§5. Аффинная алгебраическая геометрия

Всюду в этом параграфе мы по умолчанию считаем, что основное поле \Bbbk алгебраически замкнуто.

5.1. Аффинный алгебро-геометрический словарик. Аффинные алгебраические многообразия 1 , определённые над полем \Bbbk , образуют категорию $\mathcal{A}f\!f_{\Bbbk}$, морфизмами в которой являются $\mathit{pezyлярныe}^2$ отображения, т. е. теоретико-множественные отображение $\varphi: X \to Y$ из многообразия $X \subset \mathbb{A}^n$ в многообразие $Y \subset \mathbb{A}^m$, переводящие точку $x = (x_1, \dots, x_n) \in X$ в точку $y = (y_1, \dots, y_m) \in Y$, все координаты которой $y_i = \varphi_i(x_1, \dots, x_n) \in \mathbb{k}[x_1, \dots, x_n]$ являются многочленами от координат точки x. Функция $f: X \to \mathbb{k}$ на аффинном алгебраическом многообразии $X \subset \mathbb{A}^n$ называется $\mathit{pezyлярной}$, если она является ограничением на X какого-нибудь многочлена $f \in \mathbb{k}[x_1, \dots, x_n]$ на объемлющем аффинном пространстве или, что то же самое, задаёт регулярное отображение $f: X \to \mathbb{A}^1$. Регулярные функции на X образуют конечно порождённую $\mathit{npuвed\"{e}ehhy}$ \mathbb{k} -алгебру, которая обозначается

$$\mathbb{k}[X] \stackrel{\text{def}}{=} \operatorname{Hom}_{\mathcal{A}ff_{l_{k}}}(X, \mathbb{k}) \simeq \mathbb{k}[x_{1}, \dots, x_{n}]/I(X), \tag{5-1}$$

где $I(X)=\{f\in \Bbbk[x_1,\ldots,x_n]\,|\, f|_X\equiv 0\}$ обозначает идеал всех многочленов, тождественно зануляющихся на X.

ЛЕММА 5.1

Всякая конечно порождённая приведённая алгебра A над алгебраически замкнутым полем \Bbbk является координатной алгеброй $A=\Bbbk[X]$ некоторого аффинного алгебраического многообразия X.

Доказательство. Зададим алгебру A образующими и соотношениями 4 , т. е. представим её как фактор $A = \mathbbm{k}[x_1, \dots, x_n]/I$. Приведённость алгебры A означает, что идеал соотношений I радикален 5 , т. е. для всех $f \in \mathbbm{k}[x_1, \dots, x_n]$ и $n \in \mathbb{N}$ равенство $f^n \in I$ возможно только при $f \in I$. Поэтому по сильной теореме о нулях I = I(V(I)) является идеалом аффинного алгебраического многообразия $X = V(I) \subset \mathbb{A}^n$.

5.1.1. Гомоморфизм поднятия. Со каждым отображением множеств $\varphi: X \to Y$ связан гомоморфизм поднятия

$$\varphi^* : \mathbb{k}^Y \to \mathbb{k}^X, \quad f \mapsto f \circ \varphi,$$
 (5-2)

действующий из алгебры \mathbb{k}^Y всех функций $Y \to \mathbb{k}$ в алгебру \mathbb{k}^X всех функций $X \to \mathbb{k}$ и переводящий функцию $f: Y \to \mathbb{k}$ в её композицию с отображением φ . Если множества $X \subset \mathbb{A}^n$ и $Y \subset \mathbb{A}^m$ являются алгебраическими многообразиями, а отображение $\varphi: X \to Y$ действует

¹См. n° 1.4.1 на стр. 12.

 $^{^{2}}$ Или полиномиальные.

³Напомню, что ненулевой элемент a в кольце называется *нильпотентом*, если $a^n = 0$ для некоторого $n \in \mathbb{N}$. Кольцо называется *приведённым*, если в нём нет ненулевых нильпотентов. Поскольку любая степень ненулевой функции со значениями в поле также является ненулевой функцией, в алгебре регулярных функций на аффинном алгебраическом многообразии нет нильпотентов.

⁴См. n° 4.3 на стр. 61.

⁵Напомню, что *радикалом* идеала *I* в коммутативном кольце *K* называется идеал $\sqrt{I} = \{a \in K \mid \exists n \in \mathbb{N} : a^n \in I\}$. Если $\sqrt{I} = I$, то идеал *I* называется *радикальным*.

на координаты точек по правилу $(x_1,\ldots,x_n)\mapsto (\varphi_1(x_1,\ldots,x_n),\ldots,\varphi_m(x_1,\ldots,x_n))$, то его гомоморфизм поднятия переводит каждую образующую y_i (mod I(Y)) координатной алгебры $\Bbbk[Y]$ в функцию $\varphi_i(x_1,\ldots,x_n)|_X:X\to \Bbbk$. Таким образом регулярность теоретико множественного отображения $\varphi:X\to Y$ означает, что гомоморфизм поднятия $\varphi^*:\Bbbk^Y\to \Bbbk^X$ переводит подалгебру $\Bbbk[Y]\subset \Bbbk^Y$ регулярных функций на Y в алгебру $\Bbbk[X]\subset \Bbbk^X$ регулярных функций на X, т. е. корректно задаёт гомоморфизм \Bbbk -алгебр $\varphi^*: \Bbbk[Y]\to \Bbbk[X]$.

Аналогичная характеризация регулярных отображений имеется и для других геометрических теорий.

Упражнение 5.1. Проверьте, что теоретико множественное отображение топологических пространств (соотв. гладких или аналитических многообразий) $X \to Y$ является непрерывным (соотв. гладким или аналитическим), если и только если его гомоморфизм поднятия переводит подалгебру $C^0(Y) \subset \mathbb{R}^Y$ непрерывных функций (соотв. подалгебры гладких или аналитических функций) на Y в алгебру непрерывных (соотв. гладких или аналитических) функций на X.

Обратите внимание, что вложение $\varphi(X)\subset Y$ влечёт вложение идеалов $\varphi^*\big(I(Y)\big)\subset I(X)$. Поэтому гомоморфизм алгебр многочленов $\Bbbk[y_1,\ldots,y_m]\to \Bbbk[x_1,\ldots,x_n], y_i\mapsto \varphi_i(x_1,\ldots,x_n)$, корректно факторизуется до гомоморфизма $\Bbbk[Y]=\Bbbk[y_1,\ldots,y_m]/I(Y)\to \Bbbk[x_1,\ldots,x_n]/I(X)=\Bbbk[X]$ координатных алгебр.

5.1.2. Максимальный спектр. С каждой точкой $p \in X$ аффинного алгебраического многообразия X связан *гомоморфизм вычисления* 1 ev $_p: \Bbbk[X] \to \Bbbk, f \mapsto f(p)$. Он эпиморфен, поскольку переводит единицу в единицу, и значит, является гомоморфизмом факторизации по модулю своего ядра

$$\mathfrak{m}_{p} \stackrel{\text{def}}{=} \ker \operatorname{ev}_{p} = I(\{p\}) = \{ f \in \mathbb{k}[X] \mid f(p) = 0 \},$$
 (5-3)

которое является максимальным идеалом в $\Bbbk[X]$, ибо фактор $\Bbbk[X]/\mathfrak{m}_p\simeq \Bbbk$ является полем. Идеал (5-3) называется максимальным идеалом точки $p\in X$. Таким образом, значение каждого многочлена $f\in \Bbbk[X]$ в точке $p\in X$ совпадает с классом $f\pmod{\mathfrak{m}_p}\in \Bbbk[X]/\mathfrak{m}_p\simeq \Bbbk$.

Множество всех максимальных идеалов произвольной \Bbbk -алгебры A называется её максимальным спектром и обозначается $\operatorname{Spec}_{\mathfrak{m}}(A)$. Каждой точке спектра $\mathfrak{m} \in \operatorname{Spec}_{\mathfrak{m}} A$ отвечает гомоморфизм факторизации $\pi_{\mathfrak{m}}: A \to A/\mathfrak{m}, a \mapsto a \pmod{\mathfrak{m}}$, принимающий значения в поле $A/\mathfrak{m} \supset \Bbbk$, которое конечно порождено как алгебра над \Bbbk . По теор. 4.2 на стр. 62 такое поле является конечным алгебраическим расширением поля \Bbbk , а значит, совпадает с \Bbbk , когда поле \Bbbk алгебраически замкнуто. Это позволяет интерпретировать элементы произвольной конечно порождённой алгебры A над таким полем как функции $\operatorname{Spec}_{\mathfrak{m}} A \to \Bbbk$.

ЛЕММА 5.2

На каждом аффинном алгебраическом многообразии X над алгебраически замкнутым полем \Bbbk соответствия $p \longleftrightarrow \operatorname{ev}_p \longleftrightarrow \operatorname{m}_p = \ker(\operatorname{ev}_p)$ задают биекции между точками $p \in X$, гомоморфизмами \Bbbk -алгебр $f \colon \Bbbk[X] \to \Bbbk$, и максимальными идеалами $\mathfrak{m} \subset \Bbbk[X]$.

