑(𝑦𝑥𝑗) = 𝑔𝜎𝑗 = 𝜎𝑖1 …𝜎𝑖𝑚𝜎𝑗, и представле-
ние 𝑦𝑥𝑗 = 𝑥𝜈1 … 𝑥𝜈𝑚𝑥𝑗 по нашему предположению состоит, как минимум, из 𝑘 + 1 букв. Мы
заключаем, что𝑚 = 𝑘, представление 𝑦𝑥𝑗 = 𝑥𝜈1… 𝑥𝜈𝑘𝑥𝑗 является одним из кратчайших для эле-
мента 𝑦𝑥𝑗 и считывается с дуги [𝑢, 𝑣]. В частности, элемент 𝑦𝑥𝑗 однозначно восстанавливается
по треугольнику ℎ = 𝜑(𝑦𝑥𝑗), что воспроизводит индуктивное предположение. Мы получили
следующий результат.

Предложение 12.3

Полная группа O𝑀 платонова тела 𝑀 с треугольными гранями порождается тремя элементами
𝑥1, 𝑥2, 𝑥3, связанными шестью определяющими соотношениями 𝑥2𝑖 = 𝑒 и (𝑥𝑖𝑥𝑗)𝑚𝑘 = 𝑒. □
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12.3. Образующие и соотношения симметрической группы 𝑺𝒏+𝟏. Обозначим числами от 0
до 𝑛 концы стандартных базисных векторов 𝑒0, 𝑒1, … , 𝑒𝑛 в ℝ𝑛+1 и рассмотрим 𝑛-мерный пра-
вильный симплекс 𝛥 ⊂ ℝ𝑛+1 с вершинами в этих точках. Поскольку каждое аффинное преобра-
зование𝑛-мерной гиперплоскости 𝑥0+𝑥1+⋯+𝑥𝑛 = 1, в которой лежит симплекс𝛥, однозначно
задаётся своим действием на вершины симплекса 𝛥, полная группа O𝛥 симплекса 𝛥 изоморф-
на симметрической группе 𝑆𝑛+1 перестановок его вершин 0, 1, … , 𝑛. Каждая 𝑘-мерная грань
симплекса𝛥 является правильным 𝑘-мерным симплексом и представляет собою выпуклую обо-
лочку каких-либо𝑘+1 вершин симплекса𝛥, и наоборот, выпуклая оболочка [𝑖0, 𝑖1, … , 𝑖𝑘] любых
𝑘 + 1 различных вершин {𝑖0, 𝑖1, … , 𝑖𝑘} ⊂ {0, 1, … , 𝑛} является 𝑘-мерной гранью симплекса 𝛥.
Симплекс𝛥 симметричен относительно 𝑛(𝑛+1)∕2 гиперплоскостей 𝜋𝑖𝑗, проходящих через сере-
дину ребра [𝑖, 𝑗] и противолежащую этому ребру грань коразмерности 2, содержащую вершины
{0, 1, … , 𝑛} −{𝑖, 𝑗}. Гиперплоскость 𝜋𝑖𝑗 перпендикулярна вектору 𝑒𝑖 − 𝑒𝑗 и отражение 𝜎𝑖𝑗 ∈ O𝛥
в этой гиперплоскости отвечает транспозиции элементов 𝑖 и 𝑗 в симметрической группе 𝑆𝑛+1.

Упражнение 12.4. Убедитесь, что гиперплоскости 𝜋𝑖𝑗 и𝜋𝑘𝑚 с {𝑖, 𝑗}∩{𝑘,𝑚} = ∅ ортогональны,
а гиперплоскости 𝜋𝑖𝑗 и 𝜋𝑗𝑘 с различными 𝑖, 𝑗, 𝑘 пересекаются под углом 𝜋∕3 = 60∘.

