Топологии, расстояния и выпуклость

Топологическая зоология точек. Фигура $B_{\varepsilon}(p)=\{(x_1,x_2,\ldots,x_n):|x_i-p_i|\leq \varepsilon\;\forall\,i\}$ (где $\varepsilon>0$) называется (стандартным) ε -кубом с центром в $p\in\mathbb{R}^n$. Точка p фигуры $\Phi\subset\mathbb{R}^n$ называется внутренней, если Φ содержит некоторый ε -куб $B_{\varepsilon}(p)$. Внутренние точки дополнения $\mathbb{R}^n\smallsetminus\Phi$ называются внешними точками Φ . Точки p, не являющиеся ни внешними, ни внутренними точками Φ , называются граничными или собственными граничными, смотря по тому, принадлежат ли они Φ . Внутренность, внешность и граница фигуры Φ обозначаются через Φ , Φ и $\partial\Phi$ соответственно. Фигура Φ называется замыканием Φ . Точка p называется называется предельной точкой фигуры Φ , если $\forall\,\varepsilon>0$ $\Phi\cap(B_{\varepsilon}(p)\smallsetminus p)\neq\varnothing$. Фигура Φ называется открытой если все её точки внутренние, и замкнутой, если она содержит все свои предельные точки.

 Γ 6 \diamond 1°. Покажите, что дополнение к открытой фигуре замкнуто, а к замкнутой — открыто, и что открытые фигуры образуют топологию с базой из открытых ε -кубов $\overset{\circ}{B}_{\varepsilon}(p)$.

 $\Gamma 6 \diamondsuit 2^{\circ}$. Покажите, что замыкание $\overline{\Phi}$ фигуры Φ представляет собою:

- а) дизъюнктное объединение Φ и множества всех её несобственных граничных точек
- б) объединение Φ и множества всех её предельных точек
- в) наименьшую по включению замкнутую фигуру, содержащую Φ

 $\Gamma 6 \diamondsuit 3^{\circ}$. Покажите, что в \mathbb{R}^n любая бесконечная последовательность вложенных ε -кубов

$$B_{\varepsilon_1}(p_1) \supset B_{\varepsilon_2}(p_2) \supset B_{\varepsilon_3}(p_3) \supset \cdots$$

с $\lim_{n \to \infty} \varepsilon_n = 0$ имеет единственную общую точку.

 Γ 6 \diamond 4 $^{\circ}$ (компактность 1). Докажите эквивалентность следующих свойств фигуры $\Phi \subset \mathbb{R}^n$ (если они выполняются, фигура называется *компактом*):

- а) Ф замкнута и содержится в некотором кубе
- ϕ из любого покрытия ϕ открытыми фигурами можно выбрать конечное подпокрытие
- в) любая последовательность $x:\mathbb{N}\longrightarrow \Phi$ имеет в Φ предельную точку¹

Г6♦5. Покажите, что в любом метрическом пространстве открытые шары

$$\overset{\circ}{B}_{\varepsilon}(p) = \{ x \mid \varrho(x, p) < \varepsilon \}$$

составляют базу топологии, в которой замкнутые шары $B_{\varepsilon}(p) = \{x \mid \varrho(x,p) \leqslant \varepsilon\}$ замкнуты.

Г6 \diamond 6. Приведите пример нормы на \mathbb{R}^n , не происходящей ни из какого евклидова скалярного произведения.

- Γ 6 \diamond 7 * . Дайте определение предела последовательности точек произвольного топологического пространства. Покажите, что полагая замкнутыми множествами \mathbb{R} , \varnothing , а также все
 - а) конечные б) не более чем счётные

подмножества в \mathbb{R} , мы (в каждом из двух случаев) задаём на \mathbb{R} топологию. В топологии из п. а) опишите в) замыкание множества $\mathbb{Z} \subset \mathbb{R}$ г) все сходящиеся последовательности.

- д) Как устроены последовательности, для которых *каждая* точка $p \in \mathbb{R}$ является пределом?
- $\Gamma 6 \diamond 8^{\circ}$ (компактность 2). Докажите эквивалентность следующих свойств топологического пространства X (если они выполняются, пространство называется *компактом*):
 - а) из любого открытого покрытия X можно выбрать конечное подпокрытие
 - **6)** любой набор замкнутых подмножеств в X, каждый конечный поднабор в котором имеет непустое пересечение, сам имеет непустое пересечение.