Доказательство. Биективность второго соответствия мы уже проверили выше². Сопоставление

 $^{^1}$ Это специальный случай гомоморфизма поднятия, отвечающий вложению $p \hookrightarrow X$ одноточечного множества p в многообразие X.

 $^{^2}$ Сопоставление гомоморфизму его ядра инъективно вкладывает алгебру гомоморфизмов \Bbbk -алгебр $\mathrm{Hom}_{\Bbbk}(A, \Bbbk)$ в множество $\mathrm{Spec}_{\mathrm{m}}$ A над любым, не обязательно алгебраически замкнутым полем \Bbbk , но над незамкнутым полем не все максимальные идеалы являются ядрами гомоморфизмов вычисления со зна-

точке $p\in X\subset \mathbb{A}^n$ её максимального идеала $\mathfrak{m}_p=\ker\operatorname{ev}_p$ вкладывает 1 множество точек в множество максимальных идеалов, поскольку для $p\neq q$ всегда можно указать аффинно линейную функцию $f:\mathbb{A}^n\to \mathbb{k}$ зануляющуюся в p и отличную от нуля в q. Чтобы показать, что над алгебраически замкнутым полем \mathbb{k} любой максимальный идеал $\mathfrak{m}\subset \mathbb{k}[X]=\mathbb{k}[x_1,\ldots,x_n]/I(X)$ имеет вид $\mathfrak{m}_p=\ker\operatorname{ev}_p$ для некоторой точки $p\in X$, обозначим через $\widetilde{\mathfrak{m}}\subset \mathbb{k}[x_1,\ldots,x_n]$ полный прообраз идеала \mathfrak{m} относительно отображения факторизации $\mathbb{k}[x_1,\ldots,x_n]\to \mathbb{k}[X]$. Так как $\mathbb{k}[x_1,\ldots,x_n]/\widetilde{\mathfrak{m}}=\mathbb{k}[X]/\mathfrak{m}=\mathbb{k}$, идеал $\widetilde{\mathfrak{m}}$ является собственным, максимальным и по построению содержит I(X). По слабой теореме о нулях все многочлены $f\in \widetilde{\mathfrak{m}}$ обращаются в нуль в некоторой точке $p\in \mathbb{A}^n$, которая лежит на X, так как $I(X)\subset \widetilde{\mathfrak{m}}$. Следовательно, $\mathfrak{m}\subseteq \mathfrak{m}_p$, что в силу максимальности идеала \mathfrak{m} означает равенство $\mathfrak{m}=\mathfrak{m}_p$.

Соглашение 5.1. Всюду далее обозначение $\operatorname{Spec}_{\operatorname{m}} A$ используется как для множества гомоморфизмов \mathbbm{k} -алгебр $A \to \mathbbm{k}$, так и для множества максимальных идеалов в A, поскольку любой гомоморфизм факторизации $A \to \mathbbm{k}$ однозначно задаётся своим ядром $\mathbbm{k} \subset A$.

Пример 5.1 (Spec_м
$$\mathbb{k}[x_1,\ldots,x_n] \simeq \mathbb{A}^n = \mathbb{A}(\mathbb{k}^n)$$
)

Каждый гомоморфизм \Bbbk -алгебр φ : Spec $_m$ $\Bbbk[x_1,\ldots,x_n]\to \Bbbk$ однозначно определяется образами свободных образующих полиномиальной алгебры, т. е. набором чисел $p_i=\varphi(x_i)\in \Bbbk$. Сопоставление $\varphi\mapsto (p_1,\ldots,p_n)$ устанавливает биекцию между такими гомоморфизмами и точками аффинного координатного пространства $\mathbb{A}^n=\mathbb{A}(\Bbbk^n)$. Ядро гомоморфизма

$$\operatorname{ev}_p: \mathbb{k}[x_1, \dots, x_n] \to \mathbb{k}$$

порождается линейными двучленами $x_i - p_i$, $1 \le i \le n$.

5.1.3. Нильрадикал и радикал Джекобсона. Для произвольного коммутативного кольца A радикал $\mathfrak{n}(A) \stackrel{\mathrm{def}}{=} \sqrt{0} = \{a \in A \mid a^n = 0 \text{ для некоторго } n \in \mathbb{N} \}$ нулевого идеала 2 в A называется нильрадикалом кольца A. Пересечение $\mathfrak{r}(A)$ всех максимальных идеалов кольца A называется радикалом Джекобсона.

Упражнение 5.2. Убедитесь, что $\mathfrak{n}(A)$ является идеалом в A.

Предложение 5.1

Для любой (не обязательно приведённой) конечно порождённой алгебры A над алгебраически замкнутым полем \Bbbk ядро гомоморфизма $A \to \Bbbk^{\operatorname{Spec}_{\mathfrak{m}} A}$, сопоставляющего элементу $a \in A$ функцию a: $\operatorname{Spec}_{\mathfrak{m}} A \to \Bbbk$, $\mathfrak{m} \mapsto a \pmod{\mathfrak{m}} \in A/\mathfrak{m} = \Bbbk$, совпадает с нильрадикалом алгебры A, т. е. $\mathfrak{m}(A) = \mathfrak{r}(A)$.

Доказательство. Поскольку для любого $\mathfrak{m}\in \operatorname{Spec}_{\mathfrak{m}} A$ фактор алгебра A/\mathfrak{m} является полем и не содержит ненулевых нильпотентов, каждый нильпотентный элемент кольца задаёт нулевую функцию на спектре, ибо аннулируется всеми гомоморфизмами вычисления $A\twoheadrightarrow A/\mathfrak{m}$. Тем самым, $\mathfrak{n}(A)\subset \mathfrak{r}(A)$. Чтобы доказать обратное включение, рассмотрим приведённую конечно

чениями в самом этом поле. Например, ядро гомоморфизма вычисления $\mathrm{ev}_i:\mathbb{R}[x] \to \mathbb{C}, f \mapsto f(i)$, где $i=\sqrt{-1}\in\mathbb{C}$, представляет собою главный максимальный идеал $(x^2+1)\subset\mathbb{R}[x]$, который не является ядром никакого гомоморфизма $\mathbb{R}[x]\to\mathbb{R}$, поскольку как векторное пространство над \mathbb{R} имеет в $\mathbb{R}[x]$ коразмерность 2.

 $^{^{1}}$ Опять таки над любым, в том числе, не алгебраически замкнутым полем \Bbbk .

²Т. е. множество всех нильпотентных элементов кольца.

порождённую \Bbbk -алгебру $A_{\mathrm{red}} \stackrel{\mathrm{def}}{=} A/\mathfrak{n}(A)$ и существующее по лем. 5.1 на стр. 69 алгебраическое многообразие $X \subset \mathbb{A}^n$ с координатной алгеброй $\Bbbk[X] = \Bbbk[x_1, \dots, x_n]/I(X) \simeq A_{\mathrm{red}}$. Если $a \in \mathfrak{r}(A)$, то класс элемента a в A_{red} лежит в $\mathfrak{r}(A_{\mathrm{red}})$. Поэтому a(p) = 0 для всех точек $p \in X$, т. е. a = 0 в $\Bbbk[X] = A_{\mathrm{red}}$. Следовательно, $a \in \mathfrak{n}(A)$.

Упражнение 5.3. Покажите, что для произвольного коммутативного кольца A с единицей нильрадикал $\mathfrak{n}(A)$ совпадает с пересечением всех простых идеалов кольца A.

5.1.4. Эквивалентность категорий. Обозначим через $\mathcal{A}\!\ell g_{\mathbbm{k}}$ категорию конечно порождённых приведённых алгебр с единицей над алгебраически замкнутым полем \mathbbm{k} . Сопоставление аффинному алгебраическому многообразию X его координатной алгебры $\mathbbm{k}[X]$, а регулярному морфизму аффинных многообразий $\varphi: X \to Y$ гомоморфизма поднятия $\varphi^*: \mathbbm{k}[Y] \to \mathbbm{k}[X]$ задаёт контравариантный функтор²

$$h_{\mathbb{A}^1}: \mathcal{A}f_{\mathbb{k}}^{\text{op}} \to \mathcal{A}\ell g_{\mathbb{k}}, \quad X \mapsto \text{Hom}_{\mathcal{A}ff_{\mathbb{k}}}(X, \mathbb{A}^1) = \mathbb{k}[X],$$
 (5-4)

из категории аффинных алгебраических многообразий над полем № в категорию конечно порождённых приведённых №-алгебр с единицей. Проверим, что этот функтор является оборачивающей стрелки эквивалентностью категорий, т. е. по-сути сюрьективен и вполне строг³. Первое означает, что каждая конечно порождённая приведённая №-алгебра изоморфна координатной алгебре некоторого аффинного алгебраического многообразия, и было установлено нами в лем. 5.1 на стр. 69. Второе означает, что сопоставление регулярному морфизму многообразий его гомоморфизма подъёма задаёт биекцию

$$\operatorname{Hom}_{\mathcal{A}ff_{k}}(X,Y) \cong \operatorname{Hom}_{\mathcal{A}\ell g_{k}}(\mathbb{k}[Y],\mathbb{k}[X]), \quad \varphi \mapsto \varphi^{*}. \tag{5-5}$$

