Модули и матрицы

- AC5 > 1. Модуль с одной образующей называется циклическим. Верно ли, что
 - а) всякий подмодуль циклического **Z**-модуля является циклическим
 - **б)** всякий циклический \mathbb{Z} -модуль изоморфен либо \mathbb{Z} , либо $\mathbb{Z}/(n)$
 - в) \mathbb{Z} -модуль $\mathbb{Z}/(n) \oplus \mathbb{Z}/(m)$ циклический если и только если HOД(m,n)=1.
- **AC5\diamond2.** Являются ли циклическими \mathbb{Z} -модули **a)** \mathbb{Z}^2 **б)** $\mathbb{Z} \oplus \mathbb{Z}/(n)$?
- **AC5\diamond3.** Опишите фактор модуля \mathbb{Z}^2 по подмодулю, порождённому векторами (2,1) и (1,2).
- **AC5\diamond4.** Модуль *M* называется *полупростым*, если для любого подмодуля $N \subset M$ существует такой подмодуль $L \subset M$, что $M = L \oplus N$. Полупросты ли \mathbb{Z} -модули: **a)** \mathbb{Z}^k **б)** $(\mathbb{Z}/(p))^k$ **в)** $\mathbb{Z}/(p^k)$, где p — простое?
- **AC5\diamond5.** Опишите \mathbb{Z} -модули **a)** $\text{Hom}_{\mathbb{Z}}(\mathbb{Z}/(12),\mathbb{Z}/(18))$ **6)** $\text{Hom}_{\mathbb{Z}}(\mathbb{Z}/(18),\mathbb{Z}/(12))$
 - **B)** $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/(2) \oplus \mathbb{Z}/(2), \mathbb{Z}/(8))$ **r)** $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/(16), \mathbb{Z}/(4) \oplus \mathbb{Z}/(8)).$
- **АС5\diamond6.** Пусть матрица A имеет столбцы (слева направо) c_1 , c_2 , c_3 и строки (сверху вниз) r_1, r_2, r_3, r_4 . На какую матрицу и с какой стороны надлежит умножить матрицу A, чтобы получилась матрица **a)** со строками (сверху вниз) $r_3 + 2r_4$, $3r_1 + 2r_2 + r_3$, $r_1 - r_2 + r_3 - r_4$ **б)** со столбцами (слева направо) $c_1 + 2c_2$, $2c_2 + 3c_3$, $3c_3 + 4c_1$, $5c_1 + 6c_2$, $c_1 + c_2 + c_3$?
- **АС5\diamond7.** Пусть K коммутативное кольцо с единицей. Обозначим через $E_{ij} \in \operatorname{Mat}_n(K)$ матрицу с единицей в клетке (i,j) и нулями в остальных клетках. Составьте таблицу:
 - а) произведений $E_{ij}E_{k\ell}$ б) коммутаторов $[E_{ij},E_{k\ell}] \stackrel{\text{def}}{=} E_{ij}E_{k\ell} E_{k\ell}E_{ij}$ и
 - **в)** опишите центр¹ алгебры $Mat_n(K)$.

в) опишите центр¹ алгебры
$$\mathrm{Mat}_n(K)$$
.
AC5 8. Укажите в $\mathrm{Mat}_3(\mathbb{Q})$ какую-нибудь матрицу X с $X^3 = \begin{pmatrix} 8 & 16 & 32 \\ 0 & 8 & 16 \\ 0 & 0 & 8 \end{pmatrix}$.
AC5 9. Найдите: **a)** $\begin{pmatrix} 1 & a & b \\ 0 & 1 & a \\ 0 & 0 & 1 \end{pmatrix}^{2022}$ **6)** $\begin{pmatrix} 1 & a & b & c \\ 0 & 1 & d & e \\ 0 & 0 & 1 & f \\ 0 & 0 & 0 & 1 \end{pmatrix}$.

- **AC5\diamond10** (унипотентные матрицы). Матрица $A \in \operatorname{Mat}_n(\Bbbk)$, где \Bbbk поле, называется унипо*тентной*, если A = E + N, где N нильпотентна. Покажите, что **a)** при char k > 0 для любой унипотентной матрицы A найдётся такое $n \in \mathbb{N}$, что $A^n = E$ б) при char $\mathbb{k} = 0$ унипотентность A равносильна наличию такой нильпотентной матрицы B, что $A = e^B$.
- **АС5\diamond11.** Покажите, что однородные симметрические² многочлены $f \in \mathbb{Z}[x_1, \dots, x_m]$ степени n образуют свободный \mathbb{Z} -модуль и найдите его ранг для всех $2 \leqslant m, n \leqslant 5$.
- **АС5\diamond12.** Выясните, являются ли многочлены **а)** $\sum_{i \neq j} x_i^2 x_j$ **б)** $\sum_{j < k} \sum_{i \notin \{j,k\}} x_i (x_j x_k)^2$
 - **B)** $(x_1 + x_2 x_3 x_4)(x_1 x_2 + x_3 x_4)(x_1 x_2 x_3 + x_4)$
 - $\mathbf{r)}\;(x_1+x_2)(x_2+x_3)(x_3+x_4)(x_1+x_3)(x_2+x_4)(x_1+x_4)$

симметрическими, и если да, выразите их через $e_k = \sum_{i_1 < \ldots < i_k} x_{i_1} \ldots x_{i_k}$.

- **AC5\diamond13.** Выразите дискриминант³ кубического трёхчлена $x^3 + px + q$ через p и q.
- AC5 > 14. Найдите все комплексные решения системы уравнений

$$x_1 + x_2 + x_3 = x_1^2 + x_2^2 + x_3^2 = 0$$
, $x_1^3 + x_2^3 + x_3^3 = 24$.

AC5\diamond15. Найдите сумму 4-х степеней комплексных корней многочлена $x^3 - 3x - 1$.

 $^{^{1}}$ Центром алгебры A называется подалгебра $Z(A) = \{a \in A \mid \forall b \in A \ ab = ba\}.$

 $^{^2}$ Многочлен $f \in K[x_1, \dots, x_m]$ называется симметрическим, если $f(x_1, \dots, x_m) = f(x_{g(1)}, \dots, x_{g(m)})$ для любой биекции $g: \{1, ..., m\} \cong \{1, ..., m\}$.

 $^{^3}$ Дискриминантом приведённого многочлена $f(x) = \prod_i (x - \alpha_i)$ называется произведение $\prod_{i < i} (\alpha_i - \alpha_i)^2$.