Группа движений евклидовой плоскости.

Всюду в этом листке речь идёт про евклидову плоскость. Согласно теореме Шаля, каждое движение евклидовой плоскости является сдвигом, поворотом или скользящей симметрией. Всюду ниже слова «опишите движение» предполагают в каждом из этих случаев явное указание вектора сдвига, центра и угла поворота или оси симметрии и вектора сдвига соответственно.

- ГЛ2•1. Может ли фигура иметь ровно два центра симметрии?
- ГЛ2•2. Верно ли, что центральная симметрия относительно точки *s* коммутирует с отражением относительно прямой ℓ если и только если $s \in \ell$?
- **ГЛ2\diamond3.** Покажите, что следующие три свойства прямых $\ell_1,\,\ell_2,\,\ell_3$ эквивалентны:
 - а) композиция отражений $\sigma_{\ell_1} \circ \sigma_{\ell_2} \circ \sigma_{\ell_3}$ является отражением

 - б) $\sigma_{\ell_1} \circ \sigma_{\ell_2} \circ \sigma_{\ell_3} = \sigma_{\ell_3} \circ \sigma_{\ell_2} \circ \sigma_{\ell_1}$ в) прямые ℓ_1 , ℓ_2 , ℓ_3 пересекаются в одной точке или параллельны.
- ГЛ2 < 4. Опишите композицию данного отражения с данным а) сдвигом б) поворотом в терминах оси этого отражения и заданного в (а) вектора сдвига или заданных в (б) центра и угла поворота. Перечислите все случаи, когда рассматриваемая композиция является отражением.
- ГЛ2 > 5. Выясните, когда композиция двух а) поворотов б) скользящих симметрий является поворотом, а когда — сдвигом. В каждом из случаев явно опишите центр и угол получающегося поворота или вектор получающегося сдвига в терминах центров и углов исходных поворотов в (а) или осей и векторов сдвигов в (б).
- ГЛ2 6. Опишите композицию отражений плоскости относительно последовательно перебираемых против часовой стрелки
 - а) срединных перпендикуляров к сторонам данного треугольника
 - б) биссектрис углов данного треугольника
 - в) сторон данного квадрата.
- Γ Л2 \diamond 7. Обозначим чрез φ композицию трёх отражений плоскости относительно последовательно перебираемых против часовой стрелки сторон данного треугольника. Найдите ГМТ x с минимальным расстоянием $|x - \varphi(x)|$,
- **ГЛ2\diamond8.** На евклидовой плоскости нарисованы две параллельные прямые $\ell_1, \, \ell_2$ и две точки p_1, p_2 , лежащие по разные стороны от заключённой между ℓ_1 и ℓ_2 полосы. Постройте такие точки $x_1 \in \ell_1$ и $x_2 \in \ell_2$, что прямая (x_1x_2) параллельна некоторой заданной прямой ℓ и
 - **a)** $|p_1x_1| = |p_2x_2|$
 - **6)** $(p_1x_1)\perp(p_2x_2)$
 - в) сумма расстояний $|p_1-x_1|+|x_1-x_2|+|x_2-p_2|$ минимальна.
- ГЛ2 9. Циркулем и линейкой постройте равносторонний треугольник с вершинами на трёх заданных параллельных прямых.

No	дата	кто принял	подпись
1			
2			
3			
4a			
б			
5a			
б			
6a			
б			
В			
7			
8a			
б			
В			
9			