§3. Многообразия Веронезе, Грассмана и Сегре

3.1. Напоминания из полилинейной алгебры. Тензорные степени $V^{\otimes n} \stackrel{\text{def}}{=} V \otimes ... \otimes V$ векторного пространства V объединяются в ассоциативную (некоммутативную) алгебру V^2

$$TV \stackrel{\text{def}}{=} \bigoplus_{n \geq 0} V^{\otimes n}$$
,

которая называется mензорной алгеброй пространства V или свободной ассоциативной алгеброй, порождённой V. Выбор в V базиса из векторов e_i отождествляет TV с алгеброй многочленов от некоммутирующих друг с другом переменных e_i : мономы n-й степени

$$e_{\nu_1} \otimes \ldots \otimes e_{\nu_n}$$
 (3-1)

образуют базис в $V^{\otimes n}$ и перемножаются приписыванием друг к другу через значок \otimes . Алгебра TV вместе с вложением

$$\iota: V \hookrightarrow TV$$
, (3-2)

которое отождествляет V с подпространством $V^{\otimes 1} \subset TV$ однозначно с точностью до единственного перестановочного с ι изоморфизма алгебр характеризуется тем, что для любой ассоциативной \Bbbk -алгебры A и всякого линейного отображения $f:V\to A$ существует единственный такой гомоморфизм \Bbbk -алгебр $\alpha:TV\to A$, что $f=\alpha\circ\iota$.

Двусторонний идеал $\mathcal{I}_{\text{com}} \subset TV$, порождённый всевозможными разностями³

$$u \otimes w - w \otimes u \in V \otimes V, \tag{3-3}$$

называется соотношениями коммутативности, а фактор алгебра $SV \stackrel{\text{def}}{=} TV / \mathcal{I}_{\text{com}}$ называется симметрической алгеброй пространства V или свободной коммутативной алгеброй, порождённой V. Выбор в V базиса e_1, \ldots, e_d отождествляет SV с алгеброй многочленов $\mathbb{k}[e_1, \ldots, e_d]$.

Двусторонний идеал $\mathcal{I}_{\mathrm{sk}} \subset TV$, порождённый квадратами всевозможных векторов $v \in V$

$$v \otimes v \in V \otimes V, \tag{3-4}$$

называется соотношениями антикоммутативности 4 , а фактор алгебра $\Lambda V \stackrel{\text{def}}{=} TV/\mathcal{I}_{\text{sk}}$ называется внешней или грассмановой алгеброй пространства V. Умножение в алгебре ΛV называется внешним или грассмановым и обозначается $v_1 \wedge \ldots \wedge v_n$. Из равенств

$$0 = (u + w) \land (u + w) = u \land w + w \land u$$

вытекает, что внешнее произведение векторов $u,w\in V$ знакопеременно. Выбор в V базиса e_1,\ldots,e_d отождествляет внешнюю алгебру ΛV с алгеброй $\Bbbk\,\langle e_1,\ldots,e_d\rangle$ грассмановых многочленов с коэффициентами в \Bbbk от антикоммутирующих переменных e_i с нулевыми квадратами, базис в которой составляют грассмановы мономы

$$e_I = e_{i_1} \wedge \ldots \wedge e_{i_n} \,, \quad \text{где} \quad I = (i_1, \ldots, i_n) \quad \text{и} \quad 1 \leqslant i_1 < i_2 < \, \cdots \, < i_n \leqslant d \,. \eqno(3-5)$$

¹Подробнее про тензорные произведения и тензорную алгебру можно прочитать в лекциях http://gorod.bogomolov-lab.ru/ps/stud/algebra-1/2425/lec_13.pdf и http://gorod.bogomolov-lab.ru/ps/stud/algebra-1/2425/lec_14.pdf.

 $^{^{2}}$ Мы полагаем $V^{\otimes 0} \stackrel{\text{def}}{=} \mathbb{k}$, а $V^{\otimes 1} \stackrel{\text{def}}{=} V$.

 $^{^3}$ Т. е. наименьшая по включению \Bbbk -подалгебра, содержащая все такие разности и вместе с каждый элементом содержащая все его левые и правые кратные.

 $^{^4}$ Или суперкоммутативности, коротко — s-коммутативности.

⁵См. раздел 8.3 на с. 132 лекции http://gorod.bogomolov-lab.ru/ps/stud/algebra-1/2425/lec_08.pdf.

Подпространство $\Lambda^n V \subset \Lambda V$ однородных грассмановых многочленов степени n имеет размерность $\dim \Lambda^n V = \binom{d}{n}$, а вся грассманова алгебра $\Lambda V = \bigoplus_{n=0}^d \Lambda^n V$ имеет $\dim \Lambda V = 2^{\dim V} = 2^d$.

3.1.1. Свёртки. Для конечномерного векторного пространства V над произвольным полем \Bbbk тензорные степени $V^{\otimes n}$ и $V^{*\otimes n}$ канонически двойственны друг другу посредством полной свёртки, сопоставляющей разложимым тензорам $v=v_1\otimes \ldots \otimes v_n\in V^{\otimes n}$ и $\xi=\xi_1\otimes \ldots \otimes \xi_n\in V^{*\otimes n}$ произведение

$$\langle v, \xi \rangle \stackrel{\text{def}}{=} \prod_{i=1}^{n} \xi_i(v_i).$$
 (3-6)

Если базисы $e_1,\dots,e_n\in V$ и $x_1,\dots,x_n\in V^*$ двойственны друг другу, то составленные из тензорных мономов $e_{i_1}\otimes\dots\otimes e_{i_r}$ и $x_{j_1}\otimes\dots\otimes x_{j_s}$ базисы в $V^{\otimes n}$ и $V^{*\otimes n}$ также двойственны друг другу. Из универсального свойства тензорного произведения вытекает, что пространство линейных отображений $V^{\otimes n}\to\mathbb{R}$ канонически изоморфно пространству n-линейных форм

$$V \times \dots \times V \to \mathbb{k} \,. \tag{3-7}$$

Комбинация этого изоморфизма с задаваемым полной свёрткой изоморфизмом между $V^{\otimes n^*}$ и $V^{*\otimes n}$ устанавливает канонический изоморфизм между $V^{*\otimes n}$ и пространством n-линейных форм (3-7). Разложимому тензору $\xi=\xi_1\otimes\ldots\otimes\xi_n\in V^{*\otimes n}$ при этом отвечает n-линейная форма

$$V \times ... \times V \to \mathbb{k}, \ (v_1, ..., v_n) \mapsto \prod_{i=1}^n \xi_i(v_i).$$

Для любых двух упорядоченных наборов из m неповторяющихся 1 индексов

$$I = (i_1, \dots, i_m), \quad J = (j_1, \dots, j_m)$$

имеется линейное отображение частичной свёртки по m сомножителям I,J

$$c_J^I: V^{*\otimes p} \otimes V^{\otimes q} {\rightarrow} V^{*\otimes (p-m)} \otimes V^{\otimes (q-m)}$$

$$\xi_1 \otimes \ldots \otimes \xi_p \otimes v_1 \otimes \ldots \otimes v_q \mapsto \prod_{\nu=1}^m \xi_{i_\nu}(v_{j_\nu}) \cdot \left(\bigotimes_{i \not \in I} \xi_i\right) \otimes \left(\bigotimes_{i \not \in I} v_j\right) \tag{3-8}$$

которое для каждого $\nu=1,\,2,\,\dots,\,m$ спаривает i_{ν} -тый сомножитель в $V^{*\otimes p}$ с j_{ν} -тым сомножителем в $V^{\otimes q}$, а все остальные сомножители оставляет в том же порядке, как они стояли.

Упражнение 3.1. Интерпретируем n-линейную форму $\varphi: V \times V \times \cdots \times V \to \mathbb{k}$ как тензор из $V^{*\otimes n}$, обозначим через $v \downarrow \varphi$ его свёртку по первому тензорному сомножителю с заданным вектором $v \in V$ и интерпретируем тензор $v \downarrow \varphi \in V^{*\otimes (n-1)}$ как (n-1)-линейную форму на V. Убедитесь, что $v \downarrow \varphi(w_1, \ldots, w_{n-1}) = \varphi(v, w_1, \ldots, w_{n-1})$.

3.1.2. Линейный носитель тензора. Для заданного тензора $t \in V^{\otimes n}$ на конечномерном векторном пространстве V над произвольным полем \mathbbm{k} обозначим через $\mathrm{supp}(t) \subset V$ пересечение всех таких подпространств $U \subset V$, что $t \in U^{\otimes n}$. Иначе $\mathrm{supp}(t)$ описывается как такое наименьшее по включению $U \subset V$ подпространство $U \subset V$, что $U \subset V$ порежение $U \subset$

Упражнение 3.2. Убедитесь, что для любой пары векторных подпространств $U,W\subset V$ включения $t\in U^{\otimes n}$ и $t\in W^{\otimes n}$ влекут включение $t\in (U\cap W)^{\otimes n}$.

 $^{^{1}}$ Но не обязательно возрастающих или убывающих.

 $^{^{2}}$ Или, что то же самое, по размерности.

Подпространство $\sup(t)$ называется линейным носителем тензора t. Если он отличается от всего пространства V, тензор t называется вырожденными. Это означает, что часть переменных в некоммутативном многочлене t можно уничтожить подходящей линейной заменой базиса. Например, если $\dim \sup(t) = 1$, то $t = c \cdot v^{\otimes n}$ для некоторых ненулевых $c \in \mathbb{R}$ и $v \in \sup(t)$.

Чтобы явно указать векторы, линейно порождающие $\mathrm{supp}(t)$, где $t\in V^{\otimes n}$, для каждого набора $J=(j_1,\dots,j_{n-1})$ из n-1 неповторяющихся индексов $1\leqslant j_{\nu}\leqslant n$ обозначим через

$$t_{J}: V^{*\otimes (n-1)} \to V, \quad \xi \mapsto c^{1,\dots,(n-1)}_{j_{1},\dots,j_{n-1}}(\xi \otimes t), \tag{3-9}$$

полную свёртку с тензором t, спаривающую ν -й сомножитель произведения $V^{*\otimes (n-1)}$ с j_{ν} -м сомножителем тензора t для каждого $1 \leqslant \nu \leqslant (n-1)$. Если записать t в виде суммы разложимых тензоров вида $v_1 \otimes \ldots \otimes v_n$, то результатом такой свёртки будет линейная комбинация векторов v_i с $i \notin J$. Очевидно, что она лежит в $\sup(t)$.

Теорема 3.1

Пространство supp(t) линейно порождается образами всех свёрток (3-9).