 $^{^1}$ напомним, что точка p называется предельной точкой *последовательности* x_n , если в x_n имеется подпоследовательность $z_k = x_{n_k}$, сходящаяся к точке p; предельные точки *последовательности* не следует путать с предельными точками множества значений этой последовательности

- $\Gamma 6 \diamondsuit 9^{\circ}$. Верно ли, что каждое бесконечное подмножество компакта имеет хотя бы одну предельную точку?
- $\Gamma 6 \diamondsuit 10^{\circ}$. Верно ли, что каждое замкнутое подмножество компакта тоже компакт (в *индуцированной топологии*²)?
- **Г6**◇**11**°. Верно ли, что компактное (в индуцированной топологии) подмножество хаусдорфова пространства всегда замкнуто?
- **Г6** \diamond **12**. Докажите, что подмножество полного метрического пространства компактно тогда и только тогда, когда оно замкнуто, и для любого $\varepsilon > 0$ оно покрывается конечным числом ε -шаров³.

Выпуклая зоология точек. Точка $p=x_1q_1+x_2q_2+\cdots+x_mq_m\in\mathbb{R}^n$ с $x_i>0$ и $\sum x_i=1$ называется выпуклой комбинацией точек q_1,q_2,\ldots,q_m . Фигура Φ называется выпуклой, если она содержит все выпуклые комбинации любых своих точек. Пересечение всех выпуклых фигур, содержащих данную фигуру Φ , называется выпуклой оболочкой фигуры Φ и обозначается сопу Φ . Непустое пересечение выпуклой фигуры Φ с какой-нибудь аффинной гиперплоскостью $\xi(x)=a$, такой что вся фигура Φ целиком содержится в полупространстве $\xi(x)\geqslant a$, называется *гранью* Φ , а аффинный функционал $\xi(x)-a$ и задаваемая им гиперплоскость называются в этом случае *опорными* для Φ . Размерность грани — это размерность наименьшего аффинного подпространства, содержащего эту грань. Нульмерные грани фигуры Φ называются её *вершинами*. Точка $p\in\Phi$ называется *крайней*, если она не является внутренней точкой никакого содержащегося в Φ отрезка.

- Г6♦13°. Покажите, что выпуклая комбинация выпуклых комбинаций является выпуклой комбинацией исходных точек, и выведите отсюда, что для выпуклости фигуры необходимо и достаточно, чтобы она вместе с каждыми двумя точками содержала и соединяющий их отрезок.
- **Г6**�**14**° (симплекс). Проверьте, что выпуклая оболочка $[p_0, p_1, \ldots, p_n]$ любого набора не лежащих в одной гиперплоскости точек $p_0, p_1, \ldots, p_n \in \mathbb{R}^n$ имеет непустую внутренность, а его граница является объединением всевозможных симплексов вида $[p_{\nu_1}, p_{\nu_2}, \ldots, p_{\nu_m}]$ с m < n+1 и $\nu_i \in \{0, 1, \ldots, n\}$.
- **Г**6 \diamond **15*** (лемма Каратеодори). Каждая точка из выпуклой оболочки произвольной фигуры $\Phi \subset \mathbb{R}^n$ является выпуклой комбинацией не более (n+1) точек фигуры Φ .
- Г6♦16°. Покажите, что а) замыкание б) внутренность выпуклой фигуры выпуклы.
- **Г6**♦17°. Приведите пример замкнутой фигуры с непустой внутренностью, замыкание которой отлично от самой фигуры. Возможно ли такое, если фигура выпукла?
- $\Gamma 6 \diamondsuit 18^{\circ}$. Покажите, что замкнутая выпуклая фигура является пересечением содержащих её полупространств.
- Г6♦19. Верно ли, что у каждой замкнутой выпуклой фигуры
 - а) грань грани является гранью самой фигуры
 - б) крайняя точка грани является крайней точкой самой фигуры
 - в) все вершины являются крайними точками
 - г) все крайние точки являются вершинами.
- **Г6** \$\phi 20. Покажите, что замкнутая ограниченная выпуклая фигура является выпуклой оболочкой своих крайних точек.
- Γ 6 \diamond 21 * (лемма Радона). Любой конечное множество из $\geqslant (n+2)$ различных точек в \mathbb{R}^n всегда можно разбить в дизъюнктное объединение двух непустых подмножеств с пересекающимися выпуклыми оболочками.
- Γ 6 \diamond 22 * (теорема Хелли). Если в наборе замкнутых выпуклых фигур в \mathbb{R}^n имеется хоть одна компактная и каждый поднабор из (n+1) фигур имеет непустое пересечение, то и весь набор имеет непустое пересечение.

²замкнутыми в которой являются пересечения этого подмножества со всевозможными замкнутыми подмножествами объемлющего пространства

 $^{^{3}}$ про такие множества говорят, что они $\emph{вполне}$ ограничены, ибо это $\emph{более}$ сильное условие, чем ограниченность