Чтобы построить обратную биекцию, рассмотрим функтор из категории конечно порождённых приведённых \Bbbk -алгебр с единицей в категорию множеств, сопоставляющи алгебре её максимальный спектр

$$h_{\mathbb{k}}: \mathcal{A}lg_{\mathbb{k}} \to \mathcal{S}et, \quad A \mapsto \operatorname{Hom}_{\mathcal{A}lg_{\mathbb{k}}}(A, \mathbb{k}) = \operatorname{Spec}_{\mathbb{m}} A,$$
 (5-6)

а гомоморфизму \Bbbk -алгебр $\psi: A \to B$ — отображение подъёма $\psi^*: \operatorname{Spec}_{\operatorname{m}} B \to \operatorname{Spec}_{\operatorname{m}} A$, переводящее сюрьекцию $\operatorname{ev}_{\mathfrak{m}}: B \to \Bbbk$ с ядром $\mathfrak{m} \in \operatorname{Spec}_{\operatorname{m}} B$ в сюрьекцию $\psi^*(\operatorname{ev}_{\mathfrak{m}}) = \operatorname{ev}_{\mathfrak{m}} \circ \psi$ с ядром $\psi^{-1}(\mathfrak{m}) \in \operatorname{Spec}_{\operatorname{m}} \Bbbk[X]$. Сравнение определений показывает, что отображения множеств

$$\operatorname{Hom}_{\operatorname{\mathcal{A}\!f\!f}_{\Bbbk}}(X,Y) \xrightarrow{\varphi \mapsto \varphi^*} \operatorname{Hom}_{\operatorname{\mathcal{A}\!\ell\!g}_{\Bbbk}}(\Bbbk[Y], \Bbbk[X])$$

обратны друг другу. В самом деле, если регулярный морфизм из алгебраического многообразия $X \subset \mathbb{A}^n$ в алгебраическое многообразие $Y \subset \mathbb{A}^m$ действует по правилу

$$(x_1,\ldots,x_n)\mapsto (\varphi_1(x),\ldots,\varphi_m(x)),$$
 где $\varphi_i(x)\in \mathbb{k}[x_1,\ldots,x_n],$

то его гомоморфизм подъёма φ^* : $\Bbbk[Y] \to \Bbbk[X]$ действует на образующие по правилу

$$y_i \mapsto \varphi_i \pmod{I(X)}$$
,

¹Напомню, что идеал $\mathfrak{p} \subset A$ называется *простым*, если в фактор кольце A/\mathfrak{p} нет делителей нуля.

²Необходимые предварительные сведения о категориях и функторах можно почерпнуть из курса алгебры, см. например лекцию http://vyshka.math.ru/pspdf/1011/algebra-2/lec_10.pdf

 $^{^{3}}$ См. цитированную выше лекцию.

а подъём φ^{**} : $\operatorname{Spec}_{\operatorname{m}} \Bbbk[X] \to \operatorname{Spec}_{\operatorname{m}} \Bbbk[Y]$ этого гомоморфизма подъёма переводит вычисление

$$\operatorname{ev}_p : \mathbb{k}[X] \to \mathbb{k}, \quad f(x) \mapsto f(p),$$

в заданной точке $p=(p_1,\ldots,p_n)\in X$ в композицию $\operatorname{ev}_p\circ \phi^*$, которая отправляет каждую образующую $y_i\in \Bbbk[Y]$ в число $\phi_i(p)\in \Bbbk$ и является таким образом вычислением в точке $\phi(p)\in Y$. Стало быть, $\phi^{**}=\phi$.

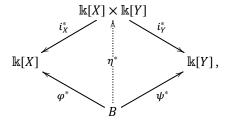
Упражнение 5.4. Установите для любого гомоморфизма \Bbbk -алгебр $\psi: \Bbbk[Y] \to \Bbbk[X]$ равенство $\psi^{**} = \psi.$

Тем самым, отображение (5-5) биективно, и значит, функтор (5-5) является оборачивающей стрелки эквивалентностью категорий. Функтор (5-6) не является квазиобратным 1 к функтору (5-4) лишь потому, что принимает значения не в категории аффинных алгебраических многообразий, а в категории множеств. Для любой конечно порождённой приведённой \mathbbm{k} алгебры A с единицей, множество $\mathrm{Spec_m}\ A$ допускает много различных, но изоморфных друг другу структур аффинного алгебраического многообразия, если понимать под таковой структурой вложение множеств φ : $\mathrm{Spec_m}\ A \hookrightarrow \mathbb{A}^n$, биективно отображающее $\mathrm{Spec_m}\ A$ на аффинное алгебраическое многообразие $V(\ker \varphi^*) \subset \mathbb{A}^n$, где φ^* : $\mathbbm{k}[\mathbb{A}^n] \twoheadrightarrow A$ это гомоморфизм подъёма вложения φ . Задание такой структуры равносильно выбору представления алгебры A образующими и соотношениями, т. е. фиксации изоморфизма $A \simeq \mathbbm{k}[x_1, \dots, x_n]/I$.

Пример 5.2 (прямая и гипербола)

В прим. 5.1 на стр. 71 мы видели, что точки спектра $\operatorname{Spec}_{\operatorname{m}} \Bbbk[t]$ биективно соответствуют точкам аффинной прямой $\mathbb{A}^1 = \Bbbk$: каждый гомоморфизм $\operatorname{ev} \colon \Bbbk[t] \to \Bbbk$ однозначно определяется своим значением $\operatorname{ev}(t) = \lambda \in \Bbbk$ на образующей алгебры $\Bbbk[t]$, и это значение может быть любым. Аналогично, спектр алгебры полиномов Лорана $\operatorname{Spec}_{\operatorname{m}} \Bbbk[t,t^{-1}]$ находится в естественной биекции с точками аффинной прямой с выколотым нулём, т. е. с открытым множеством $\mathbb{A}^1 \setminus \{0\} = \Bbbk^*$, ибо значение $\lambda = \operatorname{ev}(t) = 1/(\operatorname{ev}(t^{-1})$ может быть любым *обратимым* элементом поля \Bbbk . Если же представить алгебру полиномов Лорана образующими и соотношениями — например, посредством изоморфизма $\varphi^* \colon \Bbbk[t,t^{-1}] \cong \Bbbk[x,y]/(xy-1)$, переводящего t в x, а t^{-1} — в y, то её спектр отождествится с множеством точек гиперболы xy=1 в \mathbb{A}^2 . При этом отображение поднятия $\varphi=\varphi^{**} \colon V(xy-1) \to \mathbb{A}^1 \setminus \{0\}$ будет проекцией гиперболы на координатную ось.

5.1.5. Дизъюнктные объединения (копроизведения) многообразий. Для аффинных алгебраических многообразий X и Y прямое произведение алгебр $\Bbbk[X] \times \Bbbk[Y]$ конечно порождено, приведено, содержит единицу и обладает следующим универсальным свойством: для любой пары гомоморфизмов $\varphi^*: B \to \Bbbk[X], \psi^*: B \to \Bbbk[Y]$ из произвольной \Bbbk -алгебры B существует единственный гомоморфизм $\eta^*: B \to \Bbbk[X] \times \Bbbk[Y]$, делающий коммутативной диаграмму



¹В смысле цитированной выше лекции.

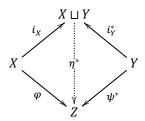
в которой i_X^* : $\Bbbk[X] \times \Bbbk[Y] \twoheadrightarrow \Bbbk[X]$ и i_Y^* : $\Bbbk[X] \times \Bbbk[Y] \twoheadrightarrow \Bbbk[Y]$ суть проекции произведения на сомножители, переводящие $(f,g) \in \Bbbk[X] \times \Bbbk[Y]$ в $f \in \Bbbk[X]$ и $g \in \Bbbk[Y]$ соответственно.

Упражнение 5.5. Проверьте это, и покажите любая алгебра A с парой гомоморфизмов

$$i_X^*: A \to \Bbbk[X]$$
 и $i_Y^*: A \to \Bbbk[Y]$,

удовлетворяющих предыдущему универсальному свойству, канонически изоморфна алгебре $\Bbbk[X] \times \Bbbk[Y]$ посредством единственного изоморфизма, перестановочного с гомоморфизмами i_X^* и i_Y^* .

Из установленной в n° 5.1.4 эквивалентности категорий вытекает, что аффинное алгебраическое многообразие $X \sqcup Y \stackrel{\text{def}}{=} \operatorname{Spec_m} \left(\mathbb{k}[X] \times \mathbb{k}[Y] \right)$ обладает двойственным универсальным свойством: для любой пары регулярных морфизмов $\varphi: X \to Z$, $\psi: Y \to Z$ в любое аффинное алгебраическое многообразие Z существует единственный регулярный морфизм $\eta: X \sqcup Y \to Z$, делающий коммутативной диаграмму



Упражнение 5.6. Проверьте, что для любых объектов X, Y произвольной категории объект $X \sqcup Y$ и обладающие предыдущим универсальным свойством морфизмы

$$i_X: X \to X \sqcup Y$$
, $i_Y: Y \to X \sqcup Y$,

если существуют, то единственны точностью до единственного изоморфизма, перестановочного с i_X и i_Y . Убедитесь также, что в категории множеств таким объектом является дизъюнктное объединение множеств X и Y.