Доказательство. Обозначим $\sup(t)$ через $W \subset V$. Достаточно доказать, каждая линейная форма $\xi \in V^*$, аннулирующая образы всех свёрток (3-9), аннулирует подпространство W. Предположим противное: пусть ковектор $\xi \in V^*$ имеет ненулевое ограничение на W, но аннулирует $t_J\left(V^{*\otimes(n-1)}\right)$ для всех J. Выберем в V^* базис ξ_1,\ldots,ξ_d , в котором $\xi_1=\xi$, а ограничения ковекторов ξ_1,\ldots,ξ_k на W образуют базис в W^* . Обозначим через w_1,\ldots,w_k двойственный базис пространства W и разложим t по этому базису. Значение $\xi(t_J(\xi_{i_1}\otimes\ldots\otimes\xi_{i_{n-1}}))$ равно полной свёртке тензора t с базисным тензорным мономом $\xi_{i_1}\otimes\ldots\otimes\xi_{i_{n-1}}\otimes\xi_1$ по всем n тензорным сомножителям в том порядке, который предписан последовательностью 2J . Получающееся в результате этой свёртки число равно коэффициенту, с которым соответствующий двойственный тензорный моном 3 от базисных векторов w_i входит в разложение t. Подбирая надлежащие J, можно получить коэффициент при любом содержащем w_1 мономе, входящем в разложение t. Тем самым, все они нулевые, t. е. $w_1 \notin \operatorname{supp}(t)$ вопреки нашему выбору.

3.1.3. Симметричные и знакопеременные тензоры. Всюду в этом разделе мы по умолчанию считаем, что основное поле \mathbbm{k} имеет характеристику нуль. Симметрическая группа S_n действует на $V^{\otimes n}$ перестановками сомножителей в разложимых тензорах⁴:

$$\forall\,g\in\mathcal{S}_n\quad g(v_1\otimes\ldots\otimes v_n)=v_{g^{-1}(1)}\otimes\cdots\otimes v_{g^{-1}(n)}\,, \tag{3-10}$$

и так как правая часть полилинейно зависит от v_1,\dots,v_n , эта формула корректно задаёт линейный оператор $g:V^{\otimes n}\to V^{\otimes n}$. Тензор $t\in V^{\otimes n}$ называется симметричным, если g(t)=t

 $^{^{1}}$ Которые не обязаны возрастать или убывать.

 $^{^2}$ Т. е. j_{ν} -й сомножитель тензора t сворачивается с $\xi_{i_{\nu}}$ при $1 \leqslant \nu \leqslant n-1$, а оставшийся в t сомножитель с номером $\{1,\ldots,n\} \smallsetminus J$ сворачивается с ξ_1 .

 $^{^3} j_{\nu}$ -й множитель этого монома равен $w_{i_{\nu}}$ при $1 \leqslant \nu \leqslant n-1$, а оставшийся сомножитель с номером $\{1,\ldots,n\} \setminus J$ равен w_1 .

⁴Обратите внимание, что набор занумерованных векторов v_1, \ldots, v_n есть не что иное, как отображение $v: \{1, \ldots, n\} \to V$. Левое действие группы S_n автоморфизмов множества $\{1, \ldots, n\}$ на таких отображениях задаётся правилом $gv(i) = v(g^{-1}(i))$. При этом i-й слева элемент набора v оказывается в наборе g(v) на g(i)-м слева месте.

для всех $g \in S^n$, и знакопеременным — если $g(t) = \operatorname{sgn}(g) t$ для всех $g \in S^n$. Симметричные и знакопеременные тензоры образуют в $V^{\otimes n}$ векторные подпространства

$$\begin{split} \operatorname{Sym}^n V &= \{\, t \in V^{\otimes n} \mid \forall \, g \in S_n \,\, g(t) = t \} \,, \\ \operatorname{Alt}^n V &= \{\, t \in V^{\otimes n} \mid \forall \, g \in S_n \,\, g(t) = \operatorname{sgn}(g) \cdot t \} \,. \end{split}$$

Зафиксируем в пространстве V базис $E\subset V$ и будем записывать тензоры $t\in V^{\otimes n}$ в виде некоммутативных многочленов от базисных мономов $e_1\otimes\ldots\otimes e_n$, где $e_i\in E$. Два таких монома лежат в одной S_n -орбите если и только если для каждого $e\in E$ количество m(e) равных e сомножителей в этих мономах одинаково. Мы заключаем, что S_n -орбиты базисных мономов в $V^{\otimes n}$ нумеруются функциями $m:E\to\mathbb{Z}_{\geqslant 0}$ с конечным носителем и суммой значений $|m|\stackrel{\text{def}}{=}\sum_{e\in E}m(e)$ равной n. При этом тензор t симметричен если и только если вместе с каждым базисным моном в него с тем же самым коэффициентом входят все мономы S_n -орбиты этого базисного монома. Мы заключаем, что симметричные тензоры

занумерованные функциями $m: E \to \mathbb{Z}_{\geqslant 0}$ с |m| = n, образуют базис векторного подпространства $\operatorname{Sym}^n V \subset V^{\otimes n}$. Например, базис в $\operatorname{Sym}^3(\Bbbk^2)$ составляют тензоры

$$\begin{split} e_{[3,0]} &= e_1 \otimes e_1 \otimes e_1 \,, \quad e_{[0,3]} = e_2 \otimes e_2 \otimes e_2 \,, \\ e_{[2,1]} &= e_1 \otimes e_1 \otimes e_2 + e_1 \otimes e_2 \otimes e_1 + e_2 \otimes e_1 \otimes e_1 \,, \\ e_{[1,2]} &= e_1 \otimes e_2 \otimes e_2 + e_2 \otimes e_1 \otimes e_2 + e_2 \otimes e_2 \otimes e_1 \,, \end{split}$$

где $E=\{e_1,e_2\}\subset \mathbb{k}^2$ — стандартный базис, а $[i,j]\colon E\to \mathbb{Z}_{\geqslant 0},e_1\mapsto i,e_2\mapsto j.$

Упражнение 3.3. Убедитесь, что в сумме (3-11) ровно $n!/\prod_{e\in E} m(e)!$ слагаемых.

В разложении кососимметричного тензора $t \in \operatorname{Alt}^n V$ участвуют только те базисные мономы $e_1 \otimes \ldots \otimes e_n$, у которых $e_i \neq e_j$ при $i \neq j$. Орбита такого монома состоит из n! мономов

$$e_{g(1)} \otimes \ldots \otimes e_{g(n)}$$
, где $g \in \mathcal{S}_n$,

и коэффициент при каждом таком мономе получается из коэффициента при $e_1\otimes \ldots \otimes e_n$ умножением на sgn g. Мы заключаем, что если зафиксировать на множестве базисных векторов $E\subset V$ какой-нибудь линейный порядок, то кососимметричные тензоры

$$\langle e_1 \otimes \ldots \otimes e_n \rangle \stackrel{\text{\tiny def}}{=} \sum\nolimits_{g \in S_n} \operatorname{sgn}(g) \, e_{g(1)} \otimes \ldots \otimes e_{g(n)} \, , \text{ где } e_1 < \ldots < e_n \, , \tag{3-12}$$

составят базис векторного подпространства $\mathrm{Alt}^n V \subset V^{\otimes n}$.

Теорема 3.2 (поляризация многочленов)

Если char $\mathbb{k}=0$, то ограничения отображения факторизации

$$V^{\otimes n} \twoheadrightarrow S^n V = V^{\otimes n} / (\mathcal{I}_{\text{com}} \cap V^{\otimes n}), \quad v_1 \otimes \ldots \otimes v_n \mapsto v_1 \ldots v_n, \tag{3-13}$$

на подпространство симметричных тензоров $\mathrm{Sym}^n \subset V^{\otimes n}$ и отображения факторизации

$$V^{\otimes n} \twoheadrightarrow \varLambda^n V = V^{\otimes n} / (\mathcal{I}_{\rm sk} \cap V^{\otimes n}) \,, \quad v_1 \otimes \ldots \otimes v_n \mapsto v_1 \wedge \ldots \wedge v_n \,, \tag{3-14}$$

на подпространство знакопеременных тензоров $\mathrm{Alt}^n \subset V^{\otimes n}$ являются линейными изоморфизмами векторных пространств. Они действуют на стандартные базисы (3-11) и (3-12) так:

$$e_{[m]} \mapsto \frac{n!}{\prod_{e \in E} m(e)!} \prod_{e \in E} e^{m(e)},$$
 (3-15)

$$\langle e_1 \otimes \ldots \otimes e_n \rangle \mapsto n! \, e_1 \wedge \ldots \wedge e_n \, . \tag{3-16}$$

Доказательство. Проекция (3-13) переводит каждое из $n!/\prod_{e\in E} m(e)!$ слагаемых, входящих в сумму (3-11), в стандартный коммутативный базисный моном $\prod_{e\in E} e^{m(e)}$ алгебры многочленов $\mathbb{k}[E]$, а проекция (3-14) переводит каждое из n! слагаемых суммы (3-12) в стандартный базисный грассманов моном $e_1 \wedge \ldots \wedge e_n$ алгебры грассмановых многочленов $\mathbb{k}\langle E \rangle$.

Предостережение 3.1. Не смотря на теор. 3.2, симметричные и знакопеременные тензоры, т. е. подпространства $\operatorname{Sym}^n V \subset V^{\otimes n}$ и $\operatorname{Alt}^n V \subset V^{\otimes n}$, не следует путать с однородными многочленами, т. е. с фактор пространствами $S^n V = V^{\otimes n}/(J_{\operatorname{com}} \cap V^{\otimes n})$ и $\Lambda^n V = V^{\otimes n}/(J_{\operatorname{sk}} \cap V^{\otimes n})$. Если char $\Bbbk = p > 0$, то ограничения проекций $V^{\otimes n} \twoheadrightarrow S^n V$ и $V^{\otimes n} \twoheadrightarrow \Lambda^n V$ на подпространства симметрических и знакопеременных тензоров могут иметь ненулевые ядра. Даже в характеристике нуль эти проекции переводят стандартные базисные векторы тензорных и полиномиальных пространств не буквально друг в друга, но в некоторые кратности друг друга, и эти поправочные комбинаторные множители приходится учитывать как при попытке поднять на пространства симметричных и знакопеременных тензоров коммутативное и s-коммутативное умножения, имеющиеся в алгебрах SV и ΛV , так и при попытке спустить в симметрическую и грассманову алгебру отображения свёртки, которые имеются между тензорами из двойственных пространств V и V^* .

