§6. Алгебраические многообразия

Всюду в этом параграфе мы продолжаем по умолчанию считать, что основное поле \Bbbk алгебра-ически замкнуто.

6.1. Определения и примеры. Алгебраическое многообразие определяется по той же схеме, что и гладкие или аналитические многообразия в дифференциальной геометрии, т. е. как топологическое пространство, каждая точка которого обладает открытой окрестностью, гомеоморфной некой стандартной «локальной модели», и любые две таких модели, происходящие из разных окрестностей, регулярным образом согласованы на пересечении этих окрестностей. В качестве локальных моделей в алгебраической геометрии допускаются *произвольные* аффинные алгебраические многообразия, а регулярная согласованность двух таких моделей на их пересечении означает, что переход от одной модели к другой задаётся рациональными функциями, регулярными на рассматриваемом пересечении. Точные определения таковы.

Алгебраической аффинной картой на топологическом пространстве X называется гомеоморфизм $\varphi_U: X_U \Rightarrow U$ какого-нибудь аффинного алгебраического многообразия X_U с топологией Зарисского на открытое подмножество $U \subset X$ с индуцированной из X топологией. Две алгебраических аффинных карты $\varphi_U: X_U \Rightarrow U$ и $\varphi_W: X_W \Rightarrow W$ на X называются совместимыми, если гомеоморфизм склейки между прообразами пересечения $U \cap W$ в X_U и X_W

$$\varphi_{WU} \stackrel{\text{\tiny def}}{=} \varphi_W^{-1} \circ \varphi_U \big|_{\varphi_U^{-1}(U \cap W)} : \varphi_U^{-1}(U \cap W) \xrightarrow{\sim} \varphi_W^{-1}(U \cap W)$$

регулярен в том смысле, что его гомоморфизм поднятия φ_{WU}^* : $f\mapsto f\circ \varphi_{WU}$ является изоморфизмом алгебры рациональных функций на X_U , регулярных на $\varphi_U^{-1}(U\cap W)$, с алгеброй рациональных функций на X_W , регулярных на $\varphi_W^{-1}(U\cap W)$, т. е.

$$\varphi_{WU}^* \colon \Bbbk \left[\varphi_W^{-1}(U \cap W) \right] \xrightarrow{} \Bbbk \left[\varphi_U^{-1}(U \cap W) \right] \; .$$

Открытое покрытие $X = \bigcup U_{\nu}$ попарно совместимыми алгебраическими картами называется алгебраическим атласом на X. Два алгебраических атласа называются эквивалентными, если их объединение также представляет собой алгебраический атлас. Топологическое пространство X, с зафиксированным на нём классом эквивалентных алгебраических атласов называется алгебраическим многообразием. Алгебраические многообразия, обладающие конечным атласом, называются многообразиями конечного типа.

Пример 6.1 (проективные пространства)

Проективное пространство $\mathbb{P}_n = \mathbb{P}\left(\mathbb{k}^{n+1}\right)$ с однородными координатами

$$x = (x_0 : x_1 : \dots : x_n)$$

обладает алгебраическим атласом из (n+1) стандартных аффинных карт

$$U_i = \{(x_0 : x_1 : \dots : x_n) \mid x_i \neq 0\}, \quad 0 \leq i \leq n.$$

Обозначим через $X_i \simeq \mathbb{A}^n$ аффинное пространство с координатами 2

$$t_i = (t_{i,0}, \ldots, t_{i,i-1}, t_{i,i+1}, \ldots, t_{i,n})$$
.

 $^{^1}$ В том числе не гладкие — такие, как крест $\mathrm{Spec}_\mathrm{m}\left(\Bbbk[x,y]/(xy)\right)$.

²первый индекс i является номером карты, а сами координаты $t_{i,\nu}$ в i-той карте нумеруются вторым индексом $\nu \neq i$, $0 \leqslant \nu \leqslant n$

Отображение $\varphi_i:t_i\mapsto (t_{i,0}:\ldots:t_{i,i-1}:1:t_{i,i+1}:\ldots:t_{i,n})$ задаёт биекцию $\varphi_i: X_i \cong U_i$, (6-1)

в которой прообразом пересечения $U_i \cap U_j$ является главное открытое множество $\mathcal{D}\left(t_{i,j}\right) \subset X_i$. Отображение склейки

$$\varphi_{ii} = \varphi_{i}^{-1} \varphi_{i} : X_{i} \supset \mathcal{D}\left(t_{i,i}\right) \xrightarrow{\sim} \mathcal{D}\left(t_{j,i}\right) \subset X_{i}$$

действует по формуле $t_i \mapsto t_{i,j}^{-1} \cdot t_j$ и устанавливает изоморфизм между аффинными алгебраическими многообразиями

$$\begin{split} & \mathcal{D}\left(t_{i,j}\right) = \operatorname{Spec}_{\mathbf{m}} \mathbb{k} \big[t_{i,j}^{-1},\, t_{i,0},\, \ldots\,,\, t_{i,i-1},\, t_{i,i+1},\, \ldots\,,\, t_{i,n} \big]\,, \\ & \mathcal{D}\left(t_{j,i}\right) = \operatorname{Spec}_{\mathbf{m}} \mathbb{k} \big[t_{j,i}^{-1},\, t_{j,0},\, \ldots\,,\, t_{j,j-1},\, t_{j,j+1},\, \ldots\,,\, t_{j,n} \big]\,. \end{split}$$

Упражнение 6.1. Убедитесь в этом.

Поэтому перенос топологии Зарисского с $X_i \simeq \mathbb{A}^n$ на U_i при помощи биекции (6-1) определяет согласованные индуцированные топологии на пересечениях $U_i \cap U_i$ и корректно наделяет \mathbb{P}_n топологией, в которой все отображения (6-1) являются гомеоморфизмами.