Таким образом дизъюнетное объединение аффинных алгебраических многообразий тоже является аффинным алгебраическим многообразием.

Упражнение 5.7. Пусть аффинное алгебраическое многообразие X является теоретико-множественным объединением двух непустых непересекающихся аффинных алгебраических многообразий Y и Z. Покажите, что $\mathbb{k}[X] = \mathbb{k}[Y] \times \mathbb{k}[Z]$.

5.1.6. Прямые произведения многообразий. Для коммутативных \Bbbk -алгебр A и B и единицами тензорное произведение векторных пространств $A \otimes B$ имеет естественную структуру коммутативной \Bbbk -алгебры с единицей $1 \otimes 1$ и умножением, которое на разложимых тензорах задаётся формулой $(a_1 \otimes b_1) \cdot (a_2 \otimes b_2) \stackrel{\text{def}}{=} (a_1 a_2) \otimes (b_1 b_2)$.

Упражнение 5.8. Убедитесь в этом.

Из универсального свойства тензорного произведения вытекает, что гомоморфизмы \Bbbk -алгебр

$$\alpha: A \to A \otimes B \quad a \mapsto a \otimes 1,$$

 $\beta: B \to A \otimes B \quad b \mapsto 1 \otimes b,$ (5-7)

обладают универсальными свойствами *копроизведения*, т. е. для любой пары гомоморфизмов $\varphi: A \to C, \psi: B \to C$ существует единственный гомоморфизм $\varphi \otimes \psi: A \otimes B \to C$ со свойствами $\varphi = (\varphi \otimes \psi) \circ \alpha$ и $\psi = (\varphi \otimes \psi) \circ \beta$, и этот гомоморфизм действует на разложимые тензоры по правилу $\varphi \otimes \psi: a \otimes b \mapsto \varphi(a)\psi(b)$.

Упражнение 5.9. Убедитесь в этом.

Например, тензорное произведение алгебр $\Bbbk[x_1,\ldots,x_n]\otimes \Bbbk[y_1,\ldots,y_m]$ изоморфно алгебре многочленов $\Bbbk[x_1,\ldots,x_n,y_1,\ldots,y_m]$ посредством отображения

$$x_1^{s_1}...x_n^{s_n} \otimes y_1^{r_1}...y_m^{r_m} \mapsto x_1^{s_1}...x_n^{s_n}y_1^{r_1}...y_m^{r_m}$$
.

Эквивалентность категорий из n° 5.1.4 превращает этот изоморфизм в изоморфизм аффинных алгебраических многообразий $\mathbb{A}^n \times \mathbb{A}^m \simeq \mathbb{A}^{n+m}$.

Предложение 5.2

Тензорное произведение конечно порождённых приведённых \Bbbk -алгебр $A \otimes B$ тоже является конечно порождённой приведённой \Bbbk -алгеброй с максимальным спектром

$$\operatorname{Spec}_{\operatorname{m}}(A \otimes B) = \operatorname{Spec}_{\operatorname{m}}(A) \times \operatorname{Spec}_{\operatorname{m}}(B)$$
.

В частности, теоретико множественное произведение аффинных алгебраических многообразий тоже является аффинным алгебраическим многообразием.

Доказательство. Биекция $\operatorname{Spec}_{\mathrm{m}}(A) \times \operatorname{Spec}_{\mathrm{m}}(B) \cong \operatorname{Spec}_{\mathrm{m}}(A \otimes B)$ переводит точку (p,q), представленную парой эпиморфизмов вычисления $\operatorname{ev}_p: A \to \Bbbk, \operatorname{ev}_q: B \to \Bbbk$ в эпиморфизм вычисления

$$A \otimes B \to \mathbb{k}$$
, $\alpha \otimes b \mapsto \operatorname{ev}_p(a) \operatorname{ev}_p(b)$,

существующий в силу универсального свойства тензорного произведения. Алгебра $A\otimes B$ порождается над \Bbbk всевозможными попарными тензорными произведениями образующих алгебр A и B, коих имеется конечное число. Чтобы показать, что $A\otimes B$ приведена, достаточно согласно предл. 5.1 на стр. 71 убедиться в том, что всякий элемент $h\in A\otimes B$, задающий нулевую функцию на $\mathrm{Spec_m}(A\otimes B)$, равен нулю. Для этого запишем такой элемент h в виде $\sum f_v\otimes g_v$ с линейно независимыми над \Bbbk элементами $g_v\in B$. Из равенства ($\mathrm{ev}_p\otimes\mathrm{ev}_q$) h=0, справедливого для $\mathrm{Bcex}\,(p,q)\in\mathrm{Spec_m}(A\otimes B)$, вытекает, что при произвольно зафиксированном $p\in\mathrm{Spec_m}\,A$ линейная комбинация $\sum f_v(p)\cdot g_v\in B$ является тождественно нулевой функцией на $\mathrm{Spec_m}\,B$ и тем самым равна нулю в B, ибо алгебра B приведена. Это означает, что все константы $f_v(p)$ нулевые для любого $p\in\mathrm{Spec_m}\,A$, т. е. элементы $f_v\in A$ задают тождественно нулевые функции $\mathrm{Spec_m}\,A\to \Bbbk$. Поскольку алгебра A приведена, все $f_v=0$, а значит и h=0.

5.2. Топология Зарисского. На множестве $X = \operatorname{Spec}_{\mathrm{m}} A$ имеется каноническая топология, отражающая алгебраические свойства алгебры A. Эта топология называется *топологией Зарисского* и имеет в качестве *замкнутых* подмножеств алгебраические подмногообразия в X, т. е. множества вида $V(I) = \{x \in X \mid f(x) = 0 \ \forall f \in I\} = \{m \in \operatorname{Spec}_{\mathrm{m}} A \mid I \subset m\}$ для всевозможных идеалов $I \subset A$.

Упражнение 5.10. Убедитесь, что а) $\varnothing=V(1)$ в) X=V(0) в) $\bigcap_{\nu}V(I_{\nu})=V\Big(\sum_{\nu}I_{\nu}\Big)$, где $\sum_{\nu}I_{\nu}$ означает идеал, образованный всевозможными конечными суммами $\sum_{\nu}f_{\nu}$ с $f_{\nu}\in I_{\nu}$

г) $V(I) \cup V(J) = V(I \cap J) = V(IJ)$, где IJ означает идеал, представляющий собою \mathbb{k} -линейную оболочку всевозможных произведений $ab \ c \ a \in I$, $b \in J$.

Топология Зарисского имеет чисто алгебраическую природу: окрестности Зарисского отражают скорее отношения делимости, нежели «близости», и многие её свойства довольно далеки от интуитивно привычных свойств метрической топологии. Скажем, топология Зарисского на произведении $X \times Y$ обычно тоньше произведения топологий Зарисского на X и Y, поскольку замкнутые подмножества $Z \subset X \times Y$ не исчерпываются произведениями замкнутых подмножеств в X, Y. Например, при $X = Y = \mathbb{A}^1$ гипербола V(xy-1) замкнута в топологии Зарисского на $\mathbb{A}^1 \times \mathbb{A}^1 = \mathbb{A}^2$, а отличные от всей плоскости произведения замкнутых подмножеств в \mathbb{A}^1 исчерпываются конечными объединениями изолированных точек и прямых, параллельных координатным осям.

Предложение 5.3 (база открытых множеств и компактность)

Каждое открытое подмножество аффинного алгебраического многообразия X является объединением конечного числа главных открытых множеств $\mathcal{D}(f) \stackrel{\mathrm{def}}{=} X \setminus V(f) = \{x \in X \mid f(x) \neq 0\}$, где $f \in \mathbb{k}[X]$, и компактно в том смысле, что в каждое его открытое покрытие содержит конечное подпокрытие.

Доказательство. Пусть $U=X \setminus V(I)$. Так как алгебра $\Bbbk[X]$ нётерова, идеал $I=(f_1,\ldots,f_m)$ конечно порождён. Поэтому $V(I)=\bigcap V(f_i)$ и $U=\bigcup \left(X \setminus V(f_i)\right)=\bigcup_{\nu} \mathcal{D}(f_i)$. Это доказывает первое утверждение. Для доказательства второго заметим, что семейство главных открытых множеств $\mathcal{D}(f_{\nu})$ покрывает открытое множество U если и только если общие нули всех функций f_{ν} лежат вне U, т. е. $V(I)\subset X \setminus U$, где I — идеал, порождённый функциями f_{ν} . Поскольку $I=(f_1,\ldots,f_m)$ для некоего конечного набора функций f_1,\ldots,f_m , множество U покрывается множествами $\mathcal{D}(f_i)$, на которых отличны от нуля функции из этого набора.

Предложение 5.4 (непрерывность регулярных морфизмов)

Всякий регулярный морфизм алгебраических многообразий $\varphi: X \to Y$ непрерывен в топологии Зарисского.