Пример 3.1 (двойственность)

Если char $\Bbbk = 0$ и dim $V < \infty$, то ограничение задаваемого полной свёрткой спаривания между $V^{\otimes n}$ и $V^{*\otimes n}$ на подпространства $\mathrm{Sym}^n \, V \subset V^{\otimes n}$ и $\mathrm{Sym}^n \, V^* \subset V^{*\otimes n}$ задаёт между ними невырожденное спаривание, при котором стандартные базисные симметрические тензоры (3-11), составленные из векторов двойственных друг другу базисов в V и V^* сворачиваются друг с другом по правилу

$$\langle x_{[m]}, e_{[m]} \rangle = n! / \prod_{e \in E} m(e)!$$
 и $\langle x_{[k]}, e_{[\ell]} \rangle = 0$ при $k \neq \ell$, (3-17)

так как каждое слагаемое суммы (3-11) сворачивается в единицу ровно с одним слагаемым такой же суммы, составленной из двойственных базисных векторов, и сворачивается в нуль со всеми прочими базисными мономами. Изоморфизм (3-15) превращает это спаривание в каноническое невырожденное спаривание между симметрическими степенями S^nV и S^nV^* , при котором базисные мономы, составленные из векторов *любых* двойственных друг базисов в V и в V^* спариваются по правилу

$$\langle \, x_1^{k_1} \dots x_n^{k_n} \, , \, e_1^{m_1} \dots e_n^{m_n} \, \rangle = \left\{ \begin{array}{ll} m_1! \dots m_n! / n! & \text{если} \, (k_1, \dots, k_n) = (m_1, \dots, m_n) \\ 0 & \text{в остальных случаях.} \end{array} \right. \tag{3-18}$$

Аналогичным образом, ограничение полной свёртки на подпространства $\mathrm{Alt}^n V$ и $\mathrm{Alt}^n V^*$ над полем характеристики нуль задаёт между ними невырожденное спаривание, при котором стандартные базисные знакопеременные тензоры (3-12) сворачиваются по правилу

$$\langle\,\langle x_{i_1}\otimes \ldots \otimes x_{i_n}\rangle\,,\,\langle e_{j_1}\otimes \ldots \otimes e_{j_n}\rangle\,\rangle = \begin{cases} n! & \text{если } (i_1,\ldots,i_n) = (j_1,\ldots,j_n) \\ 0 & \text{в остальных случаях,} \end{cases} \tag{3-19}$$

и посредством изоморфизма (3-16) это спаривание превращается в невырожденное спаривание между внешними степенями $\Lambda^n V$ и $\Lambda^n V^*$, при котором базисные мономы, составленные из векторов *любых* двойственных друг базисов в V и в V^* спариваются по правилу

$$\langle \, x_{i_1} \wedge \ldots \wedge x_{i_n} \, , \, e_{m_1} \wedge \ldots \wedge e_{m_n} \, \rangle = \begin{cases} 1/n! & \text{если } (i_1, \ldots, i_n) = (j_1, \ldots, j_n) \\ 0 & \text{в остальных случаях,} \end{cases} \tag{3-20}$$

где оба набора индексов строго возрастают: $i_1 < \ldots < i_n$ и $j_1 < \ldots < j_n$.

Предложение 3.1 (принцип Аронгольда)

Над полем характеристики нуль пространство симметрических тензоров $\operatorname{Sym}^n V \subset V^{\otimes n}$ линейно порождается тензорами $v^{\otimes n} = v \otimes \ldots \otimes n$, где $v \in V$, а пространство однородных многочленов $S^n V^*$ — многочленами φ^n , где $\varphi \in V^*$.

Доказательство. Двойственное к $\operatorname{Sym}^n V$ пространство канонически изоморфно пространству симметричных n-линейных форм $V \times \ldots \times V \to \mathbb{R}$. Если такая форма \tilde{f} зануляется на всех наборах (v,\ldots,v) , то многочлен $f \in S^n V^*$, поляризацией которого она является, задаёт тождественно нулевую функцию $f:V \to \mathbb{R}$, откуда f=0, а значит и $\tilde{f}=0$. Тем самым, линейная оболочка тензоров $v^{\otimes n}$ не лежит ни в какой гиперплоскости пространства $\operatorname{Sym}^n V$, что доказывает первое утверждение. Второе следует из первого, поскольку при изоморфизме $\operatorname{Sym}^n V^* \hookrightarrow S^n V^*$ тензоры $\varphi^{\otimes n}$ переходят в многочлены φ^n .

Упражнение 3.4 (усиленный принцип Аронгольда). В условиях предл. 3.1 для любого ненулевого многочлена $f \in S^n V^*$ покажите, что пространство $\operatorname{Sym}^n V \subset V^{\otimes n}$ линейно порождается тензорами $v^{\otimes n}$ с $f(v) \neq 0$.

3.1.4. Линейный носитель (грассманова) многочлена. Линейным носителем многочлена $f \in S^n V^*$ (соотв. грассманова многочлена $\omega \in \varLambda^n V$) называется наименьшее такое подпространство $U \subset V^*$ (соотв. $W \subset V$), что $f \in S^n U$ (соотв. $\omega \in \varLambda^n W$). Над полем характеристики нуль носитель многочлена совпадает с носителем его полной поляризации: $\operatorname{supp} f = \operatorname{supp} \tilde{f}$ (соотв. $\operatorname{supp} \omega = \operatorname{supp} \tilde{\omega}$) и может быть найден при помощи теор. 3.1 на стр. 40, причём в силу симметричности тензора $\tilde{f} \in \operatorname{Sym}^n V^*$ (соотв. знакопеременности тензора $\tilde{\omega} \in \operatorname{Alt}^n V$) образ полной свёртки

$$f_{J}: V^{\otimes (n-1)} \to V^{*}, \quad \tau \mapsto c_{1,\dots,(n-1)}^{j_{1},\dots,j_{n-1}}(\tilde{f} \otimes \tau),$$
 (3-21)

сворачивающей все n-1 сомножителей тензора $\tau \in V^{\otimes (n-1)}$ с какими-то n-1 сомножителями с тензора \tilde{f} , как и образ полной свёртки

$$\omega_J:\,V^{*\otimes(n-1)}\to V\,,\quad \eta\mapsto c^{1,\ldots,(n-1)}_{j_1,\ldots,j_{n-1}}(\eta\otimes\omega)\,, \tag{3-22}$$

сворачивающей все n-1 сомножителей тензора $\eta \in V^{*\otimes (n-1)}$ с какими-то n-1 сомножителями с тензора $\widetilde{\omega}$ не зависят от выбора последовательности J номеров сворачиваемых n-1 сомножителей у тензоров \widetilde{f} и $\widetilde{\omega}$. Таким образом, линейный носитель $\sup f \subset V^*$ обычного многочлена $f \in S^nV^*$ и линейный носитель $\sup \omega = \sup \widetilde{\omega}$ грассманова многочлена $\omega \in \Lambda^nV$ совпадают, соответственно, с образами отображений (3-21) и (3-22) полной свёртки по $nepвым \ n-1$ тензорным сомножителям $J = \{1, \ldots, n-1\}$.

3.1.5. Многочлены с минимальным (одномерным) носителем. Если записать многочлен f в виде

$$f = \sum_{\nu_1 \dots \nu_d} \frac{n!}{\nu_1! \dots \nu_d!} a_{\nu_1 \dots \nu_d} x_1^{\nu_1} \dots x_d^{\nu_d}, \qquad (3-23)$$

то его полная поляризация, согласно форм. (3-15) на стр. 42, будет иметь вид

$$\tilde{f} = \sum\nolimits_{\nu_1 \dots \nu_d} a_{\nu_1 \dots \nu_d} x_{[\nu_1 \dots \nu_d]} \,,$$

где $x_{[\nu_1\dots\nu_d]}\in \operatorname{Sym}^n V^*$ — сумма всех тензорных мономов, содержащих ν_i сомножителей x_i для всех $i=1,\dots,d$. Образ полной свёртки (3-21) порождается $\binom{n+d-2}{d-1}$ линейными формами

$$\varphi_{m_1...m_d}(x) = \tilde{f}(e_1^{m_1}, \dots, e_d^{m_d}, x) = \sum_{i=1}^d a_{m_1...m_{i-1}(m_i+1)m_{i+1}...m_d} x_i,$$
 (3-24)

где $m_1+\ldots+m_d=n-1$ и все $m_i\geqslant 0$, а $x=(x_1,\ldots,x_d)=\sum_{i=1}^d x_ie_i\in V.$

Предложение 3.2 (многочлены с одномерным носителем)

Однородный многочлен (3-23) над полем характеристики нуль пропорционален чистой n-й степени линейной формы, если и только если $d \times \binom{n+d-2}{d-1}$ -матрица из коэффициентов линейных форм (3-24) имеет ранг 1, и в этом случае в качестве таковой формы можно взять любую из форм (3-24).

Доказательство. Если $f = \lambda \varphi^n$, где $\lambda \in \mathbb{R}$, $\varphi \in V^*$, то supp f одномерен и порождается формой φ , а все формы (3-24) пропорциональны форме φ . Наоборот, если все формы (3-24) пропорциональны некоторой форме $\psi \in V^*$, то supp $f = \mathbb{R} \psi$ и $f = \lambda \psi^n$ для некоторого $\lambda \in \mathbb{R}$.

Пример 3.2 (ОПЯТЬ КРИВАЯ ВЕРОНЕЗЕ)

При d=2 для однородной бинарной формы n-й степени

$$f(x_0, x_1) = \sum_{k=0}^n a_k \cdot \binom{n}{k} \cdot x_0^k x_1^{n-k}$$

получаем ровно n линейных форм (3-24):

$$\varphi_k(x) = f(e_0^k, e_1^{n-k-1}, x) = a_{k+1}x_0 + a_kx_1, \quad k = 0, \dots, n-1,$$

и заключаем, что форма f пропорциональна форме вида $(\alpha_0x_0+\alpha_1x_1)^n,$ если и только если

$$\operatorname{rk}\begin{pmatrix} a_0 & a_1 & \dots & a_{n-1} \\ a_1 & a_2 & \dots & a_n \end{pmatrix} = 1,$$

что выражается системой квадратичных уравнений

$$\det \begin{pmatrix} a_i & a_j \\ a_{i+1} & a_{j+1} \end{pmatrix} = 0$$

на коэффициенты a_i многочлена f. Например, кубика Веронезе в \mathbb{P}_3 с однородными координатами ($a_0:\ldots:a_3$) представляет собой пересечение трёх квадрик:

$$a_0 a_2 = a_1^2 \,, \quad a_0 a_3 = a_1 a_2 \,, \quad a_2^2 = a_1 a_3 \,,$$

каждые две из которых пересекаются по объединению кривой Веронезе и общей для обеих квадрик прямолинейной образующей.