Пример 6.2 (грассманианы)

Точками грассманова многообразия Gr(k,m) являются k-мерные векторные подпространства в координатном векторном пространстве \mathbb{k}^m или, что то же самое, орбиты действия полной линейной группы $\mathrm{GL}_k(\mathbb{k})$ левыми умножениями на матрицах $x\in\mathrm{Mat}_{k\times m}(\mathbb{k})$ ранга k. При этом орбите матрицы x отвечает линейная оболочка её строк, а подпространству $W \subset \mathbb{k}^m$ — орбита матрицы, по строкам которой записаны координаты относительно стандартного базиса e_1,\dots,e_m в \Bbbk^m каких-нибудь k базисных векторов пространства W. Грассманиан $\operatorname{Gr}(k,m)$ покрывается $\binom{m}{\iota}$ стандартными аффинными картами U_I , занумерованными строго возрастающими наборами индексов $I=(i_1,\dots,i_k)$, где $1\leqslant i_1< i_2<\dots< i_k\leqslant m$. Если обозначить через $s_I(x)\subset x$ квадратную подматрицу, образованную столбцами с номерами из I, то карта

$$U_I \stackrel{\mathrm{def}}{=} \{x \in \mathrm{Mat}_{k \times m}(\mathbb{k}) \mid \, \det s_I(x) \neq 0 \}$$

состоит из всех k-мерных подпространств $W \subset \mathbb{R}^m$, которые изоморфно проектируются на kмерную координатную плоскость E_{i} , натянутую на стандартные базисные векторы e_{i} с $i \in I$, вдоль дополнительной (m-k)-мерной координатной плоскости E_7 , натянутой на остальные базисные векторы e_{ℓ} с $\ell \notin I$.

Упражнение 6.2. Убедитесь в этом.

Обозначим через $X_I \simeq \mathrm{Mat}_{k imes (m-k)}(\Bbbk) \simeq \mathbb{A}^{k(m-k)}$ аффинное пространство всех матриц из k строк ширины m-k, столбцы которых занумерованы индексами $\nu \in \overline{I}$ из дополнительного к I набора $\overline{I} = \{1, 2, \dots, m\} \setminus I$. Отображение

$$\varphi_I: X_I \xrightarrow{\sim} U_I,$$
 (6-2)

превращающее $k \times (m-k)$ -матрицу $t \in X_I$ в $k \times m$ -матрицу $\varphi_I(t)$ дописыванием к ней единичной $k \times k$ -матрицы в столбцы с номерами из I, биективно, и

$$\varphi_I^{-1}\left(U_I\cap U_J\right)=\mathcal{D}\Big(\det s_J\big(\varphi_I(t)\big)\Big)\subset X_I\,.$$

Упражнение 6.3. Убедитесь, что отображение склейки

$$\varphi_{JI} = \varphi_J^{-1} \varphi_I : X_I \supset \mathcal{D} \Big(\det s_J \Big(\varphi_I(t) \Big) \Big) \to \mathcal{D} \Big(\det s_I \Big(\varphi_J(t) \Big) \Big) \subset X_J$$

действует по формуле $t\mapsto s_{\overline{J}}\Big(s_J^{-1}\Big(\varphi_I(t)\Big)\cdot\varphi_I(t)\Big)$ и является изоморфизмом аффинных алгебраических многообразий.

Отсюда мы как и в предыдущем примере прим. 6.1 мы заключаем, что грассманиан Gr(k,n) является алгебраическим многообразием конечного типа. При k=1, m=n+1 эта конструкция превращается в конструкцию из прим. 6.1.

Пример 6.3 (прямое произведение многообразий)

Структура алгебраического многообразия на прямом произведении алгебраических многообразий X и Y задаётся атласом, состоящим из всех попарных произведений $U \times W$ аффинных карт $U \subset X$ и $W \subset X$ на X, Y.

6.1.1. Структурный пучок и регулярные морфизмы. Заданная на открытом подмножестве W алгебраического многообразия X функция $f:U\to \mathbb{R}$ называется pezyлярной в точке $x\in U$, если существуют покрывающая x аффинная карта $\varphi_W:X_W\cong W$ и такая определённая в точке $\varphi_W^{-1}(x)\in X_W$ рациональная функция $\tilde{f}\in \mathbb{R}(X_W)$, что $\varphi_W^*f(z)=\tilde{f}(z)$ для всех $z\in \varphi_W^{-1}(U\cap W)\cap \mathrm{Dom}\, \tilde{f}$. Регулярные в каждой точке открытого подмножества $U\subset X$ функции $U\to \mathbb{R}$ образуют коммутативное кольцо, которое обозначается $\mathcal{O}_X(U)$ и называется кольцом локальных регулярных функций на U. Сопоставление $U\mapsto \mathcal{O}_X(U)$ задаёт пучок \mathbb{R} -алгебр на топологическом пространстве X. Он называется cmpykmyphum пучком алгебраического многообразия X. Отображение алгебраических многообразий $\varphi:X\to Y$ называется pezyляphum, если для каждого открытого подмножества $U\subset Y$ гомоморфизм подъёма $\varphi^*:\mathbb{R}^U\to\mathbb{R}^{\varphi^{-1}U}$ переводит локальные регулярные функции на U в локальные регулярные функции на $\varphi^{-1}(U)$, т. е. является гомоморфизмом $\varphi^*:\mathcal{O}_Y(U)\to\mathcal{O}_X(\varphi^{-1}(U))$.

Упражнение 6.4. Убедитесь, что элементы алгебры $\mathcal{O}_X(X)$ — это в точности регулярные морфизмы $X \to \mathbb{A}^1$, и для каждой аффинной карты $\varphi_U: X_U \to U$ гомоморфизм подъёма

$$\varphi_{II}^*: \mathcal{O}_{\mathbf{X}}(U) \cong \mathbb{k}[X_{II}]$$

отождествляет кольцо локальных регулярных на U функций с координатной алгеброй аффинного многообразия X_U .