Доказательство. Прообраз $\varphi^{-1}(V(I))$ замкнутого подмножества $V(I) \subset Y$ состоит из всех таких точек $x \in X$, что $f(\varphi(x)) = 0$ для всех $f \in I$. Тем самым, он является множеством нулей идеала, порождённого в $\Bbbk[X]$ образом $\varphi^*(I)$ идеала I при гомоморфизме поднятия $\varphi^* \colon \Bbbk[Y] \to \Bbbk[X]$. \square

5.2.1. Неприводимые компоненты. Топологическое пространство X, представимое в виде объединения $X = X_1 \cup X_2$ своих собственных замкнутых подмножеств $X_1, X_2 \subsetneq X$, называется *приводимым*. В обычной метрической топологии практически все пространства приводимы. В топологии Зарисского приводимость многообразия X равносильна наличию делителей нуля в алгебре $\mathbb{k}[X]$, и неприводимые алгебраические многообразия являются грубыми аналогами степеней простых чисел в арифметике.

Предложение 5.5

Аффинное алгебраическое многообразие неприводимо если и только если в его координатной алгебре $\mathbb{k}[X]$ нет делителей нуля.

¹Обратите внимание, что последнее равенство равносильно равенству $\sqrt{I \cap J} = \sqrt{IJ}$.

Доказательство. Разложение $X=X_1\cup X_2$, где каждое X_i замкнуто, непусто и отлично от X, означает наличие таких ненулевых необратимых функций $f_1\in I(X_1),\, f_2\in I(X_2),\,$ что произведение f_1f_2 тождественно зануляется на всём X. Последнее означает, что $f_1f_2=0$ в $\Bbbk[X]$. Наоборот, если $f_1f_2=0$ в $\Bbbk[X]$ для ненулевых $f_1,f_2\in \Bbbk[X],\,$ то f_1 и f_2 необратимы в $\Bbbk[X],\,$ а значит, замкнутые подмножества $V(f_1)$ и $V(f_2)$ непусты и отличны от X. При этом $X=V(f_1)\cup V(f_2).$

Упражнение 5.11. Убедитесь, что V(f) непусто и отлично от X для всякого ненулевого необратимого многочлена $f \in \mathbb{k}[X]$.

Следствие 5.1

Аффинная гиперповерхность $V(g)\subset \mathbb{A}^n$, где $g\in \mathbb{k}[x_1,\ldots,x_n]$, неприводима тогда и только тогда, когда g является степенью неприводимого многочлена.

Доказательство. Поскольку алгебра $\Bbbk[x_1,\ldots,x_n]$ факториальна, радикал $\sqrt{(f)}$ любого главного идеала (f) тоже является главным идеалом, порождённым произведением всех попарно неассоциированных неприводимых делителей многочлена f. Алгебра $\Bbbk[V(f)] = \Bbbk[x_1,\ldots,x_n]/\sqrt{(f)}$ не имеет делителей нуля если и только если f имеет ровно один неприводимый делитель с точностью до умножения на константы. \square

Теорема 5.1

Каждое аффинное алгебраическое многообразие Х является конечным объединением

$$X = X_1 \cup ... \cup X_k$$

таких неприводимых замкнутых подмножеств $X_i \subset X$, что $X_i \not\subset X_j$ при $i \neq j$, и это разложение единственно с точностью до перестановки его элементов.

Доказательство. Сначала докажем существование разложения. Если X неприводимо, доказывать нечего. Если X приводимо, представим его в виде $X=Z_1\cup Z_2$, где $Z_{1,2}$ — собственные замкнутые подмножества. Каждую приводимую компоненту этого разложения снова разложим в объединение двух собственных замкнутых подмножеств, и так далее. Если на каком-то шаге получится разложение $X=\bigcup Z_{\nu}$ в котором все Z_{ν} неприводимы, мы выкинем из этого объединения все неприводимые компоненты, которые содержатся в других неприводимых компонентах, и получим требуемое разложение. Если процесс не остановится через конечное число шагов, мы сможем построить бесконечную цепочку строго вложенных замкнутых подмножеств $X \supsetneq Y_1 \supsetneq Y_2 \supsetneq \ldots$, идеалы которых $(0) \subsetneq I_1 \subsetneq I_2 \subsetneq \ldots$ образуют бесконечную возрастающую цепочку, противоречащую нётеровости алгебры $\Bbbk[X]$.

Единственность доказывается индукцией по k. При k=1 многообразие X неприводимо и является единственной своей неприводимой компонентой. Пусть X раскладывается в объединение $k\geqslant 2$ неприводимых компонент и для всех многообразий, раскладывающихся на меньшее число компонент, разложение в объединение неприводимых компонент единственно. Если неприводимое замкнутое подмножество $Y\subset X$ лежит в объединении замкнутых подмножеств $Z_1\cup Z_2$, то $Y=(Y\cap Z_1)\cup (Y\cap Z_2)$, а значит, $Y\subset Z_1$ или $Y\subset Z_2$. Поэтому равенство двух разложений на неприводимые компоненты $X_1\cup\ldots\cup X_k=Y_1\cup\ldots\cup Y_m$ влечёт включение $X_1\subset Y_\alpha\subset X_\beta$ для некоторых α , β , что означает равенство $X_1=Y_\alpha=X_\beta$. Выкинем из обоих разложений компоненты X_1 и Y_α и применим предположение индукции к объединению замыканий оставшихся компонент.

Упражнение 5.12. Пусть $Z \subsetneq Y \subset X$ замкнуты и Y неприводимо. Убедитесь, что $Y = \overline{Y \setminus Z}$, где замыкание берётся в X, и что неприводимость Y для этого существенна.

Определение 5.1

Неприводимые замкнутые подмножества $X_i \subset X$ из теор. 5.1, называются неприводимыми компонентами многообразия X.

Следствие 5.2

Элемент $f \in \mathbb{k}[X]$ является ненулевым делителем нуля если и только если он обращается в нуль на некоторой неприводимой компоненте многообразия X.

ПРИМЕР 5.3 («БОЛЬШИЕ» ОТКРЫТЫЕ МНОЖЕСТВА)

Топология Зарисского нехаусдорфова. Если X неприводимо, любые два непустых открытых подмножества $U_1, U_2 \subset X$ имеют непустое пересечение, поскольку в противном случае возникает разложение $X = (X \setminus U_1) \cup (X \setminus U_2)$. Иначе говоря, каждое непустое открытое подмножество неприводимого многообразия всюду плотно в нём.

Упражнение 5.13. Пусть X неприводимо и $f, g \in \mathbb{k}[X]$. Докажите, что если $f|_U = g|_U$ для некоторого непустого открытого $U \subset X$, то f = g в $\mathbb{k}[X]$.

5.3. Рациональные функции. Не являющиеся делителями нуля элементы алгебры $\Bbbk[X]$ образуют мультипликативную систему $S_X \subset \Bbbk[X]$. Кольцо частных $S_X^{-1} \Bbbk[X]$ называется кольцом рациональных функций на X и обозначается $\Bbbk(X)$. Если X неприводимо, то $\Bbbk(X) = Q_{\Bbbk[X]}$ — это поле частных целостного кольца $\Bbbk[X]$. Скажем, что рациональная функция $f \in \Bbbk(X)$ определена в точке $x \in X$, если существует такое её представление дробью f = p/q, где $p, q \in \Bbbk[X]$ и q не делит нуль, что $q(x) \neq 0$. Число $f(x) = p(x)/q(x) \in \Bbbk$ называется значением f в точке x.

Упражнение 5.14. Убедитесь, что f(x) не зависит от способа записи f в виде дроби f = p/q, где $p,q \in \mathbb{k}[X], q$ не делит нуль, и $q(x) \neq 0$.

Множество точек x, в которых определена рациональная функция f, называется областью определения функции f и обозначается Dom(f). Из сл. 5.2 и прим. 5.3 вытекает, что Dom(f) является плотным открытым подмножеством в X.

Упражнение 5.15. Убедитесь, что для совпадения двух рациональных функций как элементов кольца $\mathbb{k}(X)$ достаточно поточечного совпадения их значений на каком-нибудь плотном открытом подмножестве в X.

Для открытого $U \subset X$ положим $\mathbb{k}[U] \stackrel{\text{def}}{=} \{ f \in \mathbb{k}(X) \mid \text{Dom}(f) \supset U \}$ и будем называть его кольцом рациональных функций, регулярных в U.

Предложение 5.6

Если $h \in \mathbb{k}[X]$ не делит нуля, то $\mathbb{k}[\mathcal{D}(h)] = \mathbb{k}[X][h^{-1}]$ является кольцом частных $\mathbb{k}[X]$ со знаменателями из мультипликативной системы $\{h^k\}_{k>0}$.

Доказательство. Для рациональной функции $f \in \mathbb{k}(X)$ положим

$$\left(f^{-1}\right) \stackrel{\text{def}}{=} \left\{g \in \mathbb{k}[X] \mid gf \in \mathbb{k}[X]\right\}. \tag{5-8}$$

 $^{^{1}}$ Подробнее про мультипликативные системы и кольца дробей со знаменателями в таких системах см. в разделе 3.1 на стр. 53 лекции http://gorod.bogomolov-lab.ru/ps/stud/algebra-1/2526/lec 03.pdf.