Плоскости 𝜋𝑖𝑗 осуществляют барицентрическое разбиение симплекса 𝛥 на (𝑛+1)! меньших сим-
плексов с вершинами в центрах граней симплекса 𝛥 и в центре самого симплекса. Если обозна-
чить через ⟨𝑖0𝑖1 … 𝑖𝑚⟩ центр 𝑚-мерной грани с вершинами в 𝑖0, 𝑖1, … , 𝑖𝑚, то каждый симплекс
барицентрического разбиения будет иметь одну из вершин в какой-либо вершине ⟨𝑖0⟩ симплек-
са 𝛥, следующую вершину — в центре ⟨𝑖0𝑖1⟩ какого-либо примыкающего к вершине 𝑖0 ребра
[𝑖0, 𝑖1], следующую вершину — в центре ⟨𝑖0𝑖1𝑖2⟩ какой-либо примыкающей к ребру [𝑖0, 𝑖1] дву-
мерной треугольной грани [𝑖0, 𝑖1, 𝑖2] и т. д. вплоть до центра ⟨𝑖0𝑖1 … 𝑖𝑛⟩ самого симплекса𝛥. Эти
симплексы находятся в естественной биекции с перестановками 𝑔 ∈ 𝑆𝑛+1: симплекс

𝑔 = [⟨𝑔0⟩, ⟨𝑔0,𝑔1⟩, ⟨𝑔0,𝑔1,𝑔2⟩, … , ⟨𝑔0𝑔1 …𝑔𝑛−1⟩, ⟨𝑔0𝑔1 …𝑔𝑛⟩] (12-8)

является образом начального симплекса

𝑒 = [⟨0⟩, ⟨01⟩, ⟨012⟩, … , ⟨0, 1, … , 𝑛 − 1⟩, ⟨0, 1, … , 𝑛⟩] (12-9)

под действием единственной перестановки 𝑔 = (𝑔0,𝑔1, … ,𝑔𝑛) ∈ 𝑆𝑛+1 = O𝑀. Спроектируем
поверхность симплекса 𝛥 из его центра на описанную сферу. Получим разбиение (𝑛 − 1)-мер-
ной сферы 𝑆𝑛−1 на (𝑛 + 1)! конгруэнтных друг другу (𝑛 − 1)-мерных симплексов, надписанных
элементами 𝑔 ∈ 𝑆𝑛+1. Грани этих симплексов высекаются из сферы гиперплоскостями 𝜋𝑖𝑗. При
𝑛 = 3 получится представленная на рис. 12⋄4 на стр. 202 триангуляция двумерной сферы 𝑆2
двадцатью четырьмя сферическими треугольниками с углами 𝜋∕3, 𝜋∕3 и 𝜋∕2. Помеченному
тождественным преобразованием 𝑒 начальному симплексу (12-9) отвечает сферический сим-
плекс, высекаемый из сферы 𝑛 гиперплоскостями 𝜋𝑖 ≝ 𝜋𝑖−1,𝑖 с 1 ⩽ 𝑖 ⩽ 𝑛. Обозначим через
𝜎𝑖 = 𝜎𝑖−1,𝑖 отражения в этих гиперплоскостях. В симметрической группе 𝑆𝑛+1 этим отражени-
ям отвечают транспозиции |𝑖 − 1, 𝑖⟩ пар соседних элементов. По упр. 12.4 они удовлетворяют
соотношениям1

𝜎2𝑖 = 𝑒 , 𝜎𝑖𝜎𝑖+1𝜎𝑖 = 𝜎𝑖+1𝜎𝑖𝜎𝑖+1 и 𝜎𝑖𝜎𝑗 = 𝜎𝑗𝜎𝑖 , где |𝑖 − 𝑗| ⩾ 2 . (12-10)

1Соотношение 𝜎𝑖𝜎𝑖+1𝜎𝑖 = 𝜎𝑖+1𝜎𝑖𝜎𝑖+1 является более употребительной в данном контексте записью
циклического соотношения (𝜎𝑖𝜎𝑖+1)3 = 𝑒 на поворот𝜎𝑖𝜎𝑖+1 на 120∘ вокруг (𝑛−2)-мерного подпростран-
ства 𝜋𝑖 ∩ 𝜋𝑖+1.
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Упражнение 12.5. Убедитесь напрямую, что транспозиции 𝜎𝑖 = |𝑖−1, 𝑖⟩ ∈ 𝑆𝑛+1 удовлетворяют
соотношениям (12-10).