6.1.2. Замкнутые подмногообразия. Всякое замкнутое подмножество Z алгебраического многообразия X имеет естественную структуру алгебраического многообразия. А именно, для каждой аффинной карты $\varphi_U: X_U \xrightarrow{} U$ прообраз пересечения $\varphi_U^{-1}(Z \cap U)$ является замкнутым подмножеством в X_U , т. е. аффинным алгебраическим многообразием с координатным кольцом

$$\mathbb{k}[X_{II}]/\varphi_{II}^*I(Z\cap U)\simeq \mathcal{O}_X(U)/I(Z\cap U),$$

где идеал $I(Z\cap U)\subset \mathcal{O}_X(U)$ состоит из всех локальных регулярных на U функций 1 , тождественно зануляющихся на $Z\cap U$. Аффинные карты $\varphi_U^{-1}(Z\cap U) \cong Z\cap U\subset Z$ образуют алгебраический атлас на Z. Сопоставление $U\mapsto I(Z\cap U)$ является подпучком идеалов в структурном пучке \Bbbk -

¹Ср. с упр. 6.4.

алгебр \mathcal{O}_X . Он называется *пучком идеалов* замкнутого подмногообразия $Z\subset X$ и обозначается $\mathcal{I}_Z\subset\mathcal{O}_X$. В этой ситуации пишут $Z=V\left(\mathcal{I}_Z\right)$.

Регулярный морфизм $\varphi: X \to Y$ называется замкнутым вложением, если $\varphi(X)$ является замкнутым подмногообразием в Y и φ задаёт изоморфизм между X и $\varphi(X)$. В частности, алгебраическое многообразие X тогда и только тогда допускает замкнутое вложение в аффинное пространство, когда оно является аффинным алгебраическим многообразием в смысле n° 4.4 на стр. 64, т. е. является множеством нулей системы полиномиальных уравнений в аффинном пространстве.

Пример 6.4 (семейства подмногообразий)

Каждый регулярный морфизм $\pi: X \to Y$ может восприниматься как семейство замкнутых подмногообразий $X_y = \pi^{-1}(y) \subset X$, параметризованное точками $y \in Y$. Если $\pi: X \to Y$, $\pi': X' \to Y$ — два семейства с одной и той же базой, то регулярный морфизм $\varphi: X \to X'$ называется морфизмом семейства¹, если он переводит X_y в X_y' для каждого $y \in Y$, т. е. если $\pi = \pi' \circ \varphi$. Семейство $\pi: X \to Y$ называется постоянным или тривиальным, если оно изоморфно над Y прямому произведению $\pi_Y: X_0 \times Y \to Y$ для некоторого многообразия X_0 .

6.1.3. Отделимость. Стандартный атлас на \mathbb{P}_1 состоит из двух карт $\varphi_i \colon \mathbb{A}^1 \cong U_i \subset \mathbb{P}_1$, где i=0,1. Их пересечение видно внутри каждой из них как дополнение к началу координат:

$$\varphi_0^{-1}(U_0\cap U_1) = \varphi_1^{-1}(U_0\cap U_1) = \mathbb{A}^1 \smallsetminus \{0\} = \{t\in \mathbb{A}^1 \mid t\neq 0\}\,.$$

Карты склеены по этому пересечению посредством отображения склейки

$$\varphi_{01}: t \mapsto 1/t. \tag{6-3}$$

Если вместо этого отображения воспользоваться тождественным отображением

$$\widetilde{\varphi}_{01}: t \mapsto t,$$
 (6-4)

получится другое многообразие — прямая с «раздвоенной» точкой: ————. Такого рода патология называется *неотделимостью*. Причина её возникновения в том, что правило склейки (6-4) не замкнуто и допускает продолжение с $\mathbb{A}^1 \setminus \{0\}$ на всё $\mathbb{A}^1 \setminus \{0\}$.

В общем случае отделимость формализуется так. Включения $U_0 \hookrightarrow U_0 \cap U_1 \hookrightarrow U_1$ задают вложение $U_0 \cap U_1 \hookrightarrow U_0 \times U_1$, образ которого — пересечение аффинной карты $U_0 \times U_1 \subset X \times X$ с диагональю $\Delta_X = \{(x,x) \in X \times X \mid x \in X\}$. В рассмотренном выше примере правило (6-3) задаёт вложение ($\mathbb{A}^1 \setminus \mathcal{O}$) $\hookrightarrow \mathbb{A}^1 \times \mathbb{A}^1 = \mathbb{A}^2$ по формуле $t \mapsto (t\,,\,t^{-1})$ и отождествляет пересечение $U_0 \cap U_1 \simeq (U_0 \times U_1) \cap \Delta_{\mathbb{P}_1}$ с замкнутым подмножеством $V(xy-1) \subset \mathbb{A}^2$, а правило (6-4) задаёт вложение ($\mathbb{A}^1 \setminus \mathcal{O}$) $\hookrightarrow \mathbb{A}^2$ по формуле $t \mapsto (t\,,t)$, образ которого не замкнут в \mathbb{A}^2 и представляет собою прямую $V(x-y) \subset \mathbb{A}^2$ без начала координат. Алгебраическое многообразие X называется отделимым, если для любой пары аффинных карт U,W на X образ канонического вложения $U \cap W \hookrightarrow U \times W$ замкнут, или, что то же самое, если диагональ $\Delta_X \subset X \times X$ замкнута в $X \times X$.

Например, \mathbb{A}^n и \mathbb{P}_n отделимы, поскольку диагонали в $\mathbb{A}^n \times \mathbb{A}^n$ и в $\mathbb{P}_n \times \mathbb{P}_n$ задаются, соответственно, уравнениями $x_i = y_i$ и $x_i y_j = x_j y_i$. Замкнутое подмногообразие $X \subset Y$ отделимого многообразия Y тоже отделимо, ибо диагональ в $X \times X$ является прообразом диагонали в $Y \times Y$ при вложении $X \times X \hookrightarrow Y \times Y$. В частности, всякое аффинное или проективное многообразие отделимо и имеет конечный тип.

 $^{^{1}}$ Или морфизмом над Y.