Это идеал в $\Bbbk[X]$, и лежащие в нём неделители нуля суть все возможные знаменатели, встречающиеся в разнообразных представлениях f в виде дроби. Множество делителей нуля в (f^{-1}) представляет собою пересечение этого идеала с объединением идеалов $I(X_i)$ неприводимых компонент X_i многообразия X. Так как неделители нуля в (f^{-1}) по определению имеются, каждое пересечение $(f^{-1}) \cap I(X_i) \subsetneq (f^{-1})$ является собственным векторным подпространством в (f^{-1}) , и весь идеал (f^{-1}) является объединением этих подпространств и подпространства, порождённого неделителями нуля. Если последнее подпространство тоже собственное, пространство (f^{-1}) оказалось бы объединением конечного набора собственных подпространств, что невозможно над бесконечным полем 1 .

Упражнение 5.16. Убедитесь в этом.

Мы заключаем, что неделители нуля линейно порождают (f^{-1}) как векторное пространство над \mathbb{k} , и $X \setminus \mathrm{Dom}(f) = V((f^{-1}))$. Включение $\mathcal{D}(h) \subset \mathrm{Dom}(f)$ означает, что $V(h) \supset V((f^{-1}))$, т. е. функция h зануляется на $V((f^{-1}))$. По теореме Гильберта о нулях $h^d \in (f^{-1})$ для некоторого $d \in \mathbb{N}$. Тем самым, $f = p/h^d$, где $p \in \mathbb{k}[X]$.

5.3.1. Аффинность главных открытых множеств. Если $h \in \Bbbk[X]$ не делит нуль, то главное открытое подмножество $\mathcal{D}(h) = \operatorname{Spec}_{\mathrm{m}} \Bbbk[X][h^{-1}] = \operatorname{Spec}_{\mathrm{m}} \Bbbk[X][t] / (1-ht)$ всюду плотно в X и является аффинным алгебраическим многообразием: например, его можно реализовать замкнутой гиперповерхностью $V(1-ht) \subset X \times \mathbb{A}^1$. Вложение $i : \mathcal{D} \hookrightarrow X$ является регулярным морфизмом аффинных многообразий: его гомоморфизм подъёма задаёт каноническое вложение $i^* : \Bbbk[X] \hookrightarrow \Bbbk[X][h^{-1}] \simeq \Bbbk[\mathcal{D}(h)]$ и продолжается до изоморфизма колец частных $i^* : \Bbbk(X) \hookrightarrow \Bbbk(\mathcal{D}(h))$.

Замечание 5.1. Два *разных* толкования обозначения $\mathbb{k}[\mathcal{D}(h)]$ — как координатной алгебры аффинного алгебраического многообразия $\mathcal{D}(h)$ и как алгебры рациональных функций, регулярных на открытом множестве $\mathcal{D}(h) \subset X$, — *согласованы* друг с другом. В частности, согласованы друг с другом и два разных толкования обозначения $\mathbb{k}[X]$ — как координатной алгебры аффинного многообразия X и как алгебры рациональных функций, регулярных всюду на X, т. е. $\mathbb{k}[x_1,\ldots,x_n]/I(X)=\{f\in\mathbb{k}(X)\mid \mathrm{Dom}(f)=X\}$. Это вытекает из предл. 5.6 при h=1, что отвечает несобственному главному открытому множеству $\mathcal{D}(h)=X$.

Предостережение 5.1. Неглавное открытое подмножество $U \subset X$, вообще говоря, *не является* аффинным подмногообразием: каноническое вложение $U \hookrightarrow \operatorname{Spec}_{\mathrm{m}} \Bbbk[U]$, сопоставляющее точке $u \in U$ её максимальный идеал $\mathfrak{m}_u = \ker \operatorname{ev}_u \subset \Bbbk[U]$, может быть не биективно.

Упражнение 5.17. Пусть $n \geqslant 2$ и $U = \mathbb{A}^n \setminus O$ — дополнение к началу координат в аффинном пространстве. Покажите, что $\mathbb{k}[U] = \mathbb{k}[\mathbb{A}^n]$ и, тем самым, $\operatorname{Spec}_{\mathfrak{m}} \mathbb{k}[U] = \mathbb{A}^n \neq U$.

Предложение 5.7

Пусть разложение аффинного алгебраического многообразия X на неприводимые компоненты имеет вид $X = X_1 \cup ... \cup X_k$. Тогда $\mathbb{k}(X) = \mathbb{k}(X_1) \times ... \times \mathbb{k}(X_k)$.

Доказательство. Объединение $Z = \bigcup_{i \neq j} (X_i \cap X_j)$ попарных пересечений неприводимых компонент замкнуто в X. Выберем в его идеале $I(Z) \subset \mathbb{k}[X]$ какую-нибудь ненулевую функцию $f \in I(Z)$, не делящую нуль в $\mathbb{k}[X]$.

¹А алгебраически замкнутое поле бесконечно.

Упражнение 5.18. Убедитесь, что I(Z) линейно порождается такими функциями как векторное пространство над \Bbbk .

Главное открытое подмножество $W=\mathcal{D}(f)=\operatorname{Spec}_{\mathrm{m}} \Bbbk[X][f^{-1}]\subset X$ аффинно и является дизъюнктным объединением подмножеств $W_i=W\cap X_i\subset X_i$. Каждое W_i является главным открытым подмножеством многообразия X_i и тоже аффинно: $W_i=\mathcal{D}(f_i)=\operatorname{Spec}_{\mathrm{m}} \Bbbk[X_i][f_i^{-1}]\subset X_i$, где $f_i=f\ (\operatorname{mod}\ I(X_i))\in \Bbbk[X_i]$. Согласно $??\ \Bbbk[W]\simeq \Bbbk[W_1]\times \cdots \times \Bbbk[W_k]$.

Упражнение 5.19. Проверьте, что кольцо частных прямого произведения коммутативных колец с единицами изоморфно прямому произведению колец частных сомножителей:

$$(K_1\times \cdots \times K_k)S_{K_1\times \cdots \times K_k}^{-1}\simeq K_1S_{K_1}^{-1}\times \cdots \times K_kS_{K_k}^{-1}.$$

Таким образом, $\Bbbk(X) \simeq \Bbbk(W) \simeq \prod \Bbbk(W_i) \simeq \prod \Bbbk(X_i)$.

5.4. Геометрические свойства гомоморфизмов алгебр. Всякий гомоморфизм №-алгебр

$$\varphi^*: \mathbb{k}[Y] \to \mathbb{k}[X]$$

канонически разлагается в композицию эпиморфизма и вложения:

$$\mathbb{k}[Y] \xrightarrow{\varphi_1^*} \mathbb{k}[Y] / \ker(\varphi^*) = \operatorname{im}(\varphi^*) \xrightarrow{\varphi_2^*} \mathbb{k}[X]. \tag{5-9}$$

Поскольку алгебра $\mathbb{k}[Y]$ конечно порождена, а алгебра $\mathbb{k}[X]$ приведена, алгебра

$$k[Y]/\ker(\varphi^*) = \operatorname{im}(\varphi^*) \subset k[X]$$

тоже конечно порождена и приведена. Она является координатной алгеброй аффинного алгебраического многообразия $Z=\operatorname{Spec}_{\mathrm{m}}\left(\operatorname{im}(\varphi^*)\right)\simeq V\left(\ker(\varphi^*)\right)\subset Y$. Инъективность гомоморфизма $\varphi_1^*\colon \Bbbk[Z]\to \Bbbk[X]$ означает отсутствие ненулевых функций $f\in \Bbbk[Z]$, зануляющихся на $\varphi_1(X)\subset Z$, т. е. всюду плотность образа $\varphi_1(X)$ в многообразии Z. Тем самым, $Z=\overline{\varphi(X)}\subset Y$ есть замыкание образа $\varphi(X)$ в многообразии Y, вложенное в Y как замкнутое подмножество $V(\ker\varphi^*)$ нулей идеала $\ker\varphi^*$. Иначе говоря, алгебраическое разложение (5-9) на геометрическом языке означает разложение регулярного морфизма многообразий $\varphi:X\to Y$ в композицию регулярного морфизма $\varphi_1:X\to Z$ с плотным образом и регулярного вложения $\varphi_2:Z\hookrightarrow Y$ в качестве замкнутого подмногообразия.

5.4.1. Замкнутые вложения. Морфизм $\varphi: X \to Y$ называется замкнутым вложением, если его гомоморфизм поднятия $\varphi^*: \Bbbk[Y] \to \Bbbk[X]$ сюрьективен. Это означает, что φ является изоморфизмом между X и замкнутым подмногообразием $V(\ker \varphi^*) \subset Y$. Если замкнутое подмножество $Z \subset X$ неприводимо, гомоморфизм поднятия $i^*: \Bbbk[X] \to \Bbbk[Z]$, отвечающий замкнутому вложению $i: Z \hookrightarrow X$, принимает значения в целостном кольце $\Bbbk[Z]$, которое канонически вложено в своё поле частных $\Bbbk(Z)$. По универсальному свойству кольца частных эпиморфизм i^* однозначно продолжается до эпиморфизма $\operatorname{ev}_Z: \Bbbk(X) \to \Bbbk(Z)$, который ограничивает рациональные функции с X на Z и может интуитивно восприниматься как гомоморфизм вычисления рациональных функций на X в «в общей точке» неприводимого подмногообразия $Z \subset X$, где вычисляемая функция всегда определена, а результат такого вычисления лежит в поле $\Bbbk(Z)$.