В силу этих соотношений, гомоморфизм свободой группы 𝐹𝑛 с образующими 𝑥1, … , 𝑥𝑛, пере-
водящий 𝑥𝑖 в 𝜎𝑖, корректно факторизуется до гомоморфизма 𝜑∶ 𝐹𝑛∕𝐻 → 𝑆𝑛+1, где 𝐻 ◁ 𝐹𝑛 —
наименьшая нормальная подгруппа, содержащая слова

𝑥2𝑖 , (𝑥𝑖𝑥𝑖+1)3 и (𝑥𝑖𝑥𝑗)2 , где |𝑖 − 𝑗| ⩾ 2 . (12-11)

Чтобы убедиться в его сюрьективности, выберем в симплексах 𝑒 и 𝑔 точки 𝑎 и 𝑏 так, чтобы
они не были диаметрально противоположны и соединяющая их геодезическая1 не пересекала
граней коразмерности2 2. Пройдя из 𝑎 в 𝑏 по этой геодезической, мы получим разложение

𝑔 = 𝜎𝑖1…𝜎𝑖𝑚 , (12-12)

в котором каждое 𝑖𝜈 ∈ {1, … , 𝑛} равно номеру такого зеркала 𝜋𝑖𝜈 , что переход из 𝜈-того встре-

ченного по дороге симплекса𝑔𝜈 в следующий симплекс3 𝑔𝜈+1 осуществляется через грань, высе-
каемую гиперплоскостью 𝑔𝜈(𝜋𝑖𝜈). Дословно также, как и в n∘ 12.2, проверяется, что длина пред-
ставления (12-12), полученного с помощью дуги [𝑎, 𝑏] не зависит от выбора её концов 𝑎 ∈ 𝑒
и 𝑏 ∈ 𝑔 при условии, что они не диаметрально противоположны и плоскость 𝜋𝑎𝑏 не проходит
через пересечения зеркал 𝜋𝑖𝑗: если при перемещении точек 𝑎 и 𝑏 внутри симплексов 𝑒 и 𝑔 ду-
га [𝑎, 𝑏] пройдёт через пересечение 𝑔𝑘(𝜋𝑖 ∩ 𝜋𝑗) перпендикулярных гиперграней 𝑔𝑘(𝜋𝑖), 𝑔𝑘(𝜋𝑗)
c |𝑖 − 𝑗| ⩾ 2, или через пересечение 𝑔𝑘(𝜋𝑖 ∩ 𝜋𝑖+1) гиперграней 𝑔𝑘(𝜋𝑖), 𝑔𝑘(𝜋𝑖+1), пересекающих-
ся под углом 60∘, то в представлении 𝑔 = 𝜎1 …𝜎𝑚 стоящий на 𝑘-том месте фрагмент 𝜎𝑖𝜎𝑗 или
𝜎𝑖𝜎𝑖+1𝜎𝑖 заменится, соответственно, равным ему в группе O𝛥 фрагментом 𝜎𝑗𝜎𝑖 или 𝜎𝑖+1𝜎𝑖𝜎𝑖+1. В
ортогональной проекции вдоль (𝑛 − 2)-мерного подпространства 𝑔𝑘(𝜋𝑖 ∩ 𝜋𝑗) или 𝑔𝑘(𝜋𝑖 ∩ 𝜋𝑖+1)
на ортогональную ему двумерную плоскость мы при этом увидим картину вроде показанной
на рис. 12⋄5 на стр. 203. Точно такая же, как в n∘ 12.2, индукция по 𝑘 ∈ ℕ показывает, что каж-
дый элемент 𝑦 ∈ 𝐹𝑛 ∕𝐻, представимый по модулю соотношений (12-11) словом из ⩽ 𝑘 букв,
является единственным среди представимых словами из ⩽ 𝑘 букв элементом, который перево-
дится гомоморфизмом𝜑 в симплекс 𝑔 = 𝜑(𝑦), и слова 𝑥𝑖1… 𝑥𝑖𝑘 ∈ 𝐹3, считанные с соединяющих
симплекс 𝑒 с симплексом 𝑔 = 𝜑(𝑦) геодезических, являются кратчайшими по модулю соотно-
шений (12-11) записями элемента 𝑦 ∈ 𝐹𝑛∕𝐻. Таким образом, симметрическая группа 𝑆𝑛+1 по-
рождается 𝑛 образующими 𝑥𝑖, 1 ⩽ 𝑖 ⩽ 𝑛, связанными определяющими соотношениями (12-11).