Пример 6.5 (график морфизма)

Пусть $\varphi: X \to Y$ — регулярный морфизм. Прообраз диагонали $\Delta \subset Y \times Y$ при индуцированном морфизме $\varphi \times \operatorname{Id}_Y: X \times Y \to Y \times Y$, $(x,y) \mapsto (\varphi(x),y)$ называется *графиком* морфизма φ и обозначается $\Gamma_\varphi = \{(x,f(x)) \in X \times Y \mid x \in X\}$. Если Y отделимо, то график любого морфизма $X \to Y$ замкнут в $X \times Y$. Например, если X и Y аффинны, то график регулярного морфизма φ задаётся в $X \times Y = \operatorname{Spec}_{\mathrm{m}}(\mathbb{k}[X] \otimes \mathbb{k}[Y])$ системой уравнений $1 \otimes f = \varphi^*(f) \otimes 1$, где f пробегает $\mathbb{k}[Y]$, а $\varphi^*: \mathbb{k}[Y] \to \mathbb{k}[X]$ — гомоморфизм подъёма.

6.1.4. Рациональные отображения. Регулярный морфизм $\varphi: U \to Y$, определённый на некотором открытом плотном подмножестве U алгебраического многообразия X, называется рациональным отображением из X в Y. Рациональное отображение $\psi: W \to Y$, заданное на открытом множестве $W \supset U$ и совпадающее с φ на U, называется продолжением рационального отображения $\varphi: U \to Y$. Объединение всех открытых множеств $W \supset U$, на которые продолжается φ , называется областью определения рационального отображения $\varphi: X \to Y$.

Упражнение 6.5 (квадратичная инволюция Кремоны). Покажите, что правило

$$(x_0: x_1: x_2) \mapsto (x_0^{-1}: x_1^{-1}: x_2^{-1})$$

задаёт рациональное отображение $\varkappa: \mathbb{P}_2 \dashrightarrow \mathbb{P}_2$, определённое всюду, кроме трёх точек, найдите эти точки и опишите образ \varkappa .

Рациональные отображения $\varphi: X \dashrightarrow Y$ не являются отображениями «из X» в теоретико-множественном смысле, ибо определены не везде. В частности, композиция рациональных отображений не определена, когда образ первого отображения оказывается целиком вне области определения второго. Тем не менее, рациональные отображения часто возникают и играют важную роль в алгебраической геометрии. Например, естественная проекция $\mathbb{A}(V) \dashrightarrow \mathbb{P}(V)$, переводящая точку пространства $\mathbb{A}(V)$, представленную вектором $v \in V$, в точку пространства $\mathbb{P}(V)$, представленную тем же самым вектором v, является сюрьективным рациональным отображением определённым всюду, кроме нуля.

6.2. Проективные многообразия. Алгебраическое многообразие X называется *проективным*, если оно допускает замкнутое вложение в проективное пространство, т. е. изоморфно замкнутому подмногообразию в \mathbb{P}_n для некоторого $n \in \mathbb{N}$.

Упражнение 6.6. Покажите, что множество решений системы однородных полиномиальных уравнений на однородные координаты пространства \mathbb{P}_n является замкнутым подмногообразием в \mathbb{P}_n .

В частности, проективными алгебраическими многообразиями являются грассманианы Gr(k,V), задаваемые квадратичными соотношениями Плюккера в $\mathbb{P}(\Lambda^k V)$.

Упражнение 6.7. Покажите, что прямое произведение проективных многообразий проективно, и выведите из этого, что подмножество в $\mathbb{P}_{n_1} \times \ldots \times \mathbb{P}_{n_m}$, задаваемое набором однородных по координатам каждого сомножителя полиномиальных уравнений на однородные координаты, является проективными алгебраическим многообразием.

Пример 6.6 (раздутие точки в \mathbb{P}_n)

Фиксируем точку $p\in\mathbb{P}_n$ и обозначим через $E\simeq\mathbb{P}_{n-1}$ пространство всех проходящих через p прямых в \mathbb{P}_n . График инцидентности $\mathcal{B}_p=\{(q,\ell)\in\mathbb{P}_n\times E\mid q\in\ell\}$ называется раздутием точки $p\in\mathbb{P}_n$. Проекция $\sigma_p\colon\mathcal{B}_p\twoheadrightarrow\mathbb{P}_n$ биективна всюду над $\mathbb{P}_n\smallsetminus\{p\}$, но прообразом самой

точки p является весь слой $\sigma_p^{-1}(p)=\{p\}\times E\subset \mathbb{P}_n\times E$. Он называется *исключительным дивизором* 1 . Вторая проекция $\varrho_E:\mathcal{B}_p\twoheadrightarrow E$ реализует \mathcal{B}_p как линейное расслоение над E, слой которого над точкой $q\in E$ — это прямая $(pq)\subset \mathbb{P}_n$. Это расслоение называется *тавтологическим* линейным расслоением над E. Из упр. 6.7 вытекает, что \mathcal{B}_p является проективным многообразием: выберем однородные координаты на \mathbb{P}_n так, чтобы $p=(1:0:\ldots:0)$, и отождествим E с гиперплоскостью $V(x_0)=\{(0:\lambda_1:\ldots:\lambda_n)\}\subset \mathbb{P}_n$, сопоставляя прямой $\ell\ni p$ точку $\lambda=\ell\cap V(x_0)$. Тогда коллинеарность точек p,q,λ запишется системой однородных квадратичных уравнений

$$\operatorname{rk} \begin{pmatrix} 1 & 0 & \cdots & 0 \\ q_0 & q_1 & \cdots & q_n \\ 0 & \lambda_1 & \cdots & \lambda_n \end{pmatrix} = 2 \ , \ \text{или} \ q_i t_j = q_j t_i \ , \ \text{где} \ 1 \leqslant i < j \leqslant n \ ,$$

на $(q,\lambda)\in\mathbb{P}_n imes E$. Иначе раздутие точки p можно представлять себе как результат приклеивания к проделанному в точке p на \mathbb{P}_n точечному отверстию проективного пространства E таким образом, что движение к точке p вдоль проходящей через p прямой $\ell\subset\mathbb{P}_n$ приводит в точку $\ell\in E$.