Упражнение 3.5. Убедитесь в этом.

3.1.6. Грассмановы многочлены с минимальным носителем. В отличие от обычных многочленов, размерность носителя однородного грассманова многочлена ограничена снизу его степенью.

Упражнение 3.6. Пусть dim U=m и $\omega\in\Lambda U$ — ненулевой грассманов многочлен. Убедитесь, что A) если $\omega\in\Lambda^n U$, то dim supp $\omega\geqslant n$ Б) $\omega\in\Lambda^m U$ тогда и только тогда, когда $v\wedge\omega=0$ для всех $v\in V$.

Предложение 3.3 (грассмановы многочлены с минимальным ненулевым носителем) Следующие три условия на грассманов многочлен

$$\omega = \sum_{I} a_{I} e_{I} = \sum_{i_{1} < \dots < i_{n}} a_{i_{1} \dots i_{n}} e_{i_{1}} \wedge \dots \wedge e_{i_{n}}, \qquad (3-25)$$

где $I = (i_1, \dots, i_n)$ пробегает возрастающие последовательности из n индексов, эквивалентны:

- 1) $\dim \operatorname{supp} \omega \leqslant n$ 2) $\omega = u_1 \wedge \ldots \wedge u_n$, где $u_1, \ldots, u_n \in V$ 3) $\forall u \in \operatorname{supp} \omega \ u \wedge \omega = 0$
- 4) для любых двух наборов I, J возрастающих индексов $i_1 < \ldots < i_{m+1}$ и $j_1 < \ldots < j_{m-1}$, таких, что $I \not\supset J$, выполнены соотношения Плюккера

$$\sum_{\nu=1}^{m+1} (-1)^{\nu-1} \tilde{a}_{j_1 \dots j_{m-1} i_{\nu}} a_{i_1 \dots \hat{i}_{\nu} \dots i_{m+1}} = 0, \qquad (3-26)$$

где «крышка» в $a_{i_1\dots\hat{i}_{\nu}\dots i_{m+1}}$ означает, что индекс i_{ν} следует пропустить.

Доказательство. Условия (1), (2) и (3) очевидно эквивалентны и означают, что ω лежит в старшей внешней степени $\Lambda^{\dim \operatorname{supp} \omega}$ своей линейной оболочки $\sup \omega$. Полной поляризацией грассманова многочлена (3-25) является знакопеременный тензор

$$\widetilde{\omega} = \frac{1}{n!} \sum_{I} a_{I} \langle e_{i_{1}} \otimes \ldots \otimes e_{i_{n}} \rangle = \sum_{i_{1}, \ldots, i_{n}} \widetilde{a}_{i_{1} \ldots i_{n}} e_{i_{1}} \otimes \ldots \otimes e_{i_{n}}, \qquad (3-27)$$

где справа суммирование идёт уже по всем последовательностям из n не повторяющихся индексов, а коэффициенты $\tilde{a}_{i_1...i_n}$ кососимметричны по i_1,\ldots,i_n и $\tilde{a}_{i_1...i_n}=a_{i_1...i_n}/n!$ когда индексы строго возрастают. Подпространство $\mathrm{supp}(\widetilde{\omega})\subset V$ является образом полной свёртки

$$c_{\widetilde{\omega}}: V^{*\otimes (n-1)} \to V$$

с тензором $\widetilde{\omega} \in V^{\otimes n}$ по первым n-1 тензорным сомножителям и линейно порождается векторами

$$w_J = c_{\widetilde{\omega}}(x_{j_1} \otimes \ldots \otimes x_{j_{n-1}}) = \sum_{i \notin J} \widetilde{a}_{j_1 \cdots j_{n-1} i} e_i \,, \tag{3-28}$$

где $J=(j_1,\ldots,j_{n-1})$ пробегает возрастающие последовательности из n-1 индексов. Соотношение (3-26) констатирует обнуление коэффициента при $e_{i_1}\wedge\ldots\wedge e_{i_{m+1}}$ в произведении $w_J\wedge\omega$ для линейно порождающих supp ω векторов w_J из формулы (3-28).

Пример 3.3 (соотношение Плюккера для $\Lambda^2 \mathbb{k}^4$)

Для четырёхмерного пространства V с базисом e_1,\dots,e_4 и $\omega=\sum_{i< j}a_{ij}e_i\wedge e_j$ соотношение Плюккера для наборов индексов I=(2,3,4) и J=(1) имеет вид $-a_{12}a_{34}+a_{13}a_{24}-a_{14}a_{23}=0$, и любой другой выбор непересекающихся наборов (i_1,i_2,i_3) и (j) приводит к тому же самому с точностью до общего знака соотношению. Если $j\in\{i_1,i_2,i_3\}$, скажем I=(1,2,3),J=(1), то получается тривиальное соотношение $a_{12}a_{13}-a_{13}a_{12}=0$.

Предложение 3.4

Если char $\mathbb{k} \neq 2$, то однородный грассманов многочлен $\omega \in \Lambda^2 V$ тогда и только тогда разложим в произведение $u \wedge w$ двух векторов $u, w \in V$, когда $\omega \wedge \omega = 0$.

Доказательство. Если $\omega = u \wedge w$, то $\omega \wedge \omega = u \wedge w \wedge u \wedge w = 0$. Чтобы получить обратное, перейдём к базису Дарбу 1 e_1, \ldots, e_d в V, где $\omega = e_1 \wedge e_2 + e_3 \wedge e_4 + \ldots$ Если ω неразложим, то в этой сумме есть хотя бы два слагаемых, и тогда базисный моном $e_1 \wedge e_2 \wedge e_3 \wedge e_4$ войдёт в $\omega \wedge \omega$ с коэффициентом $e_1 \wedge e_2 \wedge e_3 \wedge e_4$ войдёт в $e_2 \wedge e_3 \wedge e_4$ войдёт в $e_3 \wedge e_4 \wedge e_5 \wedge e_5$ с коэффициентом $e_3 \wedge e_4 \wedge e_5 \wedge e_$

Пример 3.4 (соотношения Плюккера для $\Lambda^2 k^5$)

Если $V=\mathbb{k}^5$ с базисом e_1,\dots,e_5 , то по предл. 3.4 разложимость грассмановой квадратичной формы $\omega=\sum_{i< j}a_{ij}e_i\wedge e_j\in \varLambda^2V$ равносильна равенству $\omega\wedge\omega=0$. Поскольку $\omega\wedge\omega$ лежит в пятимерном пространстве $\varLambda^4\mathbb{k}^5$, это равенство эквивалентно пяти квадратичным соотношениями на коэффициенты a_{ij} формы ω . Эти пять соотношений совпадают с пятью соотношениями Плюккера, возникающими из пяти пар непересекающихся наборов индексов $I=(i_1,i_2,i_3)$ и J=(j), объединения которых $I\sqcup J$ пробегают пять различных четырёхэлементных подмножеств в $\{1,\dots,5\}$. При фиксированном $I\sqcup J$ четыре различных разбиения этого множества на непересекающиеся поднаборы из одного и трёх элементов дают, как и в предыдущем прим. 3.3, одинаковые с точностью до общего знака соотношения вида

$$\tilde{a}_{i_1j}a_{i_2i_3}-\tilde{a}_{i_2j}a_{i_1i_3}+\tilde{a}_{i_3j}a_{i_1i_2}=0\,.$$

При $j=i_1\in\{i_1,i_2,i_3\}$ получается тривиальное соотношение $a_{i_1i_2}a_{i_1i_3}-a_{i_1i_3}a_{i_1i_2}=0.$

3.2. Грассманианы. Множество всех m-мерных векторных подпространств d-мерного векторного пространства V называется $\mathit{грассманианом}$ $\mathrm{Gr}(m,d)$ или $\mathrm{Gr}(m,V)$, если важно подчеркнуть природу пространства V. С проективной точки зрения грассманиан $\mathrm{Gr}(m,d)$ есть множество (m-1)-мерных проективных подпространств в \mathbb{P}_{d-1} . Грассманианы являются естественными обобщениями проективных пространств: двойственные пространства

$$\mathbb{P}_n = \operatorname{Gr}(1, n+1)$$
 и $\mathbb{P}_n^{\times} = \operatorname{Gr}(n, n+1)$

служат простейшими примерами грассманианов. Двойственность $U \leftrightarrow \text{Ann } U$ между m-мерными и (d-m)-мерными подпространствами двойственных векторных пространств V и V^* задаёт каноническое отождествление $\text{Gr}(m,V) = \text{Gr}(d-m,V^*)$.

3.2.1. Плюккерово вложение. Грассманиан ${\rm Gr}(m,V)$ вкладывается в $\mathbb{P}(\Lambda^m V)$ отображением Плюккера

$$p_m: \operatorname{Gr}(m, V) \hookrightarrow \mathbb{P}(\Lambda^m V),$$
 (3-29)

которое переводит m-мерное векторное подпространство $U\subset V$ в одномерное векторное подпространство $\Lambda^mU\subset \Lambda^mV$. Если векторы u_1,\ldots,u_m образуют базис в U, то $p_m(U)=u_1\wedge\ldots\wedge u_m$. Выбор другого базиса w_1,\ldots,w_m из векторов $w_i=\sum_j a_{ij}u_j$ заменяет $u_1\wedge\ldots\wedge u_m$ на пропорциональный разложимый грассманов многочлен $w_1\wedge\ldots\wedge w_m=\det(a_{ij})u_1\wedge\ldots\wedge u_m$.

Предложение 3.5

Отображение Плюккера (3-29) инъективно, а его образ является алгебраическим многообразием, задаваемым квадратичными соотношениями Плюккера из предл. 3.3.

 $^{^{1}}$ См. пример 14.5 на стр. 230 лекции http://gorod.bogomolov-lab.ru/ps/stud/algebra-1/2425/lec_14. pdf.

3.2. Грассманианы 47

Доказательство. Образ отображения (3-29) состоит из всех разложимых грассмановых многочленов степени m и описывается в предл. 3.3 на стр. 45. Покажем, что отображение Плюккера инъективно. Пусть $U \neq W$ и $\dim U \cap W = r < m$. Тогда в V есть базис из таких векторов

$$e_1, \ldots, e_r, u_1, \ldots, u_s, w_1, \ldots, w_s, v_1, \ldots, v_t$$

где s = m - r, что векторы e_1, \dots, e_r образуют базис в $U \cap W$, а наборы векторов

$$e_1,\ldots,e_r,u_1,\ldots,u_s$$
 и $e_1,\ldots,e_r,w_1,\ldots,w_s$

являются базисами в U и в W. Отображение Плюккера сопоставляет им разные базисные мономы $e_1 \wedge \ldots \wedge e_r \wedge u_1 \wedge \ldots \wedge u_s$ и $e_1 \wedge \ldots \wedge e_r \wedge w_1 \wedge \ldots \wedge w_s$ пространства $\Lambda^m V$.