В частности, когда $Z \subset X$ является неприводимой компонентой приводимого аффинного многообразия X, из сюрьективности гомоморфизма $\operatorname{ev}_Z \colon \Bbbk(X) \twoheadrightarrow \Bbbk(Z)$ вытекает, что всякая

рациональная функция на Z является ограничением некоторой рациональной функции на X, т. е. записывается дробью вида p / q, знаменатель которой $q \pmod{I(X_i)} \in \mathbb{k}[X_i] = \mathbb{k}[X] / I(X_i)$ представляется не делящим нуль в $\mathbb{k}[X]$ элементом $q \in \mathbb{k}[X]$.

Упражнение 5.20. Укажите такого представителя для функции $1/x \in \mathbb{k}(\operatorname{Spec}_{\mathrm{m}} \mathbb{k}[x])$ на прямой $Z = \operatorname{Spec}_{\mathrm{m}} \mathbb{k}[x] = V(y)$ координатного креста $X = \operatorname{Spec}_{\mathrm{m}} \mathbb{k}[x,y]/(xy)$ на плоскости $\mathbb{A}^2 = \operatorname{Spec}_{\mathrm{m}} \mathbb{k}[x,y]$.

5.4.2. Доминантные морфизмы. Регулярный морфизм $\varphi: X \to Y$ неприводимого многообразия X называется доминантным, если гомоморфизм алгебр $\varphi^*: \Bbbk[Y] \to \Bbbk[X]$ инъективен. Как мы уже видели выше, инъективность гомоморфизма поднятия означает, что $\overline{\varphi(X)} = Y$. Если X приводимо, то морфизм $\varphi: X \to Y$ называется доминантным, если доминантно его ограничение на каждую неприводимую компоненту многообразия X. В этом случае каждое из ограничений $\varphi_i = \varphi|_{X_i}$ задаёт вложение $\varphi_i^*: \Bbbk[Y] \hookrightarrow \Bbbk[X_i] \subset \Bbbk(X_i)$ координатной алгебры многообразия Y в поле рациональных функций на X_i . По универсальному свойству кольца частных такое вложение однозначно продолжается до вложения $\Bbbk(Y) \hookrightarrow \Bbbk(X_i)$ кольца рациональных функций на Y. Поэтому каждый доминантный морфизм $X \to Y$ задаёт вложение $\Bbbk(Y) \hookrightarrow \prod \Bbbk(X_i) = \Bbbk(X)$.

Упражнение 5.21. Покажите, что любой доминантный морфизм неприводимых аффинных многообразий $\varphi: X \to Y$ является композицией некоторого (не единственного) замкнутого вложения $\psi: X \hookrightarrow Y \times \mathbb{A}^m$ и проекции $\pi: Y \times \mathbb{A}^m \twoheadrightarrow Y$ вдоль \mathbb{A}^m .

5.4.3. Конечные морфизмы. Морфизм $\varphi: X \to Y$ называется *конечным*, если алгебра $\Bbbk[X]$ цела над подалгеброй $\varphi^*(k[Y]) \subset \Bbbk[X]$. Это означает, что $\Bbbk[X]$ линейно порождается над $\varphi^*(k[Y])$ конечным набором функций f_1, \ldots, f_m , т. е. любая функция $h \in \Bbbk[X]$ может быть записана как $h = \sum \varphi^*(g_i) f_i$ с подходящими $g_i \in \Bbbk[Y]$.

ЛЕММА 5.3

Любой конечный морфизм $\varphi: X \to Y$ аффинных алгебраических многообразий переводит каждое замкнутое подмножество $Z \subset X$ в замкнутое подмножество $\varphi(Z) \subset Y$, причём индуцированный морфизм $\varphi|_Z: Z \to \varphi(Z)$ тоже конечен. Если X неприводимо и $Z \neq X$, то $\varphi(Z) \neq Y$.

Доказательство. обозначим через $I=I(Z)\subset \Bbbk[X]$ идеал замкнутого подмножества $Z\subset X$. Ограничение $\varphi|_Z:Z o Y$ отвечает сквозному гомоморфизму алгебр $f_Z^*:\Bbbk[Y]\xrightarrow{\varphi^*} \Bbbk[X] o \Bbbk[X]/I.$ Поскольку алгебра $\mathbb{k}[X]$ конечно порождена как $\varphi^*(\mathbb{k}[Y])$ -модуль, алгебра $\mathbb{k}[Z] = \mathbb{k}[X]/I$ тоже конечно порождена как модуль над $\varphi|_Z^*(\Bbbk[Y]) = \varphi^*(\Bbbk[Y])/(I \cap \varphi^*(\Bbbk[Y]))$. Тем самым, морфизм $f|_Z:Z o Y$ конечен. Индуцированный морфизм $f|_Z:Z o\overline{\varphi(Z)}$ тоже конечен, поскольку $\Bbbk[\varphi(Z)] = \varphi^*(\Bbbk[Y])$. Поэтому при доказательстве первого утверждения можно считать, что Z=X и $Y=\varphi(X)$. Так как равенство $\varphi(X)=\overline{\varphi(X)}$ достаточно проверить отдельно для каждой неприводимой компоненты многообразия X, мы можем считать X неприводимым. Таким образом, достаточно доказать, что каждый конечный доминантный морфизм $\varphi: X \to Y$ из неприводимого аффинного многообразия Х сюрьективен. На алгебраическом языке это означает, что если в расширении алгебр $\Bbbk[Y] \subset \Bbbk[X]$ большая алгебра не имеет делителей нуля и линейно порождается над меньшей конечным набором элементов f_1, \dots, f_m , то каждый максимальный идеал $\mathfrak{m} \subset \mathbb{k}[Y]$ имеет вид $\widetilde{\mathfrak{m}} \cap \mathbb{k}[Y]$ для некоторого максимального идеала $\widetilde{\mathfrak{m}} \subset \mathbb{k}[X]$. Если идеал $\mathfrak{m}[X]$, порождённый \mathfrak{m} в $\mathbb{k}[X]$, является собственным в $\mathbb{k}[X]$, то в качестве $\widetilde{\mathfrak{m}}$ можно взять любой максимальный идеал, содержащий $\mathfrak{m} \mathbb{k}[X]$. Таким образом, достаточно показать, что $\mathfrak{m} \, \mathbb{k}[X] \neq \mathbb{k}[X]$ ни для какого максимального идеала $\mathfrak{m} \subset \mathbb{k}[Y]$. Предположим противное:

пусть $\mathfrak{m}\,\Bbbk[X]=\Bbbk[X]$. Тогда каждая из образующих f_i , линейно порождающих $\Bbbk[X]$ над $\Bbbk[Y]$, запишется в виде $f_i=\sum_{\mathcal{V}}f_{\mathcal{V}}\beta_{\mathcal{V}i}$ с $\beta_{\mathcal{V}i}\in\mathfrak{m}$. Мы получаем матричное равенство

$$(f_1,\ldots,f_m)(E-B)=0,$$

где $B = (\beta_{vi}) \in \mathrm{Mat}_{m \times m}(\mathfrak{m})$, а E — единичная матрица. Следовательно 1

$$(f_1, \dots, f_m) \cdot \det(E - B) = (f_1, \dots, f_m) (E - B)(E - B)^{\vee} = 0.$$

Так как в $\Bbbk[Z]$ нет делителей нуля, $\det(E-B)=0$. Раскрывая этот определитель, заключаем, что $1\in\mathfrak{m}$, т. е. идеал $\mathfrak{m}=\Bbbk[Y]$ не является собственным.

Чтобы доказать, что $\varphi(Z) \neq Y$ при $Z \subsetneq X$ рассмотрим какую-нибудь ненулевую функцию $f \in \Bbbk[X]$, тождественно зануляющуюся на Z. Поскольку она цела над $\varphi^*(\Bbbk[Y])$

$$f^{m} + \varphi^{*}(g_{1}) f^{m-1} + ... + \varphi^{*}(g_{m-1}) f + \varphi^{*}(g_{m}) = 0$$

для некоторых $g_1, \dots, g_m \in \Bbbk[Y]$. Рассмотрим такое соотношение с наименьшим возможным m. В нём $g_m \neq 0$, иначе его можно было бы сократить на f, ибо в $\Bbbk[X]$ нет делителей нуля. Вычисляя левую часть в точках $z \in Z$, видим, что $\varphi^*(g_m)|_Z = g_m|_{\varphi(Z)} \equiv 0$. Поэтому $\varphi(Z) \subset V(g_m) \subsetneq Y$ является собственным замкнутым подмножеством.