Лемма 6.1

Каждое замкнутое подмногообразие $X\subset \mathbb{P}_n$ является множеством решений конечной системы полиномиальных уравнений на однородные координаты пространства \mathbb{P}_n .

Доказательство. В обозначениях из прим. 6.1 на стр. 84 пересечение $X\cap U_i$ со стандартной открытой картой $U_i\subset\mathbb{P}_n$ является множеством нулей некоторого идеала I_i в кольце многочленов от n переменных $t_{i,v}=x_v/x_i$, где $0\leqslant v\leqslant n$ и $v\neq i$. Каждый такой многочлен f можно переписать как $\overline{f}(x_0,x_1,\ldots,x_n)/x_i^d$, где $d=\deg f$, а $\overline{f}\in \Bbbk[x_0,x_1,\ldots,x_n]$ — такой однородный многочлен степени d, что $\overline{f}\left(t_{i,0},\ldots,t_{i,i-1},1,t_{i,i+1},\ldots,t_{i,n}\right)=f\left(t_{i,0},\ldots,t_{i,i-1},t_{i,i+1},\ldots,t_{i,n}\right)$. Для каждого i зафиксируем какое-нибудь конечное множество A_i образующих $f_{i,\alpha}$, где $\alpha\in A_i$, идеала I_i и построим по ним однородные многочлены $\overline{f}_{i,\alpha}\in \Bbbk[x_0,x_1,\ldots,x_n]$. Покажем, что многообразие X совпадает с множеством Z решений системы однородных полиномиальных уравнений

$$x_i\overline{f}_{i,\alpha}(x_0,x_1,\dots,x_n)=0\,,\quad\text{где}\quad 0\leqslant i\leqslant n\,,\;\alpha\in A_i\,.$$

Достаточно для каждого i установить равенство $Z\cap U_i=X\cap U_i$. Поскольку пересечение множества нулей однородного многочлена $x_i\cdot \overline{f}(x_0,x_1,\dots,x_n)$ с картой $U_i\subset \mathbb{P}_n$ задаётся в аффинных координатах t_i на U_i уравнением

$$\overline{f}\left(t_{i,0},\ldots,t_{i,i-1},1,t_{i,i+1},\ldots,t_{i,n}\right)=f\left(t_{i,0},\ldots,t_{i,i-1},t_{i,i+1},\ldots,t_{i,n}\right)=0\,,$$

пересечение карты U_i с множеством общих нулей однородных многочленов $x_i\overline{f}_{i,\alpha}$, индекс i которых равен номеру карты, совпадает с $X\cap U_i$. Тем самым, $Z\cap U_i\subset X\cap U_i$, и для доказательства равенства остаётся убедиться, что каждый однородный многочлен $x_j\overline{f}_{j,\beta}$ с $j\neq i$ тоже зануляется на $X\cap U_i$. Но множитель x_j зануляется на гиперплоскости $V(t_{i,j})\subset U_i$, а множитель $\overline{f}_{j,\beta}$ зануляется на дополнительном к этой гиперплоскости главном открытом множестве $\mathcal{D}(t_{i,j})=X\cap U_i\cap U_j\subset X\cap U_i$, т. к. последнее содержится в пересечении $X\cap U_j$, на котором $\overline{f}_{j,\beta}$ равен нулю.

 $^{^{1}}$ Вообще, дивизорами (Bейля) на алгебраическом многообразии называются элементы свободной абелевой группы, порождённой неприводимыми замкнутыми подмногообразиями коразмерности 1 (размерности алгебраических многообразий обсуждаются в n° 6.3 ниже).

Пример 6.7 (иллюстрация доказательства лем. 6.1)

Проективное многообразие $X=V(x_0x_1x_2)\subset \mathbb{P}_2$ представляет собою объединение трёх координатных прямых и локально, в стандартных картах $U_0,\,U_1,\,U_2,\,$ задаётся, соответственно, уравнениями $t_{0,1}t_{0,2}=0,\,t_{1,0}t_{1,2}=0,\,t_{2,0}t_{2,1}=0,\,$ которым в предыдущем доказательстве отвечают однородные многочлены $\overline{f}_{0,1}=x_1x_2,\,\overline{f}_{1,1}=x_0x_2,\,\overline{f}_{2,1}=x_0x_1,\,$ а задающее X глобальное однородное уравнение $x_0x_1x_2=0$ имеет в левой части многочлен

$$x_0 x_1 x_2 = x_0 \cdot \overline{f}_{0,1} = x_1 \cdot \overline{f}_{1,1} = x_2 \cdot \overline{f}_{2,1}$$
.

6.2.1. Замкнутость проективных морфизмов. Проективные многообразия занимают в алгебраической геометрии примерно такое же место, как компактные многообразия в дифференциальной геометрии.

Лемма 6.2

Проекция $\pi: \mathbb{P}_m \times \mathbb{A}^n \twoheadrightarrow \mathbb{A}^n$ замкнутые. переводит замкнутые множества в замкнутые.

Доказательство. Зафиксируем однородные координаты x на \mathbb{P}_m и аффинные координаты t в \mathbb{A}^n . Замкнутое подмножество $X \subset \mathbb{P}_m \times \mathbb{A}^n$ задаётся системой однородных по x полиномиальных уравнений $f_v(x,t)=0$. Его образ $\pi(X)\subset \mathbb{A}^n$ состоит из всех точек p, при подстановке которых в эти уравнения вместо t получается обладающая ненулевым решением система однородных уравнений $f_v(x,p)=0$ на x. Это означает, что полиномиально зависящие от p коэффициенты форм $f_v(x,p)$ удовлетворяют системе полиномиальных результантных уравнений p. Таким образом, p0 задаётся полиномиальными уравнениями.