3.2.2. Однородные координаты на грассманиане обобщают однородные координаты на проективном пространстве. Если зафиксировать в V базис e_1,\ldots,e_d , то m-мерное подпространство $U\subset V$ можно задавать матрицей X_u размера $d\times m$, по строкам которой записаны координаты векторов u_1,\ldots,u_m какого-нибудь базиса u в U. Разумеется, такое представление не единственно: другому базису u в u0, составленному из векторов u1, u2, u3, отвечает другая матрица u4, получающаяся из u5, умножением слева на невырожденную квадратную u5, матрицу перехода, которая определяется соотношением

$$\begin{pmatrix} w_1 \\ \vdots \\ w_m \end{pmatrix} = C_{wu} \cdot \begin{pmatrix} u_1 \\ \vdots \\ u_m \end{pmatrix}.$$

Мы заключаем, что грассманиан $\mathrm{Gr}(m,d)=\mathrm{GL}_m(\Bbbk)\smallsetminus\mathrm{Mat}_{m\times d}^\circ(\Bbbk)$ является множеством орбит левого действия группы $\mathrm{GL}_m(\Bbbk)$ на множестве $\mathrm{Mat}_{m\times d}^\circ(\Bbbk)$ матриц размера $m\times d$ и ранга m. При m=1 это описание превращается в описание проективного пространства \mathbb{P}_{d-1} как множества ненулевых координатных строк длины d с точностью до умножения на ненулевые константы. Таким образом, матрица X_u с точностью до умножения слева на обратимые матрицы является прямым аналогом однородных координат.

3.2.3. Плюккеровы координаты. Плюккерово вложение p_m : $\operatorname{Gr}(m,V)\hookrightarrow \mathbb{P}(\Lambda^m V)$ сопоставляет m-мерному подпространству $U\subset V$ с базисом u_1,\ldots,u_m одномерное подпространство $\Lambda^m U\subset \Lambda^m V$ с базисом $u_1\wedge\ldots\wedge u_m$. Если зафиксировать в V базис e_1,\ldots,e_d , а в $\Lambda^n V$ — базис из грассмановых мономов $e_I=e_{i_1}\wedge\ldots\wedge e_{i_n}$, то I-й однородной координатой разложимого грассманова многочлена $u_1\wedge\ldots\wedge u_m$ относительно базиса из мономов e_I будет I-й минор $\det X_I$ порядка m, где $X_I\subset X$ — подматрица, образованная столбцами с номерами i_1,\ldots,i_n .

Упражнение 3.7. Убедитесь в этом.

При умножении матрицы X слева на обратимую матрицу $C \in \mathrm{GL}_m$ все $(m \times m)$ -миноры $\det X_I$ матрицы X умножатся на ненулевую константу $\det C$. Рассматриваемый с точностью до пропорциональности набор миноров $\det X_I$ называется *плюккеровыми координатами* задаваемой матрицей X точки грассманиана $\mathrm{Gr}(m,d)$. Таким образом, плюккеровы координаты суть ограничения однородных координат в $\mathbb{P}(\Lambda^m V)$ на образ грассманиана при плюккеровом вложении $p_m : \mathrm{Gr}(m,V) \hookrightarrow \mathbb{P}(\Lambda^m V)$.

3.2.4. Стандартное аффинное покрытие и аффинные координаты. Аналогом i-й стандартной аффинной карты U_i проективного пространства $^1\mathbb{P}_n=\operatorname{Gr}(1,n)$ на произвольном грассманиане $\operatorname{Gr}(m,d)$ является множество U_I всех $m\times d$ матриц X с ненулевым минором $\det X_I$. В $\operatorname{GL}_m(\mathbb{R})$ -орбите каждой такой матрицы X есть единственный представитель, имеющий в столбцах I единичную матрицу размера $m\times m$. Обозначим его $T^{(I)} \stackrel{\text{def}}{=} X_I^{-1}X$. Стоящие вне столбцов с номерами из I матричные элементы $t_{\mu\nu}^{(I)}$ матрицы $T^{(I)}$ называются локальными аффинными координатами точки $X\in\operatorname{Gr}(m,d)$ в стандартной карте U_I , и всего их имеется m(d-m). Плюккерово вложение p_m : $\operatorname{Gr}(m,V)\hookrightarrow \mathbb{P}(\Lambda^m V)$ биективно отображает карту $U_I\subset\operatorname{Gr}(m,V)$ на пересечение образа $p_m(\operatorname{Gr}(m,V))$ со стандартной аффинной картой $U_I\subset\mathbb{P}(\Lambda^m V)$ на проективном пространстве.

На геометрическом языке карта $U_I\subset {\rm Gr}(m,V)$ состоит из всех подпространств $U\subset V$, которые изоморфно отображаются на I-е координатное подпространство $E_I\subset V$, натянутое на базисные векторы e_{i_1},\ldots,e_{i_m} , при проекции $\pi_I:V\twoheadrightarrow E_I$ вдоль дополнительного координатного подпространства $E_J\subset V$, натянутого на базисные векторы e_j с $j\not\in I$. Подпространство $U\subset V$ лежит в стандартной карте U_I если и только если $U\cap E_J=0$, и в каждом таком подпространстве U имеется единственный базис u_1,\ldots,u_m , который проектируется в стандартный базис e_{i_1},\ldots,e_{i_m} пространства E_I . Матрица $T^{(I)}$ составлена из координат этих векторов u_i .

3.2.5. Аффинная окрестность точки. Более общим образом, для любого (d-m)-мерного векторного подпространства $W\subset V$ множество $U_W=\{U\in\operatorname{Gr}(m,V)\mid U\cap W=0\}$ является аффинным пространством над векторным пространством $\operatorname{Hom}(V/W,W)$. В самом деле, любые два дополнительные к W подпространства $U_1,\,U_2$ изоморфно проектируются на V/W при факторизации $\pi_W: V \twoheadrightarrow V/W$. Поэтому у каждого класса $[v] = [v_1] = [v_2] \in V/W$ имеются единственные представители $v_1\in U_1$ и $v_2\in U_2$. Обозначая через $\overline{U_1U}_2$: V/W o W линейное отображение, переводящее класс $[v] \in V/W$ в разность $v_2 - v_1 \in W$ этих представителей, мы сопоставляем каждой паре точек $U_1, U_2 \in U_W$ вектор $\overline{U_1 U_2} \in \operatorname{Hom}(V/W, W)$. Очевидно, что $\overline{U_1U_2} + \overline{U_2U_3} = \overline{U_1U_3}$ для всех $U_1, U_2, U_3 \in U_W$. Если зафиксировать любое «начальное» подпространство $U\in U_W$ и отождествить его с V/W при помощи изоморфизма $\pi_W|_U:U o V/W,$ а $\operatorname{Hom}(V/W,W)$ отождествить с $\operatorname{Hom}(U,W)$, то отображение векторизации с центром в U, переводящее каждую точку $U_1\in U_W$ в её радиус вектор $\overrightarrow{UU}_1\in \mathrm{Hom}(U,W)$, будет сопоставлять каждому дополнительному к W подпространству $U_1 \subset U \oplus W$ линейное отображение $U \to W$, графиком которого является подпространство U_1 . Очевидно, что такое сопоставление биективно. Поскольку $W \simeq V/U$, можно сказать, что каждая точка $U \in \mathrm{Gr}(m,V)$ обладает аффинной окрестностью, получающейся «откладыванием» от \emph{U} всевозможных векторов из пространства $\operatorname{Hom}(U,V/U)$. Если зафиксировать какое-нибудь дополнительное к U подпространство W и представлять классы из $V \, / \, U$ векторами из W , то результатом «откладывания» от U отображения $\tau:U\to W$ будет график $\Gamma_{\tau}=\{(u,\tau(u))\in U\oplus W\mid u\in U\}$ отображения τ , представляющий собою дополнительное к W подпространство в $V = U \oplus W$.

3.2.6. Клеточное разбиение. Метод Гаусса показывает, что любое подпространство $U \subset V$ обладает единственным базисом $\{u_1, \dots, u_m\}$, матрица координат которого имеет *строгий*

¹Она состоит из всех точек $(x_0: x_1: ...: x_n) \in \mathbb{P}_n$ с $x_i \neq 0$. Каждая такая точка p однозначно представляется вектором, у которого $x_i = 1$, и остальные n координат этого вектора берутся в качестве локальных аффинных координат точки p в карте U_i , см. пример 16.4 на стр. 207 лекции http://gorod.bogomolov-lab.ru/ps/stud/geom_ru/2122/lec_16.pdf.

3.2. Грассманианы 49

ступенчатый вид 1 .

Упражнение 3.8. Докажите, что различные строго ступенчатые матрицы задают разные подпространства в V.

Таким образом возникает биекция между точками гассманиана ${\rm Gr}(m,d)$ и строгими ступенчатыми матрицами ранга m и размера $m\times d$. Строгие ступенчатые матрицы, ступеньки которых располагаются в столбцах с возрастающими номерами $I=(i_1,\ldots,i_m)$, образуют аффинное пространство размерности

$$m(d-m) - \sum_{\nu=1}^{m} (i_{\nu} - \nu) = \dim \operatorname{Gr}(m, d) - \left(|I| - \frac{m(m+1)}{2}\right).$$

Весь грассманиан $\mathrm{Gr}(m,d)$ является дизъюнктным объединением $\binom{d}{m}$ таких аффинных пространств, отвечающих различным выборам I. Эти аффинные пространства называются *открытыми* или *аффинными* клетками Шуберта . Альтернативным общепринятым способом нумерации клеток Шуберта является их индексация диаграммами Юнга 2 $\lambda=(\lambda_1,\dots,\lambda_m)$, умещающимися в прямоугольнике $m\times(d-m)$. При этом длина ν -той сверху строки λ_{ν} указывает на сколько клеток самый левый ненулевой элемент в ν -той снизу строке ступенчатой матрицы сдвинут вправо от самого левого возможного своего положения, т. е. углы ступенек в матрице типа $\lambda=(\lambda_1,\dots,\lambda_m)$ находятся в столбцах с номерами $i_{\nu}=(m+1-\nu)+\lambda_{m+1-\nu}$. Открытая клетка Шуберта, отвечающая диаграмме λ , обозначается $\overset{\circ}{\sigma}_{\lambda}$. Обратите внимание, что коразмерность такой клетки в грассманиане в точности равна количеству клеток $|\lambda|$ в диаграмме λ . Например, диаграмма

отвечает 13-мерной аффинной клетке Шуберта $\overset{\circ}{\sigma}_{4,4,2,1}$ Gr(4, 10), образованной подпространствами $U\subset \mathbb{k}^{10}$, порождёнными строками строгих ступенчатых матриц вида

$$\begin{pmatrix} 0 & 1 & * & 0 & * & * & 0 & 0 & * & * \\ 0 & 0 & 0 & 1 & * & * & 0 & 0 & * & * \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & * & * \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & * & * \end{pmatrix}.$$

Пустой диаграмме (0,0,0,0) отвечает самое левое из всех возможных положений ступенек, т. е. 24-мерное пространство матриц вида

$$\begin{pmatrix} 1 & 0 & 0 & 0 & * & * & * & * & * & * \\ 0 & 1 & 0 & 0 & * & * & * & * & * \\ 0 & 0 & 1 & 0 & * & * & * & * & * \\ 0 & 0 & 0 & 1 & * & * & * & * & * \end{pmatrix}$$

 $^{^{1}}$ Т. е. самый левый ненулевой элемент каждой строки равен единице, располагается строго правее, чем в предыдущей строке, и является единственным ненулевым элементом в своём столбце.