Эту геометрическую картину нетрудно выхолостить до сугубо комбинаторного рассужде-
ния, представленного в следующем разделе.

12.4. Порядок Брюа на симметрической группе 𝑺𝒏+𝟏. Напомню4, что длиной 𝓁(𝑔) перестанов-
ки 𝑔 = (𝑔0,𝑔1, … ,𝑔𝑛) ∈ 𝑆𝑛+1 называется количество всех её инверсных пар5. Правое умноже-
ние перестановки𝑔 на транспозицию𝜎𝑖 = |𝑖−1, 𝑖⟩ приводит к перестановке𝑔𝜎𝑖, отличающейся
от 𝑔 транспозицией (𝑖 − 1)-того и 𝑖-го символов 𝑔𝑖−1 и 𝑔𝑖:

(𝑔0, … , 𝑔𝑖−2, 𝒈𝒊−𝟏, 𝒈𝒊, 𝑔𝑖+1, … , 𝑔𝑛) ∘ 𝜎𝑖 = (𝑔0, … , 𝑔𝑖−2, 𝒈𝒊, 𝒈𝒊−𝟏, 𝑔𝑖+1, … , 𝑔𝑛) ,
1Кратчайшая из двух дуг 𝑎𝑏 большой окружности, высекаемой из сферы двумерной плоскостью, про-

ходящей через точки 𝑎, 𝑏 и центр сферы.
2Т. е. пересечений всевозможных пар зеркал 𝜋𝑖𝑗.
3Напомню, что при этом 𝑔𝜈 = 𝜎1 …𝜎𝜈−1,f 𝑔𝜈+1 = 𝜎𝑔𝜈(𝜋𝑖𝜈 )𝑔𝜈 = 𝑔𝜈𝜎𝑖𝜈 .
4См. n∘ 8.1 на стр. 127.
5Т. е. таких пар 1 ⩽ 𝑖 < 𝑗 ⩽ 𝑛, что 𝑔𝑖 > 𝑔𝑗.
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причём 𝓁(𝑔𝜎𝑖) = 𝓁(𝑔) + 1, если 𝑔𝑖−1 < 𝑔𝑖, и 𝓁(𝑔𝜎𝑖) = 𝓁(𝑔) − 1, если 𝑔𝑖−1 > 𝑔𝑖.
Упражнение 12.6. Убедитесь, что любая перестановка 𝑔 длины 𝓁(𝑔) = 𝑚 может быть записана

таким словом 𝑔 = 𝜎𝑖1…𝜎𝑖𝑚 , что 𝓁(𝜎𝑖1…𝜎𝑖𝑘) = 𝓁(𝜎𝑖1…𝜎𝑖𝑘−1
) + 1 при всех 2 ⩽ 𝑘 ⩽ 𝑚.

Частичный порядок на 𝑆𝑛+1, в котором 𝑔 < ℎ, если ℎ = 𝑔𝜎𝑖1…𝜎𝑖𝑠 , где

𝓁(𝑔𝜎𝑖1…𝜎𝑖𝑘) = 𝓁(𝑔𝜎𝑖1…𝜎𝑖𝑘−1
) + 1 при всех 1 ⩽ 𝑘 ⩽ 𝑠 ,

называется порядком Брюа.
Слово𝑤 = 𝑥𝑖1… 𝑥𝑖𝑚 в свободной группе 𝐹𝑛 с образующими 𝑥1, … , 𝑥𝑛 называется минималь-

ным словом перестановки 𝑔 ∈ 𝑆𝑛+1, если 𝑚 = 𝓁(𝑔) и 𝑔 = 𝜎𝑖1…𝜎𝑖𝑚 . Начальные фрагменты ми-
нимального слова задают строго возрастающую в смысле порядка Брюа последовательность
элементов ℎ𝜈 = 𝜎𝑖1…𝜎𝑖𝜈 ∈ 𝑆𝑛+1. Перестановка 𝑔 может иметь много разных минимальных
слов, однако не может быть записана никаким более коротким словом.