Следствие 6.1

Если многообразие X проективно, то для любого многообразия Y проекция $\pi: X \times Y \twoheadrightarrow Y$ замкнута.

Доказательство. Утверждение можно доказывать отдельно для каждой аффинной карты многообразия Y, т. е. мы можем считать Y аффинным. Тогда $X \times Y$ является замкнутым подмногообразием в $\mathbb{P}_m \times \mathbb{A}^n$, а проекция π — ограничением замкнутой проекции $\mathbb{P}_m \times \mathbb{A}^n \twoheadrightarrow \mathbb{A}^n$ на замкнутое подмножество $X \times Y \subset \mathbb{P}_m \times \mathbb{A}^n$.

Следствие 6.2

Если X проективно, а Y отделимо, то любой морфизм $\varphi: X \to Y$ замкнут.

Доказательство. Если Y отделимо, график $\Gamma_{\varphi} \stackrel{\text{def}}{=} \{(x, \varphi(x)) \in X \times Y \mid x \in X\}$ отображения φ замкнут в $X \times Y$, ибо является прообразом диагонали $\Delta_Y \subset Y \times Y$ при отображении

$$\varphi \times \mathrm{Id}_{Y} : X \times Y \to Y \times Y$$
.

Образ $\varphi(Z)\subset Y$ любого подмножества $Z\subset X$ совпадает с образом пересечения $\Gamma_{\varphi}\cap(Z\times Y)\subset X\times Y$ при проекции $X\times Y\twoheadrightarrow Y$. Если Z замкнуто в X, произведение $Z\times Y$ замкнуто в $X\times Y$. Если X проективно, проекция $X\times Y\twoheadrightarrow Y$ замкнута и переводит замкнутое множество $\Gamma_{\varphi}\cap(Z\times Y)\subset X\times Y$ в замкнутое множество $\varphi(Z)\subset Y$.

¹См. n° 4.5 на стр. 66.

Следствие 6.3

Любое регулярное отображение из связного проективного многообразия X в аффинное многообразие постоянно, т. е. отображает всё X в одну точку. В частности, $\mathcal{O}_X(X) = \mathbbm{k}$.

Доказательство. Беря композицию такого отображения с координатными функциями на аффинном многообразии, мы заключаем, что достаточно доказать утверждение для любого регулярного морфизма $\varphi: X \to \mathbb{A}^1$. Композиция φ с последующим вложением $\mathbb{A}^1 \hookrightarrow \mathbb{P}_1$ в качестве стандартной аффинной карты является регулярным не сюрьективным отображением $X \to \mathbb{P}_1$. Так как его образ замкнут и связен, он состоит из одной точки.

6.2.2. Конечные проекции. Регулярное отображение алгебраических многообразий

$$\varphi: X \to Y$$

называется конечным, если прообраз $W=\varphi^{-1}(U)$ любой аффинной карты $U\subset Y$ является аффинной картой на X, и ограничение $\varphi_W:W\to U$ является конечным морфизмом аффинных многообразий в смысле n° 5.4.3 на стр. 81. Из лем. 5.3 на стр. 81 следует, что каждый конечный морфизм замкнут, и его ограничение на любое замкнутое подмногообразие $Z\subset X$ также является конечным морфизмом. Более того, если X неприводимо, то собственные замкнутые подмножества многообразия X переводятся конечным морфизмом в собственные замкнутые подмножества в Y.

Упражнение 6.8. Проверьте, что композиция конечных морфизмов и ограничение конечного морфизма на замкнутое подмногообразие конечны.

Предложение 6.1

Проекция проективной гиперповерхности $V(f) \subsetneq \mathbb{P}_n$, где $f \neq \text{const}$, из любой точки $p \notin V(f)$ на любую гиперплоскость $H \not\ni p$ является конечным сюрьективным морфизмом.

Доказательство. Выберем на \mathbb{P}_n однородные координаты $(x_0:x_1:\dots:x_n)$ так, чтобы $H=V(x_0)$, а $p=(1:0:\dots:0)$. Тогда гиперплоскость H состоит из точек $(0:x_1:\dots:x_n)$, и можно считать, что аффинная карта $U\subset H$ состоит из точек $u=(0:u_1:\dots:u_{n-1}:1)$. Поскольку $p\not\in V(f)$, прообраз $Y=\pi_p^{-1}(U)\subset V(f)$ карты U высекается из V(f) проколотым конусом $C=\bigcup_{u\in U} \left((pu)\smallsetminus\{p\}\right)$ — объединением аффинных прямых, получающихся выкидыванием точки p из проективных прямых $(pu)\subset \mathbb{P}_n$, где $u\in U$. Конус C является аффинным алгебраическим многообразием, изоморфным аффинному пространству $\mathbb{A}^n=U\times\mathbb{A}^1$. Изоморфизм переводит точку $(u,t)\in U\times\mathbb{A}_1$ в точку $x=tp+u\in\mathbb{P}_n$. Пересечение $y=C\cap V(f)$ задаётся в координатах u,t0 на \mathbb{A}^n уравнением

$$g(t,u) = f(tp+u) = \alpha_0(u) t^m + \alpha_1(u) t^{m-1} + \dots + \alpha_m(u) = 0,$$
 (6-5)

которое получается подстановкой x=pt+u в уравнение гиперповерхности. Мы заключаем, что прообраз $Y\subset V(f)$ карты U является аффинной алгебраической гиперповерхностью с координатной алгеброй $\Bbbk[Y]=\Bbbk[u_1,\ldots,u_{n-1},t]/(g)$ и $\pi_p|_U^*: \Bbbk[U]\hookrightarrow \Bbbk[Y]$ тавтологически вкладывает $\Bbbk[u_1,\ldots,u_{n-1}]$ в $\Bbbk[u_1,\ldots,u_{n-1},t]$. Чтобы показать, что алгебра $\Bbbk[Y]$ цела над $\Bbbk[U]$, достаточно убедиться, что порождающий $\Bbbk[Y]$ над $\Bbbk[U]$ элемент t цел над $\Bbbk[U]$. Для этого достаточно проверить, что старший коэффициент $\alpha_0\in \Bbbk[U]$ уравнения (6-5) является ненулевой константой из поля \Bbbk — тогда уравнение (6-5) и будет уравнением целой зависимости. Пусть это не так.