 $^{^2}$ Т. е. выровненных по левому краю горизонтальных клетчатых полосочек, длины которых образуют невозрастающую сверху вниз последовательность $\lambda_1 \geqslant \lambda_2 \geqslant \cdots \geqslant \lambda_m \geqslant 0$.

представляющее собою стандартную аффинную карту $U_{(1,2,3,4)} \subset \operatorname{Gr}(4,10)$). Самая большая диаграмма — прямоугольник (6,6,6,6) — описывает нульмерное аффинное пространство, ступенчатую матрицу

с самым правым из возможных расположением ступенек. Над конечным полем \Bbbk из q элементов разбиение ${\rm Gr}(m,d)=\bigsqcup\mathring{\sigma}_{\lambda}$ влечёт формулу

$$\begin{pmatrix} d \\ m \end{pmatrix}_q = q^m (d-m) \sum_{\lambda} q^{-|\lambda|},$$

где суммирование происходит по всем диаграммам Юнга, умещающимся в прямоугольнике $m \times (d-m)$, а

$$\binom{d}{m}_q \stackrel{\text{def}}{=} \frac{(q^d-1)(q^d-q)\cdots(q^d-q^{m-1})}{(q^m-1)(q^d-q)\cdots(q^m-q^{m-1})}$$

обозначает Гауссов q-биномиальный коэффициент.

3.3. Рабочий пример: квадрика Плюккера в \mathbb{P}_5 и прямые в \mathbb{P}_3 . Первым отличным от проективного пространства грассманианом является $\operatorname{Gr}(2,4)$, точками которого служат двумерные векторные подпространства U в $V=\mathbb{R}^4$ или, что то же самое, проективные прямые $\ell=\mathbb{P}(U)$ в $\mathbb{P}_3=\mathbb{P}(V)$. Грассманиан $\operatorname{Gr}(2,4)$ вкладывается в $\mathbb{P}_5=\mathbb{P}(\Lambda^2 V)$ отображением Плюккера

$$p: \operatorname{Gr}(2,4) \hookrightarrow \mathbb{P}(\Lambda^2 V), \quad U \mapsto \Lambda^2 U,$$
 (3-30)

которое переводит прямую $(ab)\subset\mathbb{P}_3$, являющуюся проективизацией двумерного векторного подпространства $U\subset V$ с базисом a,b, в одномерное подпространство $\Lambda^2U\subset\Lambda^2V$, порождённое грассмановым произведением $a\wedge b$. Согласно предл. 3.4 на стр. 46, разложимость грассмановой квадратичной формы $\omega\in\Lambda^2V$ на два линейных множителя равносильна тому, что $\omega\wedge\omega=0$. Это соотношение задаёт в пространстве $\mathbb{P}_5=\mathbb{P}(\Lambda^2V)$ квадрику Плюккера

$$P = V(q) = \{ \omega \in \Lambda^2 V \mid \omega \wedge \omega = 0 \}, \tag{3-31}$$

Симметричная билинейная форма $\tilde{q}: \Lambda^2 V \times \Lambda^2 V \to \mathbb{R}$, которая является поляризацией уравнения этой квадрики, однозначно с точностью до пропорциональности определяется тем, что для всех $\omega_1, \omega_2 \in \Lambda^2 V$ в одномерном векторном пространстве $\Lambda^4 V$ выполняется равенство

$$\omega_1 \wedge \omega_2 = \tilde{q}(\omega_1, \omega_2) \cdot e_1 \wedge e_2 \wedge e_3 \wedge e_4, \qquad (3-32)$$

где e_1, e_2, e_3, e_4 — произвольный базис в V.

Упражнение 3.9. Убедитесь, что задаваемая равенством (3-32) форма \tilde{q} билинейна, симметрична, невырождена и при выборе другого базиса в V умножается на ненулевую константу. Напишите её матрицу Грама в стандартном базисе из мономов $e_{ij} = e_i \wedge e_j$.

В координатах x_{ij} относительно стандартного базиса $e_{ij}=e_i\wedge e_j$, равенство $\omega\wedge\omega=0$ для формы $\omega=\sum_{ij}x_{ij}e_{ij}$ имеет вид 1 $x_{12}x_{34}-x_{13}x_{24}+x_{14}x_{23}=0$, а отображение (3-30) переводит прямую (ab), порождённую векторами a,b, строки координат которых в базисе e_1,\ldots,e_4

¹См. прим. 3.3 на стр. 45.

составляют 2 × 4 матрицу $\begin{pmatrix} a_1 & a_2 & a_3 & a_4 \\ b_1 & b_2 & b_3 & b_4 \end{pmatrix}$, в грассманову квадратичную форму $a \wedge b$ с координатами $x_{ij} = \det \begin{pmatrix} a_i & a_j \\ b_i & b_j \end{pmatrix}$.

ЛЕММА 3.1

Две прямые $\ell_1, \ell_2 \subset \mathbb{P}_3$ пересекаются если и только если их плюккеровы образы ортогональны относительно квадратичной формы (3-32).

Доказательство. Если $\ell_1 \cap \ell_2 = \varnothing$, то в V существует такой базис e_1, e_2, e_3, e_4 , что $\ell_1 = (e_1e_2)$, а $\ell_2 = (e_3e_4)$. Тогда $p(\ell_1) \wedge p(\ell_2) = e_1 \wedge e_2 \wedge e_3 \wedge e_4 \neq 0$. Если ℓ_1 и ℓ_2 пересекаются в точке a, то $\ell_1 = (ab)$, а $\ell_2 = (ac)$ для некоторых $b, c \in V$, и $p(\ell_1) \wedge p(\ell_2) = a \wedge b \wedge a \wedge c = 0$.

Следствие 3.1

 $P\cap T_pP=\{p(\ell')\mid \ell'\cap\ell\neq\varnothing\}$ для любой точки $p=p(\ell)\in P.$

3.3.1. Связки и пучки прямых в \mathbb{P}_3 . Множество прямых в \mathbb{P}_3 называется *связкой*, если его плюккеров образ является двумерной плоскостью. Каждая такая плоскость $\pi \subset P$ линейно порождается тройкой неколлинеарных точек $a_i = p(\ell_i), i = 1, 2, 3$. При этом

$$\pi = T_{a_1}P \cap T_{a_2}P \cap T_{a_3}P \subset P.$$

По лем. 3.1 и сл. 3.1 соответствующая связка прямых состоит из всех прямых, пересекающих каждую из трёх попарно пересекающихся прямых ℓ_1 , ℓ_2 , ℓ_3 в \mathbb{P}_3 . Три прямые в \mathbb{P}_3 попарно пересекаются ровно в двух случаях: когда они лежат в одной плоскости или когда они проходят через одну точку. Таким образом, есть два геометрически разных типа связок прямых на \mathbb{P}_3 :

 α -плоскость $\pi_{\alpha}(c) \subset P$, состоящая из всех прямых, проходящих через данную точку $c \in \mathbb{P}_3$

 β -плоскость $\pi_{\beta}(\Pi) \subset P$, состоящая из всех прямых, лежащих в данной плоскости $\Pi \subset \mathbb{P}_3$.

Эти два семейства плоскостей на квадрике P таковы, что любые две плоскости одного типа пересекаются по точке: $\pi_{\beta}(\Pi_1) \cap \pi_{\beta}(\Pi_2) = p\left(\Pi_1 \cap \Pi_2\right), \pi_{\alpha}(c_1) \cap \pi_{\alpha}(c_2) = p\left((c_1c_2)\right)$, а две плоскости $\pi_{\beta}(\Pi), \pi_{\alpha}(c)$ разных типов не пересекаются при $c \notin \Pi$, а при $c \in \Pi$ пересекаются по прямой

$$\lambda(c,\Pi) = \{ p(\ell) \in P \mid c \in \ell \subset \Pi \}, \tag{3-33}$$

которая является плюккеровым образом пучка прямых, лежащих в плоскости Π и проходящих через точку $c\in\Pi$. Покажем, что все лежащие на квадрике P прямые имеют вид (3-33). Для этого рассмотрим конус $C=P\cap T_aP$ с вершиной в точке $a\in P$, образованный всеми проходящими через a прямыми, лежащими на P, и зафиксируем любое не проходящее через a трёхмерное проективное подпространство $H\subset T_aP$, см. рис. $3 \diamond 1$ на стр. 52. Пересечение $G=C\cap H$ является гладкой 1-планарной квадрикой в H, и любая проходящая через a прямая на b имеет вид b0 b1 и пару проходящих через b3 прямолинейных образующих квадрики b3.

3.3.2. Клеточное разбиение плюккеровой квадрики. Зафиксируем какую-нибудь дополнительную к точке $p \in P$ трёхмерную гиперплоскость $H \subset T_p P$ в четырёхмерном касательном пространстве $T_p P$ к квадрике Плюккера $P \subset \mathbb{P}_5$. Особая квадрика $C = P \cap T_p P$ представляет собой простой конус с вершиной p над неособой квадрикой $G = H \cap P$, изоморфной квадрике Сегре в \mathbb{P}_3 . Это приводит к следующей стратификации плюккеровой квадрики замкнутыми подмножествами:

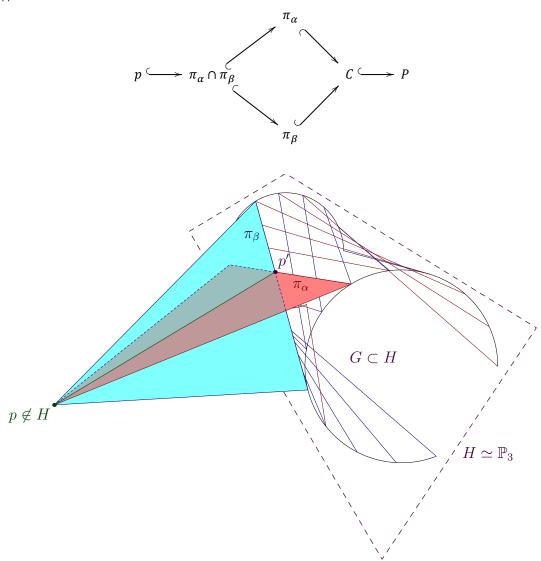


Рис. 3 \diamond **1.** Конус $C = P \cap T_p P$.