Как и в предыдущем разделе, рассмотрим гомоморфизм 𝜑∶ 𝐹𝑛 → 𝑆𝑛+1, 𝑥𝑖 ↦ 𝜎𝑖.

Предложение 12.4

По модулю соотношений 𝑥2𝑖 = 𝑒, 𝑥𝑖𝑥𝑖+1𝑥𝑖 = 𝑥𝑖+1𝑥𝑖𝑥𝑖+1 и 𝑥𝑖𝑥𝑗 = 𝑥𝑗𝑥𝑖, где |𝑖 − 𝑗| ⩾ 2, каждое
слово 𝑤 ∈ 𝐹𝑛 эквивалентно некоторому минимальному слову перестановки 𝜑(𝑤) ∈ 𝑆𝑛+1, а все
минимальные слова перестановки 𝜑(𝑤) эквивалентны между собой.

Доказательство. Индукция по количеству букв в слове 𝑤 ∈ 𝐹𝑛−1. Для 𝑤 = ∅ утверждение оче-
видно. Пусть оно справедливо для всех слов из ⩽ 𝑚 букв. Достаточно для каждого𝑚-буквенного
слова𝑤 и каждой буквы 𝑥𝜈 проверить предложение для слова𝑤𝑥𝜈. Если слово𝑤 не является ми-
нимальным словом элемента 𝑔 = 𝜑(𝑤), то оно эквивалентно более короткому минимальному
слову. Тогда и𝑤𝑥𝜈 эквивалентно более короткому слову, и предложение справедливо по индук-
ции. Поэтому мы будем далее считать, что слово 𝑤 является минимальным словом элемента
𝑔 = 𝜑(𝑤) = (𝑔0,𝑔1, … ,𝑔𝑛). Возможны два случая: либо 𝑔𝜈−1 > 𝑔𝜈, либо 𝑔𝜈−1 < 𝑔𝜈. В первом
случае у перестановки 𝑔 есть минимальное слово вида 𝑢𝑥𝜈, по предположению индукции экви-
валентное слову 𝑤. Тогда 𝑤𝑥𝜈 ∼ 𝑢𝑥𝜈𝑥𝜈 ∼ 𝑢 и элемент 𝜑(𝑤𝑥𝜈) = 𝜑(𝑢) является образом более
короткого, чем 𝑤 слова 𝑢, эквивалентного слову 𝑤𝑥𝜈. По индукции, слово 𝑢 эквивалентно ми-
нимальному слову элемента 𝜑(𝑤𝑥𝜈) и все такие слова эквивалентны друг другу. Поэтому то же
верно и для эквивалентного 𝑢 слова 𝑤𝑥𝜈.

Остаётся рассмотреть случай 𝑔𝜈−1 < 𝑔𝜈. Здесь 𝓁(𝑔𝜎𝜈) = 𝓁(𝑔) + 1 и слово 𝑤𝑥𝜈 является ми-
нимальным словом для элемента𝜑(𝑤𝑥𝜈). Мы должны показать, что любое другое минимальное
слово 𝑤′ этого элемента эквивалентно 𝑤𝑥𝜈. Для самой правой буквы слова 𝑤′ есть 3 возмож-
ности: либо она равна 𝑥𝜈, либо она равна 𝑥𝜈±1 либо она равна 𝑥𝜇 с |𝜇 − 𝜈| ⩾ 2. В пером случае
𝑤′ = 𝑢𝑥𝜈, где 𝑢, как и 𝑤, является минимальным словом элемента 𝑔. По индукции 𝑢 ∼ 𝑤, а
значит, и 𝑤′ = 𝑢𝑥𝑘 ∼ 𝑤𝑥𝑘.