Тогда $a_0(w)=0$ для некоторой точки $w\in U$, и пересечение гиперповерхности $X=V(f)$ с про-
ективной прямой (pw) задаётся в однородных координатах $(\vartheta_0 : \vartheta_1)$ относительно базиса p, w
этой прямой уравнением $f(\vartheta_0 p + \vartheta_1 w) = \alpha_0(w) \vartheta_0^m + \alpha_1(w) t_0^{m-1} \vartheta_1 + \ldots + \alpha_m(u) \vartheta_1^m = 0$, которое
получается из уравнения (6-5) подстановкой $t=\vartheta_0/\vartheta_1$ и имеет нулевой коэффициент при ϑ_0^m
т. е. делится на ϑ_1 . Поэтому $p=(1:\ 0)\in V(f)$, что противоречит условию теоремы. Тем самым,
$\pi_p _U:Y o U$ — это конечный доминантный (и, стало быть, сюрьективный) морфизм.

Следствие 6.4

Проекция любого проективного многообразия $X \subsetneq \mathbb{P}_n$ из любой точки $p \notin X$ на любую гиперплоскость $H \not\ni p$ является конечным морфизмом.

Доказательство. Поскольку ограничение конечного морфизма на замкнутое подмногообразие конечно, достаточно применить предл. 6.1 к гиперповерхности $\mathbb{P}_n \supsetneq V(f) \supseteq X$, где f — одно из задающих X однородных уравнений. \square

Следствие 6.5

Каждое проективное многообразие допускает конечный сюрьективный морфизм на проективное пространство. \Box

Следствие 6.6

Каждая аффинная гиперповерхность $V(f) \subsetneq \mathbb{A}^n$, где $f \neq \text{const}$, допускает конечную сюрьективную параллельную проекцию на аффинную гиперплоскость $L \subset \mathbb{A}^n$.

Доказательство. Вложим $\mathbb{A}^n = \mathbb{A}(V)$ в $\mathbb{P}_n = \mathbb{P}(\mathbb{k}e_0 \oplus V)$ в качестве стандартной карты U_0 и обозначим через $H_\infty = \mathbb{P}(V) = \mathbb{P}_n \setminus U_0$ бесконечно удалённую гиперплоскость этой карты, а через $V(\overline{f}) \subset \mathbb{P}_n$ — проективное замыкание \mathbb{P}^1 гиперповерхности \mathbb{P}^1 гиперповерх

Упражнение 6.9. Убедитесь, что если $\varnothing\neq V(f)\neq \mathbb{A}^n$, то $\varnothing\neq V(\overline{f})\neq \mathbb{P}_n$ и $V(\overline{f})\cap H_\infty\neq H_\infty$. По предл. 6.1 проекция проективной гиперповерхности $V(\overline{f})$ из любой точки $p\in H_\infty\setminus V(\overline{f})$ на любую гиперплоскость $H\not\ni p$ конечна и сюрьективна. В аффинной карте U_0 она выглядит как параллельная проекция аффинной гиперповерхности $V(f)=V(\overline{f})\setminus H_\infty$ в направлении $p\in V$ на аффинную гиперплоскость $L=U_0\cap H=H\setminus H_\infty$.

Следствие 6.7

Каждое аффинное многообразие X допускает конечный сюрьективный морфизм на аффинное пространство. \Box

6.3. Размерность. Размерностью алгебраического многообразия X в точке $x \in X$ называется максимальное такое $n \in \mathbb{N}$, что существует цепочка замкнутых подмногообразий

$$\{x\} = X_0 \subsetneq X_1 \subsetneq X_2 \subsetneq \dots \subsetneq X_{n-1} \subsetneq X_n \subseteq X, \tag{6-6}$$

в которой все X_i неприводимы и все включения кроме самого правого строгие. Размерность многообразия X в точке $x\in X$ обозначается $\dim_{\mathcal{X}} X$. Если X неприводимо, то в любой максимальной цепочке вида (6-6) выполняется равенство $X_n=X$. Если многообразие X приводимо, то $\dim_{\mathcal{X}} X$ равна максимальной из размерностей проходящих через точку x неприводимых компонент многообразия X.

¹См. n° 1.4.3 на стр. 13.

6.3. Размерность 93

Упражнение 6.10. Покажите, что $\dim_x X = \dim_x U$ для любой аффинной окрестности U точки x.

Предложение 6.2

Для любого конечного морфизма $\varphi: X \to Y$ неприводимых алгебраических многообразий в каждой точке $x \in X$ выполняется неравенство $\dim_{\chi} X \leqslant \dim_{\varphi(\chi)} Y$, и равенство в нём равносильно эпиморфности φ .

Доказательство. В силу упр. 6.10 можно считать X и Y аффинными. Каждая цепочка (6-6) в X по лем. 5.3 на стр. 81 порождает цепочку строго вложенных друг в друга замкнутых неприводимых подмногообразий $\varphi(X_i)$ в Y. Отсюда вытекает требуемое неравенство, и при $\varphi(X) \neq Y$ оно строгое. Если $\varphi(X) = Y$, то для любой цепочки $Y_0 = \{\varphi(x)\} \subsetneq Y_1 \subsetneq \cdots \subsetneq Y_m = Y$ при каждом i многообразие $\varphi^{-1}(Y_i) \subset X$ имеет неприводимую компоненту X_i сюрьективно отображающуюся на Y_i , и из них составляется цепочка вида (6-6) в Y_i . Это даёт противоположное неравенство $\dim_x X \geqslant \dim_{\varphi(x)} Y_i$.