5.4.4. Нормальные многообразия. Аффинное алгебраическое многообразие Y называется *нормальным*, если оно неприводимо и его координатная алгебра $\mathbb{k}[Y]$ целозамкнута в поле рациональных функций $\mathbb{k}(Y) = Q_{\mathbb{k}[Y]}$, т. е. является *нормальным кольцом* в смысле опр. 4.2 на стр. 61. Например, все аффинные многообразия с факториальными координатными алгебрами, в частности, все аффинные пространства 2 \mathbb{A}^n нормальны.

ЛЕММА 5.4

Всякий сюрьективный конечный морфизм $\varphi: X \to Y$ в нормальное многообразие Y открыт³ и сюрьективно отображает каждую неприводимую компоненту X на Y.

Доказательство. Вложение φ^* : $\Bbbk[Y] \hookrightarrow \Bbbk[X]$ позволяет рассматривать $\Bbbk[Y]$ как подалгебру в $\Bbbk[X]$. Открытость морфизма φ означает, что образ каждого главного открытого множества из X содержит вместе с каждой точкой какую-нибудь её главную открытую окрестность в Y, т. е. для любой функции $f \in \Bbbk[X]$ и каждой точки $p \in X$, в которой $f(p) \neq 0$, мы должны указать такую функцию $a \in \Bbbk[Y]$, что $\varphi(p) \in \mathcal{D}(a) \subset \varphi(\mathcal{D}(f))$. Для этого рассмотрим отображение

$$\psi = \varphi \times f : X \to Y \times \mathbb{A}^1, \quad p \mapsto (\varphi(p), f(p)).$$

Его гомоморфизм поднятия ψ^* : $\Bbbk[Y \times \mathbb{A}^1] = \Bbbk[Y][t] \to k[X]$ вычисляет полиномы от t с коэффициентами в $\Bbbk[Y]$ на элементе $f \in \Bbbk[X]$. По сл. 4.3 на стр. 61 минимальный многочлен μ_f элемента f над полем $\Bbbk(Y)$ лежит в $\Bbbk[Y]$. Поэтому гомоморфизм ψ^* представляет собою факторизацию по главному идеалу $(\mu_f) = \ker \psi^*$. Мы заключаем, что морфизм ψ конечен и сюрьективно отображает X на гиперповерхность, заданную в $Y \times \mathbb{A}^1$ уравнением

$$\mu_f(y;t) = t^m + a_1(y) t^{m-1} + \dots + a_m(y) = 0$$

¹Ср. с доказательством лем. 4.2 на стр. 58.

²Включая точку $\mathbb{A}^0 = \operatorname{Spec}_{\mathfrak{m}} \mathbb{k}$.

 $^{^3}$ Т. е. $\varphi(U)$ открыто в Y для любого открытого $U\subset X$.

а морфизм φ является композицией ψ и проекции $Y \times \mathbb{A}^1 \twoheadrightarrow Y$. Образ $\varphi(\mathcal{D}(f)) \subset Y$ состоит из всех таких точек $y \in Y$, что у многочлена $\mu_f(y;t) \in \Bbbk[t]$ есть ненулевой корень. Поскольку над точкой $\varphi(p) \in Y$ многочлен $\mu_f(\varphi(p);t) \in \Bbbk[t]$ имеет ненулевой корень t = f(p), хоть один из коэффициентов, пусть это будет a_i , отличен от нуля в точке $\varphi(p)$. Тогда над всеми точками $q \in \mathcal{D}(a_i) \subset Y$ коэффициент $a_i(q)$ тоже отличен от нуля, и у многочлена $\mu_f(q;t) \in \Bbbk[t]$ также есть ненулевой корень. Поэтому все такие точки q лежат в образе множества $\mathcal{D}(f)$, а значит, $\varphi(p) \in \mathcal{D}(a_i) \subset \varphi(\mathcal{D}(f))$, как и требовалось.

Что касается ограничения φ на неприводимые компоненты $X_i \subset X$, то для каждого i множество $U_i = X \setminus \bigcup_{\nu \neq i} X_{\nu} = X_i \setminus \bigcup_{\nu \neq i} (X_i \cap X_{\nu})$ открыто в X и плотно в X_i . Поскольку $\varphi(U_i)$ открыто, а Y неприводимо, $\varphi(U_i)$ плотно в Y, откуда $\varphi(X_i) = \overline{\varphi(U_i)} = Y$.

Ответы и указания к некоторым упражнениям

- Упр. 5.2. Если $a^n=0$ и $b^m=0$, то $(a+b)^{m+n-1}=0$ и $(ca)^n=0$ для любого $c\in A$.
- Упр. 5.3. Так как для простого идеала $\mathfrak{p}\subset A$ фактор кольцо A/\mathfrak{p} не имеет делителей нуля, гомоморфизм факторизации $A \twoheadrightarrow A\mathfrak{p}$ аннулирует все нильпотенты. Поэтому $\mathfrak{n}(A)\subset \bigcap \mathfrak{p}$. Если элемент $a\in A$ не является нильпотентом, его неотрицательные целые степени a^m образуют содержащее единицу и не содержащее нуля мультипликативно замкнутое подмножество в A. Локализация $A[a^{-1}]$ кольца A по этому мультипликативно замкнутому подмножеству 1 является ненулевым коммутативным кольцом с единицей. Полный прообраз любого простого идеала $\mathfrak{m}\subset A[a^{-1}]$ относительно канонического гомоморфизма $A\to A[a^{-1}]$ является не содержащим элемента a простым идеалом в кольце A.
- Упр. 5.7. Это геометрическая версия китайской теоремы об остатках. Отображение $\varphi: \Bbbk[X] \hookrightarrow \Bbbk[Y] \times \Bbbk[Z]$, переводящее $f \in \Bbbk[X]$ в пару $(f|_Y, f|_Z)$, инъективно, т. к. $Y \cup Z = X$. По теореме Гильберта нулях идеал $I(Y) + I(Z) \subset \Bbbk[X]$, задающий в X пересечение $Y \cap Z = \emptyset$, содержит единицу, т. е. существуют такие $s \in I(Y)$ и $t \in I(Z)$, что 1 = s + t. Тогда $\varphi(s) = \varphi(1 t) = (0, 1)$ и $\varphi(t) = \varphi(1 s) = (1, 0)$, а произвольная пара классов $(f \pmod{I(Y)}, g \pmod{I(Z)}) \in \Bbbk[Y] \times \Bbbk[Z]$ равна $\varphi(ft + gs)$, что означает сюрьективность φ .
- Упр. 5.10. Первые три равенства и включения $V(I) \cup V(J) \subset V(I \cap J) \subset V(IJ) \subset V(I) \cup V(J)$ очевидны из определений.
- Упр. 5.11. Если V(f)=X, то $f\in I(X)$, и значит, f=0 в $\Bbbk[X]=\Bbbk[x_1,\ldots,x_n]/I(X)$. Если $V(f)=\emptyset$, то множество нулей идеала $J\subset \Bbbk[x_1,\ldots,x_n]$, порождённого идеалом I(X) и многочленом f пусто, и из слабой теоремы о нулях вытекает, что $1\equiv sf\pmod{I(X)}$ для некоторого $s\in \Bbbk[x_1,\ldots,x_n]$, т. е. f обратим в $\Bbbk[X]$.
- Упр. 5.12. $Y = (Y \cap Z) \cup \overline{Y \setminus Z}$, где по условию $Y \cap Z \neq Y$.
- Упр. 5.13. Иначе $X = (X \setminus U) \cup V(f g)$.
- Упр. 5.16. Если $V = \cup W_i$ и $\xi_i \in V^*$ такие ненулевые линейные формы, что $W_i \subseteq \operatorname{Ann} \xi_i$, то ненулевой многочлен $f = \prod \xi_i$ тождественно зануляется на $\mathbb{A}(V)$.
- Упр. 5.17. Используйте покрытие $U = \bigcup \mathcal{D}(x_i)$ и предл. 5.6.
- Упр. 5.18. Каждое пересечение $I \cap I(X_i)$ является собственным векторным подпространством в I, поскольку включение $I \subset I(X_{\nu})$ означало бы, что $X_{\nu} \subset \bigcup_{i \neq j} (X_i \cap X_j)$, а это в силу непроводимости X_{ν} влечёт включение $X_{\nu} \subset X_i \cap X_j$ для некоторых $i \neq j$, что невозможно, т. к. ни одна из неприводимых компонент не содержится в другой. Если все неделители нуля в I лежат в собственном подространстве, то I оказывается объединением конечного числа собственных подпространств.
- Упр. 5.19. Элемент прямого произведения не делит нуль если и только если каждая из его компонент не делит нуль: $S_{K_1 \times ... \times K_k}^{-1} = S_{K_1}^{-1} \times S_{K_2}^{-1} \times \cdots \times S_{K_k}^{-1}$.
- Упр. 5.21. Пусть $A = \Bbbk[X]$, $B = \Bbbk[Y]$. Вложение $\varphi^* : B \hookrightarrow A$ задаёт на A структуру конечно порождённой B-алгебры, т. е. представляет A в виде $A \simeq B[x_1, \dots, x_m]/J$, что и утверждается.

 $^{^{1}}$ Т. е. кольцо дробей вида b/a^{m} с $b \in A, m \in \mathbb{Z}_{>0}$.