Пусть теперь𝑤′ = 𝑢𝑥𝜈+1. Поскольку оба слова𝑤𝑥𝜈 и 𝑢𝑥𝜈+1 минимальны для перестановки
ℎ = 𝜑(𝑤𝑥𝜈) = 𝜑(𝑢𝑥𝜈+1), в перестановке ℎ на местах с номерами 𝜈 − 1, 𝜈, 𝜈 + 1 стоят числа
𝑔𝜈 > 𝑔𝜈−1 > 𝑔𝜈+1, а в перестановке 𝑔 = (𝑔0,𝑔1, … ,𝑔𝑛) = 𝜑(𝑤) на этих же местах — числа
𝑔𝜈−1 < 𝑔𝜈 > 𝑔𝜈+1, где 𝑔𝜈−1 > 𝑔𝜈+1. Поэтому у перестановки ℎ имеется минимальное слово
вида 𝑠𝑥𝜈+1𝑥𝜈𝑥𝜈+1, а у перестановки 𝑔 — минимальное слово вида 𝑡𝑥𝜈𝑥𝜈+1. Перестановка ℎ′ =
= 𝜑(𝑠) = 𝜑(𝑡) отличается отℎ тем, что числа на местах с номерами 𝜈−1, 𝜈, 𝜈+1 в ней возрастают
и равны 𝑔𝜈+1 < 𝑔𝜈−1 < 𝑔𝜈. Поскольку 𝓁(ℎ′) = 𝓁(ℎ) − 3 = 𝓁(𝑔) − 2, оба слова 𝑡 и 𝑠 минимальны
для ℎ′ и по индукции эквивалентны. Кроме того, по индукции 𝑤 ∼ 𝑡𝑥𝜈𝑥𝜈+1. Поэтому

𝑤𝑥𝜈 ∼ 𝑡𝑥𝜈𝑥𝜈+1𝑥𝜈 ∼ 𝑠𝑥𝜈𝑥𝜈+1𝑥𝜈 ∼ 𝑠𝑥𝜈+1𝑥𝜈𝑥𝜈+1 .
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Но 𝑠𝑥𝜈+1𝑥𝜈 ∼ 𝑢, поскольку оба слова минимальны для одной и той же перестановки1 длины
𝑚 = 𝓁(ℎ) − 1. Таким образом, 𝑤𝑥𝜈 ∼ 𝑢𝑥𝜈+1. Случай 𝑤′ = 𝑢𝑥𝜈−1 полностью симметричен.

Наконец, пусть ℎ = 𝜑(𝑤𝑥𝜈) = 𝜑(𝑢𝑥𝜇), где |𝜇 − 𝜈| ⩾ 2. Тогда в ℎ есть два непересекающихся
фрагмента 𝑔𝜈−1 > 𝑔𝜈 и 𝑔𝜇−1 > 𝑔𝜇. Поэтому у ℎ есть минимальные слова вида 𝑡𝑥𝜇𝑥𝜈 и вида
𝑠𝑥𝜈𝑥𝜇, где 𝑡 и 𝑠 являются минимальными словами для перестановки 𝜑(𝑡) = 𝜑(𝑠), отличающей-
ся от ℎ тем, что расматриваемые 2 фрагмента в ней имеют вид 𝑔𝜈 < 𝑔𝜈−1 и 𝑔𝜇 < 𝑔𝜇−1. Так
как длина этой перестановки равна 𝓁(ℎ) − 2 = 𝑚 − 1, по индукции 𝑡 ∼ 𝑠. Поскольку 𝑡𝑥𝜇 —
минимальное слово для 𝑔, по индукции 𝑤 ∼ 𝑡𝑥𝜇. Аналогично, т. к. 𝑠𝑥𝜈 и 𝑢 — минимальные
слова для перестановки 𝜑(𝑠𝑥𝜈) = 𝜑(𝑢), отличающейся от ℎ′ транспозицией первого из двух
фрагментов и потому имеющей длину 𝓁(ℎ) − 1 = 𝑚, по индукции 𝑠𝑥𝜈 ∼ 𝑢. Таким образом,
𝑤𝑥𝜈 ∼ 𝑡𝑥𝜇𝑥𝜈 ∼ 𝑠𝑥𝜇𝑥𝜈 ∼ 𝑠𝑥𝜈𝑥𝜇 ∼ 𝑢𝑥𝜇, что и требовалось. □