Открытые подмножества этих стратов, дополнительные к объединению стратов меньшей размерности, задают дизъюнктное разбиение плюккеровой квадрики P на открытые клетки, естественно изоморфные аффинным пространствам:

$$\operatorname{Gr}(2,4) = \mathbb{A}^0 \sqcup \mathbb{A}^1 \sqcup \begin{pmatrix} \mathbb{A}^2 \\ \sqcup \\ \mathbb{A}^2 \end{pmatrix} \sqcup \mathbb{A}^3 \sqcup \mathbb{A}^4.$$

В самом деле, сначала мы имеем проективную прямую без точки: $(\pi_{\alpha} \cap \pi_{\beta}) \setminus p \simeq \mathbb{A}^1$. Затем возникает пара проективных плоскостей без проективной прямой:

$$\pi_{\alpha} \smallsetminus \left(\pi_{\alpha} \cap \pi_{\beta}\right) \simeq \pi_{\beta} \smallsetminus \left(\pi_{\alpha} \cap \pi_{\beta}\right) \simeq \mathbb{A}^2 \, .$$

Далее идут аффинный конус над дополнением квадрики Сегре до пары прямых, высекаемых из неё касательной плоскостью

$$C \setminus (\pi_{\alpha} \cup \pi_{\beta}) \simeq \mathbb{A}^1 \times (G \setminus (G \cap T_{p'}G)),$$

и открытое плотное подмножество $P \setminus T_p P \simeq \mathbb{A}^4$ квадрики P, дополнительное к её пресечению с касательной гиперплоскостью в точке p.

Упражнение 3.10. Покажите, что проекция гладкой квадрики $Q \subset \mathbb{P}_n$ из любой точки $p \in Q$ на произвольную гиперплоскость $H \not\ni p$ задаёт бирациональную биекцию между дополнением $Q \setminus T_p Q$ и аффинным пространством $H \setminus T_p Q \simeq \mathbb{A}^{n-1}$.

3.3.3. Исчисление Шуберта на грассманиане Gr(2,4). Аффинные пространства из построенного в n° 3.3.2 разбиения плюккеровой квадрики, являются плюккеровыми образами шести аффинных клеток Шуберта $\mathring{\sigma}_{\lambda} \subset Gr(2,4)$. Их замыкания называются (замкнутыми) *циклами Шуберта* и обозначаются σ_{λ} .

Упражнение 3.11. Убедитесь, что в терминах плюккеровой квадрики $P \subset \mathbb{P}_5$ циклы Шуберта грассманиана $\operatorname{Gr}(2,4)$ суть

$$\begin{split} &\sigma_{00} = P \\ &\sigma_{22} = \text{ точка } p = (0:0:0:0:0:1) \text{ в } \mathbb{P}_5 \\ &\sigma_{10} = P \cap T_p P \\ &\sigma_{11} = \pi_\alpha(0) \text{, где } O = (0:0:0:1) \in \mathbb{P}_3 \\ &\sigma_{20} = \pi_\beta(\Pi) \text{, где } \Pi = \mathrm{Ann}(x_0) \subset \mathbb{P}_3 \\ &\sigma_{21} = \pi_\alpha(0) \cap \pi_\beta(\Pi) \text{.} \end{split}$$

Над полем $\Bbbk=\mathbb{C}$ циклы Шуберта σ_λ образуют свободный базис \mathbb{Z} -модуля целочисленных гомологий $H_*\left(\mathrm{Gr}(m,\mathbb{C}^d),\mathbb{Z}\right)$, поскольку построенный по разбиению на клетки Шуберта клеточный цепной комплекс для вычисления гомологий не содержит клеток нечётной (вещественной) размерности и, стало быть, имеет нулевые дифференциалы.

Упражнение 3.12*. Опишите из каких клеток σ_{μ} состоит замыкание каждой клетки σ_{λ} и вычислите граничный оператор клеточного цепного комплекса на вещественном грассманиане $\mathrm{Gr}(m,\mathbb{R}^d)$.

Топологическое пересечение циклов задаёт на \mathbb{Z} -модуле $H_*(\mathrm{Gr}(m,\mathbb{C}^d),\mathbb{Z})$ структуру коммутативного кольца, и гомологические классы пересечений циклов Шуберта могут выражаются в виде целочисленных линейных комбинаций таких же циклов. Рецепты для получения таких выражений известны как *исчисление Шуберта* и тесно связаны с комбинаторикой разбиений 1 . На простейшем грассманиане $\mathrm{Gr}(2,4)$ исчисление Шуберта описывается вполне наглядно.

¹См. книги: У. Фултон, Таблицы Юнга и их приложения к... (МЦНМО, 2006), Теория пересечений (Мир, 1989); Ф. Гриффитс, Дж. Харрис, Принципы алгебраической геометрии, I (Мир, 1982); И. Макдоналд, Симметрические функции и многочлены Холла (Мир, 1985)

Очевидно, что циклы, суммарная коразмерность которых меньше четырёх, имеют нулевые пересечения. Пересечения циклов дополнительной размерности уже были вычислены нами в n° 3.3.1:

$$\sigma_{10}\sigma_{21} = \sigma_{20}^2 = \sigma_{11}^2 = \sigma_{22}$$
 и $\sigma_{20}\sigma_{11} = 0$.

По тем же причинам $\sigma_{10}\sigma_{20}=\sigma_{10}\sigma_{11}=\sigma_{21}$. Для вычисления σ_{10}^2 реализуем цикл σ_{10} в виде

$$\sigma_{10}(\ell) = P \cap T_{\mathfrak{u}(\ell)}P = \{\ell'' \subset \mathbb{P}_3 \mid \ell \cap \ell'' \neq \emptyset\} \ .$$

Тогда σ_{10}^2 гомологичен пересечению $\sigma_{10}(\ell)\cap\sigma_{10}(\ell')$, которое при общем положении пары прямых ℓ,ℓ' представляет собой неособую квадрику Сегре с рис. $3\diamondsuit1$. Если продеформировать прямую ℓ' так, чтобы она стала пересекаться с прямой ℓ , эта квадрика продеформируется в своём классе гомологий в пару пересекающихся плоскостей: α -связку с центром $O=\ell\cap\ell'$ и β -связку в плоскости Π , натянутой на ℓ и ℓ' : $\sigma_{10}(\ell)\cap\sigma_{10}(\ell')=\pi_{\alpha}(O)\cup\pi_{\beta}(\Pi)$. Таким образом,

$$\sigma_{10}^2 = \sigma_{20} + \sigma_{11} \,.$$

В качестве приложения мы получаем грубое (топологическое) решение такой задачи:

Упражнение 3.13. Сколько прямых пересекает все четыре заданные попарно непересекающихся прямые в \mathbb{P}_3 над полем \mathbb{C} ? Перечислите все возможные ответы в зависимости от расположения данных четырёх прямых и выясните, какие из них устойчивы к малым шевелениям данных прямых.

Если заданные прямые находятся в достаточно общем положении, то ответ даётся коэффициентом при σ_{22} в четырёхкратном самопересечении σ_{10}^4 . Согласно предыдущему,

$$\sigma_{10}^4 = (\sigma_{20} + \sigma_{11})^2 = \sigma_{20}^2 + \sigma_{11}^2 = 2\sigma_{22}$$
,

т. е. в общем случае есть ровно две такие прямые.

3.4. Многообразия Веронезе и Сегре. Многообразие Веронезе V(n,k) является образом проективного пространства $\mathbb{P}_k = \mathbb{P}(V^*)$ при *отображении Веронезе n*-той степени

$$\nu_n: \mathbb{P}(V^*) \to \mathbb{P}(S^n V^*), \quad \varphi \mapsto \varphi^n,$$
 (3-34)

и состоит из рассматриваемых с точностью до пропорциональности однородных многочленов степени n от k+1 переменных, пропорциональных чистым n-м степеням линейных форм. Согласно предл. 3.2 на стр. 44 многообразие Веронезе задаётся системой квадратных уравнений, констатирующей обращение в нуль всех 2×2 миноров $(k+1)\times \binom{n+k-1}{k}$ матрицы, составленной из коэффициентов линейных форм из форм. (3-24) на стр. 44. Согласно принципу Аронгольда многообразие Веронезе не содержится ни в какой гиперплоскости, хотя его размерность обычно много меньше размерности объемлющего пространства.

Многообразие Сегре $S(m_1,\ldots,m_n)$ представляет собой образ вложения Сегре

$$s: \mathbb{P}_{m_1} \times \cdots \times \mathbb{P}_{m_n} \to \mathbb{P}_m$$

переводящего прямое произведение проективных пространств $\mathbb{P}_{m_i}=\mathbb{P}(V_i)$ в пространство $\mathbb{P}_m=\mathbb{P}\left(V_1\otimes\ldots\otimes V_n\right)$, отправляя набор одномерных подпространств, порождённых ненулевыми векторами $v_i\in V_i$, в их тензорное произведение, порождённое вектором

$$v_1 \otimes \ldots \otimes v_n \in V_1 \otimes \ldots \otimes V_n$$
.

¹См. предл. 3.1 на стр. 43.

Упражнение 3.14. Проверьте, что это отображение корректно определено¹ и является вложением.

Так как разложимые тензоры линейно порождают всё пространство $V_1 \otimes \ldots \otimes V_n$, многообразие Сегре не лежит ни в какой гиперплоскости, хотя его размерность обычно тоже сильно меньше размерности объемлющего пространства. По построению, многообразие Сегре заметается n семействами проективных подпространств размерностей m_1, \ldots, m_n , где $m_i = d_i - 1$. Квадрика Сегре из \mathbf{n}° 2.3 на стр. 28 является простейшим примером такого многообразия.

