Модули, алгебры, матрицы

- **АЛ5 (нётеровы модули).** Докажите, что следующие свойства модуля M над произвольным коммутативным кольцом эквивалентны: **a)** любое множество векторов $X \subset M$ содержит конечное подмножество, линейная оболочка которого совпадает с линейной оболочкой всего X **6)** каждый подмодуль $N \subseteq M$ конечно порождён **в)** каждая возрастающая цепочка вложенных подмодулей $N_1 \subseteq N_2 \subseteq N_3 \subseteq ... \subseteq M$ стабилизируется, т. е. существует такое $n \in \mathbb{N}$, что $N_{\nu} = N_n$ при $\nu \geqslant n$.
- **АЛ5 2.** Покажите, что каждый конечно порождённый модуль над нётеровым кольцом **a)** нётеров **б)** все его подмодули и фактормодули конечно порождены.
- **АЛ5\diamond3.** Пусть фактормодуль L=M/N свободен. Верно ли, что $M\simeq N\oplus L$?
- **АЛ5\diamond4.** Сколько различных разложений в прямую сумму имеет \mathbb{Z} -модуль $\mathbb{Z}/(5) \oplus \mathbb{Z}/(5)$?
- **АЛ5\diamond5.** Пусть порядки 1 конечных подгрупп A_1, \ldots, A_n абелевой группы A попарно взаимно просты. Докажите, что их сумма в A является прямой.
- **АЛ5\diamond6.** Верно ли, что порождённый вектором $w=(z_1,\ldots,z_m)\in\mathbb{Z}^m$ подмодуль $\mathbb{Z}\,w\subset\mathbb{Z}^m$ отщепляется прямым слагаемым 2 если и только если нод $(z_1,\ldots,z_m)=1$?
- **АЛ5 >7 (целозначные многочлены).** Пусть $M_n = \{f \in \mathbb{Q}[x] \mid \deg f \leqslant n \text{ и } \forall z \in \mathbb{Z} \ f(z) \in \mathbb{Z} \}$ и $\gamma_k(x) = {x+k \choose k} = (x+1) \cdot \ldots \cdot (x+k)/k!$, где $1 \leqslant k \leqslant n$, а $\gamma_0(x) = 1$. Покажите, что γ_k линейно независимы над \mathbb{Z} , выясните, как на них действует оператор $\nabla \colon f(x) \mapsto f(x) f(x-1)$, и докажите, что любой многочлен $f \in M_n$ имеет вид $f = \sum_{k \geqslant 0} \nabla^k f(-1) \gamma_k$. Сколько элементов в фактор модуле $M_n/(M_n \cap \mathbb{Z}[x])$?
- **АЛ5 8 (проекторы).** Пусть K-линейный эндоморфизм $f: M \to M$ имеет $f^2 = f$. Покажите, что $M = \ker f \oplus \operatorname{im} f$ и что f проектирует M на $\operatorname{im} f$ вдоль $\ker f$. Что делает 1 f?
- **АЛ5 9.** Докажите, что каждая 2×2 матрица с элементами из произвольного коммутативного кольца с единицей удовлетворяет приведённому квадратному уравнению и решите в $\text{Mat}_2(\mathbb{Q})$ уравнения **a)** $X^2 = 0$ **b)** $X^3 = 0$ **в)** $X^2 = X$ **г)** $X^2 = E$ **д)** $X^2 = -E$.
- **АЛ5** \diamond **10*** (обращение Мёбиуса в чуме). Пусть в чуме 3 P с отношением $x \leqslant y$ существует такой $m \in P$, что $m \leqslant x$ для всех $x \in P$, и для всех x < y множество $\{z \in P \mid x \leqslant z \leqslant y\}$ конечно. Обозначим через A = A(P) множество всех таких функций $\varrho: P \times P \to \mathbb{C}$, что $\varrho(x,y)=0$, если отношение $x \leqslant y$ не выполнено. Покажите, что **a)** сумма и произведение

$$\varrho_1 + \varrho_2 : (x,y) \mapsto \varrho_1(x,y) + \varrho_2(x,y) \quad \text{if} \quad \varrho_1\varrho_2 : (x,y) \mapsto \sum\nolimits_{x \leqslant z \leqslant y} \varrho_1(x,z)\varrho_2(z,y)$$

задают на A структуру ассоциативной $\mathbb C$ -алгебры с единицей **6)** функция $\varrho \in A$ обратима если и только если $\varrho(x,x) \neq 0$ для всех $x \in P$ **в)** функция $\varphi \in A$ обратная к функции $\varphi \in A$ равной 1 для всех $\varphi \in A$ имеет $\varphi \in A$ для всех $\varphi \in A$ и $\varphi \in A$ обратная к функции $\varphi \in A$ и $\varphi \in A$ и $\varphi \in A$ обратная к функции $\varphi \in A$ и $\varphi \in A$ обратная к функции $\varphi \in A$ и $\varphi \in A$ и $\varphi \in A$ обратная к функции $\varphi \in A$ обратная к фун

АЛ5 \diamond **11***. Убедитесь, что условия зад. АЛ5 \diamond 10 выполнены для а) множества $\mathbb N$ с отношением n|m б) множества всех конечных подмножеств произвольного множества X с отношением $N\subseteq M$ и явно опишите для них функции Мёбиуса и формулы обращения⁶.

 $^{^{1}}$ Порядком конечной группы называется количество элементов в ней.

 $^{^2}$ Т. е. существует такой \mathbb{Z} -подмодуль $N\subset\mathbb{Z}^m$, что $\mathbb{Z}^m=\mathbb{Z}\,w\oplus N$.

³Т. е. в частично упорядоченном множестве.

⁴Поучительно сравнить это умножение с умножением комплексных верхнетреугольных матриц.

 $^{^{5}}$ Она называется функцией Мебиуса ЧУМа P.

⁶Поучительно сопоставить ответы в (а) с задачами 1,2 из листка $2\frac{1}{2}$, а в (б) — с комбинаторной формулой включения-исключения.

No	дата	кто принял	подпись
1			
2a			
б			
3			
4			
5			
6			
7			
8			
9a			
б			
В			
Г			
Д			
10a			
б в			
Г			
11a			
б			