Упражнение 12.7. Убедитесь, что ℎ ⩽ 𝑔 в смысле порядка Брюа если и только если в симплек-
сах 𝑒, ℎ, 𝑔 из n∘ 12.3 можно выбрать такие точки 𝑎, 𝑏, 𝑐, что длина геодезической дуги [𝑎𝑐]
меньше 𝜋 и 𝑏 ∈ [𝑎𝑐].

1Она отличается от 𝑔, ℎ и ℎ′ тем, что числа в позициях с номерами 𝜈 − 1, 𝜈, 𝜈 + 1 в ней упорядочены
как 𝑔𝜈 > 𝑔𝜈+1 < 𝑔𝜈−1, где 𝑔𝜈 > 𝑔𝜈−1.



Ответы и указания к некоторым упражнениям

Упр. 12.1. Первое очевидно, второе вытекает из того, что при вставке фрагмента 𝑥𝜀𝑥−𝜀 в произ-
вольное слово 𝑤 получится такое слово, в котором сокращение любого фрагмента вида 𝑦𝜀𝑦−𝜀

приведёт либо обратно1 к слову 𝑤, либо к слову, получающемуся из 𝑤 сначала сокращением
того же самого фрагмента 𝑦𝜀𝑦−𝜀, а уже затем вставкой 𝑥𝜀𝑥−𝜀 в то же самое место, что и в 𝑤.

Упр. 12.2. Отобразите 𝑛 ∈ ℕ в 𝑥𝑛𝑦𝑥𝑛 ∈ 𝐹2 и воспользуйтесь предл. 12.1 на стр. 198.

Упр. 12.3. Поскольку отображение 𝐹∶ ℝ𝑛 → ℝ𝑛 биективно, достаточно убедиться, что отображе-
ния 𝜎𝐹(𝜋) и 𝐹 ∘ 𝜎𝜋 ∘ 𝐹−1 одинаково действуют на точку вида 𝐹(𝑝) с произвольным 𝑝 ∈ ℝ𝑛.

Упр. 12.4. Обозначим через 𝑣𝑖 вектор, идущий из центра симплекса 𝛥 в вершину 𝑖. Вектор 𝑛𝑖𝑗 =
𝑣𝑖 − 𝑣𝑗 ортогонален гиперплоскости 𝜋𝑖𝑗, поскольку для любого 𝑘 ≠ 𝑖, 𝑗 скалярное произведение

(𝑛𝑖𝑗, 𝑣𝑘 − (𝑣𝑖 + 𝑣𝑗)∕2) = (𝑣𝑖, 𝑣𝑘) − (𝑣𝑗, 𝑣𝑘) + (𝑣𝑖, 𝑣𝑖)∕2 − (𝑣𝑗, 𝑣𝑗)∕2 = 0, т. к. все произведения
(𝑣𝑖, 𝑣𝑗) с 𝑖 ≠ 𝑗 и все скалярные квадраты (𝑣𝑖, 𝑣𝑖) одинаковы. Аналогичная выкладка показывает,
что при {𝑖, 𝑗} ∩ {𝑘,𝑚} = ∅ векторы 𝑛𝑖𝑗 и 𝑛𝑘𝑚 ортогональны. Векторы 𝑣𝑖 −𝑣𝑘 и 𝑣𝑘 −𝑣𝑗 образуют
в натянутой на них двумерной плоскости стороны правильного треугольника c вершинами в
концах векторов 𝑣𝑖, 𝑣𝑗 и 𝑣𝑘, и угол между ними равен 60∘.

1Обратите внимание, что такое происходит не только при сокращении того же самого фрагмента
𝑥𝜀𝑥−𝜀, который был перед этим вставлен, но и при сокращении одной из букв 𝑥±𝜀 с её соседкой.
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