Пример 3.5 (операторы ранга 1)

Для конечномерных векторных пространств U, W каноническое отображение

$$U^* \otimes W \to \text{Hom}(U, V)$$
,

сопоставляющее разложимому тензору $\xi \otimes u$ линейное отображение ранга 1

$$\xi \otimes u : U \to W, \quad u \mapsto \xi(u) \cdot w,$$
 (3-35)

является изоморфизмом. Таким образом, проективизация множества операторов ранга 1 представляет собою многообразие Сегре $S(m,n)\subset \mathbb{P}_{mn-1}=\mathbb{P}(\mathrm{Hom}(U,W))$. Если зафиксировать в пространствах U,W какие-нибудь базисы, записать все линейные отображения $U\to W$ матрицами в этих базисах и использовать матричные элементы a_{ij} в качестве однородных координат на $\mathbb{P}(\mathrm{Hom}(V,W))$, многообразие Сегре будет задаваться в этих координатах системой квадратичных уравнений

$$\det \begin{pmatrix} a_{ij} & a_{ik} \\ a_{\ell j} & a_{\ell k} \end{pmatrix} = a_{ij}a_{\ell k} - a_{ik}a_{\ell j} = 0,$$

констатирующих зануление всех миноров второго порядка. В этих координатах отображение Сегре переводит пару точек с однородными координатами

$$(x_1 : x_2 : \cdots : x_n)$$
 и $(y_1 : y_2 : \cdots : y_n)$

в точку, однородными координатами которой являются mn всевозможных произведений $x_j y_i$ — матричные элементы произведения $y^t \cdot x$ столбца y на строку x. Два семейства «координатных плоскостей» $\xi \times \mathbb{P}_{m-1}$ и $\mathbb{P}_{n-1} \times w$ при этом перейдут в два семейства проективных пространств, заметающих многообразие Cerpe. При $\dim U = \dim W = 2$ мы получаем в точности обсуждавшуюся в \mathbf{n}° 2.3 на стр. 28 биекцию между $\mathbb{P}_1 \times \mathbb{P}_1$ и детерминантной квадрикой Cerpe в \mathbb{P}_3 .

3.4.1. Многообразие Сегре как линейное сечение грассманиана. Рассмотрим сумму

$$W = V_1 \oplus \ldots \oplus V_n$$

конечномерных векторных пространств V_i и для каждого $k\in\mathbb{N}$ и таких целых неотрицательных m_1,\dots,m_n , что $0\leqslant m_i\leqslant \dim V_i$ и $\sum_{\nu}m_{\nu}=k$, обозначим через $W_{m_1,\dots,m_n}\subset \Lambda^k W$ линейную оболочку всевозможных произведений $w_1\wedge\dots\wedge w_k$ содержащих m_1 сомножителей из пространства V_1,m_2 сомножителей из пространства V_2 , и т. д.

 $^{^1}$ Т. е. тензор $v_1 \otimes \ldots \otimes v_n$ отличен от нуля и заменяется на пропорциональный при замене векторов v_i на пропорциональные.

Упражнение 3.15. Убедитесь, что правило $\omega_1 \otimes \ldots \otimes \omega_n \mapsto \omega_1 \wedge \ldots \wedge \omega_n$ корректно задаёт изоморфизм векторных пространств $\Lambda^{m_1}V_1 \otimes \ldots \otimes \Lambda^{m_n}V_n \xrightarrow{\sim} W_{m_1,\ldots,m_n}$, и докажите, что

$$\varLambda^k W = \bigoplus_{m_1, \dots, m_n} W_{m_1, \dots, m_n} \simeq \bigoplus_{m_1, \dots, m_n} \varLambda^{m_1} V_1 \otimes \dots \otimes \varLambda^{m_n} V_n \,.$$

Таким образом тензорное произведение $V_1 \otimes ... \otimes V_n$ канонически отождествляется с векторным подпространством $W_{1,...,1} \subset \varLambda^n W$. Разложимые тензоры $v_1 \otimes ... \otimes v_n$ переходят при этом отождествлении в разложимые поливекторы $v_1 \wedge ... \wedge v_n$, что позволяет отождествить многообразие Сегре $S(m_1, ..., m_n)$ с сечением грассманиана $\mathrm{Gr}(n,W) \subset \mathbb{P}(\varLambda^n W)$ проективным подпространством $\mathbb{P}\left(W_{1,...,1}\right) \subset \mathbb{P}(\varLambda^n W)$. Таким образом, многообразие Сегре задаётся в проективном пространстве $\mathbb{P}\left(W_{1,...,1}\right)$ системой однородных квадратных уравнений — ограничениями соотношений Плюккера предл. 3.3 на стр. 45 для пространства $\varLambda^n W$ на подпространство $W_{1,...,1} \subset \varLambda^n W$.

3.4.2. Многообразие Сегре как линейное сечение Веронезе. Аналогичную предыдущей конструкцию можно осуществить заменяя внешние степени симметрическими. Пусть, как и выше, $W = V_1 \oplus \ldots \oplus V_n$. Обозначим через $U_{m_1,\ldots,m_n} \subset S^k W$ линейную оболочку всевозможных произведений $w_1 \ldots w_k$ содержащих m_1 сомножителей из пространства V_1 , v_2 сомножителей из пространства v_3 , и т. д.

Упражнение 3.16. Убедитесь, что правило $v_1 \otimes ... \otimes v_n \mapsto v_1 ... v_n$ корректно задаёт изоморфизм векторных пространств $S^{m_1}V_1 \otimes ... \otimes S^{m_n}V_n \cong U_{m_1,...,m_n}$, и докажите, что

$$S^kW = \bigoplus_{m_1,\ldots,m_n} U_{m_1,\ldots,m_n} \simeq \bigoplus_{m_1,\ldots,m_n} S^{m_1}V_1 \otimes \ldots \otimes S^{m_n}V_n.$$

Тем самым, тензорное произведение $V_1 \otimes \ldots \otimes V_n$ канонически отождествляется с векторным подпространством $U_{1,\ldots,1} \subset S^nW$. Разложимые тензоры $v_1 \otimes \ldots \otimes v_n$ переходят при этом отождествлении в разложимые на линейные множители многочлены $v_1 \ldots v_n$, что позволяет отождествить многообразие Cerpe $S(m_1,\ldots,m_n)$ с сечением многообразия $V(n,W) \subset \mathbb{P}(S^nW)$ подпространством $\mathbb{P}(U_{1,\ldots,1}) \subset \mathbb{P}(S^nW)$. В частности, многообразие Cerpe задаётся в проективном пространстве $\mathbb{P}(U_{1,\ldots,1})$ системой однородных квадратных уравнений — ограничений описанных в $\mathbb{P}(S^nW)$ по стр. 44 условий на ранг матрицы линейных форм (3-24) со стр. 44.

Ответы и указания к некоторым упражнениям

Упр. 3.1. Поскольку разложимые тензоры линейно порождают $V^{*\otimes n}$ и формула

$$v_{\perp}\varphi(w_1,\ldots,w_{n-1}) = \varphi(v, w_1,\ldots,w_{n-1})$$

- линейна по v и ϕ , достаточно проверять её для форм ϕ , переводимых изоморфизмом (??) в разложимые тензоры вида $\xi_1 \otimes ... \otimes \xi_n$, а для таких форм она очевидна из построения.
- Упр. 3.2. Выберем в V такой базис $e_1, \ldots, e_p, u_1, \ldots, u_q, w_1, \ldots, w_r, v_1, \ldots, v_s$, что векторы e_i образуют базис в $U \cap W$, векторы u_j и w_k дополняют его до базисов в U и W соответственно, а векторы v_m дополняют всё предыдущее до базиса в V. Разложим t по базисным тензорным мономам. Условие $t \in U^{\otimes n} \cap W^{\otimes n}$ означает, что в t входят только мономы, не содержащие никаких иных векторов, кроме e_i .
- Упр. 3.3. Стабилизатор каждого слагаемого состоит из $\prod_{e \in E} m(e)!$ перестановок одинаковых базисных векторов между собою.
- Упр. 3.4. Пусть все тензоры вида $v^{\otimes n}$ с $f(v) \neq 0$ лежат в гиперплоскости Ann ψ , где ψ линейная форма на $\mathrm{Sym}^n(V)$. Функция $g(v) = \psi(v^{\otimes})$ является однородным многочленом степени n на V. По условию, многочлен f g тождественно зануляется на V. Тем самым, он нулевой, откуда g = 0, так как $f \neq 0$. Тем самым $\psi(v^{\otimes}) = 0$ для всех $v \in V$, что противоречит предл. 3.1.
- Упр. 3.6. Первое очевидно, для доказательства второго выберем в V базис e_1,\dots,e_m . Если в разложении ω по базисным мономам есть моном, не содержащий вектора e_i , то $e_i\omega\neq 0$.
- Упр. 3.8. Возрастающий набор номеров $I=(i_1,\ldots,i_m)$ тех столбцов, в которых располагаются углы ступенек, однозначно восстанавливается по U как лексикографически минимальный набор набор I, такой что U изоморфно проектируется на координатное подпространство E_I вдоль дополнительного координатного подпространства, а строки матрицы как координаты прообразов стандартных базисных векторов $e_i \in E_I$ при этой проекции.
- Упр. 3.9. Билинейность и невырожденность очевидны, симметричность вытекает из того, что однородные грассмановы многочлены степени два коммутируют друг с другом. Ненулевые элементы матрицы Грама исчерпываются $q_{12,34}=q_{14,23}=1, q_{13,24}=-1$ и симметричными им.
- Упр. 3.10. Каждая прямая, которая проходит через p и не касается Q, пересекает квадрику ещё ровно в одной отличной от p точке, координаты которой, по теореме Виета, рационально зависят от прямой.
- Упр. 3.13. Обозначим данные прямые через ℓ_1,\dots,ℓ_4 . Множество всех прямых, пересекающих первые три из них, заметает семейство прямолинейных образующих гладкой 1-планарной квадрики Сегре 1 S, проходящей через $\ell_1,\ \ell_2,\ \ell_3$, причём прямые $\ell_1,\ \ell_2,\ \ell_3$ тоже являются прямолинейными образующими квадрики S, но лежащими в другом, втором семействе. Если прямая ℓ_4 тоже лежит на S, то она также принадлежит второму семейству, и ответом к задаче будет всё первое семейство прямолинейных образующих квадрики S. Если ℓ_4 не лежит на S, но касается S, то ответом к задаче является единственная проходящая через точку касания прямая из первого семейства образующих. Если ℓ_4 трансверсально пересекает S в двух разных точках, то ответом к задаче являются ровно две прямые из первого семейства образующих, проходящие через точки пересечения $\ell_4 \cap S$, и только этот ответ устойчив к малым шевелениям данных прямых ℓ_1,\dots,ℓ_4 .

¹См. n° 2.3 на стр. 28.