Следствие 6.8

Размерность аффинного пространства \mathbb{A}^n в любой точке $x \in \mathbb{A}^n$ равна n.

Доказательство. Неравенство $\dim_x \mathbb{A}^n \geqslant n$ выполняется, поскольку в \mathbb{A}^n имеется цепочка (6-6), образованная проходящими через x аффинными подпространствами. Противоположное неравенство доказывается по индукции. Очевидно, что $\dim \mathbb{A}^0 = 0$. Пусть $\dim \mathbb{A}^k = k$ для всех k < n. Поскольку последний отличный от \mathbb{A}_n элемент X_{m-1} в любой цепочке подмногообразий

$$X_0 \subsetneq X_1 \subsetneq \cdots \subsetneq X_{m-1} \subsetneq X_m = \mathbb{A}^n$$

допускает конечную сюрьекцию на аффинное подпространство $\mathbb{A}^k \subset \mathbb{A}^n$ с k < n, из предл. 6.2 вытекает неравенство $\dim X_{m-1} < n$, откуда $m \leqslant n$.

Следствие 6.9

Пусть X — неприводимое аффинное многообразие, и $\varphi: X \to \mathbb{A}^m$ — конечный сюрьективный морфизм. Тогда $\dim_x X = m$ в каждой точке $x \in X$, и число m не зависит от выбора φ .

Следствие 6.10

Размерность аффинного неприводимого многообразия X равна степени трансцендентности 2 алгебры $\Bbbk[X]$ над \Bbbk .

Доказательство. Гомоморфизм подъёма конечной сюрьекции $\pi: X \twoheadrightarrow \mathbb{A}^m$ задаёт целое расширение $\pi^*: \mathbb{k}[u_1,\dots,u_m] \hookrightarrow \mathbb{k}[X]$. Следовательно алгебраически независимые функции π^*u_i образуют базис трансцендентности алгебры $\mathbb{k}[X]$ над \mathbb{k} .

Упражнение 6.11. Докажите, что $\dim(X \times Y) = \dim X + \dim Y$ для любых неприводимых многообразий X, Y.

 $^{^{1}}$ Иначе Y_{i} окажется объединением конечного числа собственных замкнутых подмножеств — образов неприводимых компонент прообраза $\varphi^{-1}(Y_{i}) \subset X$.

²См. опр. 4.3 на стр. 64.

6.3.1. Размерности подмногообразий. Если функция $f \in \mathbb{K}[X]$ тождественно зануляется на одной из проходящих через точку $x \in X$ неприводимых компонент размерности $\dim_x X$ многообразия X, гиперповерхность $V(f) \subset X$ имеет в точке x ту же размерность, что и объемлющее многообразие X. Такое возможно, только если f делит нуль в $\mathbb{k}[X]$.

Предложение 6.3

Для любой ненулевой регулярной функции $f \in \mathbb{k}[X]$ на неприводимом аффинном многообразии X в каждой точке $p \in V(f)$ выполняется неравенство $\dim_p V(f) = \dim_p (X) - 1$.

Доказательство. Случай $X=\mathbb{A}^n$ уже был разобран в сл. 6.6. Общий случай сводится к нему при помощи рассуждения, аналогичного использованному в лем. 5.4 на стр. 82. Рассматривая неприводимые компоненты гиперповерхности V(f) по отдельности, мы можем считать $f\in \mathbb{k}[X]$ неприводимым. Зафиксируем конечную сюрьекцию $\pi:X \twoheadrightarrow \mathbb{A}^m$ и рассмотрим отображение

$$\varphi = \pi \times f : X \to \mathbb{A}^m \times \mathbb{A}^1, \quad x \mapsto (\pi(x), f(x)).$$

В лем. 5.4 мы видели, что оно конечно и сюрьективно отображает X на аффинную гиперповерхность $V(\mu_f) \subset \mathbb{A}^m \times \mathbb{A}^1$ — множество нулей минимального многочлена

$$\mu_f(u,t) = t^n + \alpha_1(u) t^{n-1} + \dots + \alpha_n(u) \in \mathbb{k}[u_1, \dots, u_m][t]$$

функции f над полем $\Bbbk(\mathbb{A}^m)$. Неприводимая гиперповерхность $V(f)\subset X$ конечно отображается морфизмом φ на пересечение гиперповерхности $V(\mu_f)$ с аффинной гиперплоскостью V(t), внутри которой это пересечение задаётся уравнением $\alpha_n(u)=0$, т. е. является аффинной гиперповерхностью $V(a_n)\subset \mathbb{A}^m$ размерности m-1. По предл. 6.2 $\dim V(f)=\dim V(a_n)=m-1=\dim X-1$.

Следствие 6.11

На аффинном многообразии X для любого набора функций $f_1,\ldots,f_m\in \Bbbk[X]$ в каждой точке $p\in V(f_1,\ldots,f_m)$ выполнятся неравенство $\dim_p V(f_1,\ldots,f_m)\geqslant \dim_p(X)-m$. Если при каждом i класс функции f_i не делит нуль в фактор кольце $^1 \Bbbk[X]/(f_1,\ldots,f_{i-1})$, то неравенство становится равенством.

Предостережение 6.1. Ни предл. 6.3, ни сл. 6.11 не утверждают, что гиперповерхность V(f) или подмногообразие $V(f_1,\ldots,f_m)$ не пусто: в этом случае предл. 6.3 и сл. 6.11 тоже формально справедливы. По слабой теореме о нулях пустота $V(f_1,\ldots,f_m)$ означает, что при некотором i класс f_i в $\Bbbk[X]/(f_1,\ldots,f_{i-1})$ равен ненулевой константе. Такое вполне случается: например, $V(1)=\varnothing$ на любом многообразии X, и $V(x,x+1)=\varnothing$ на плоскости $\mathbb{A}^2=\operatorname{Spec}_m \Bbbk[x,y]$. Это предупреждение относится и к следующему предложению.

Предложение 6.4

Для любых аффинных многообразий $X_1, X_2 \subset \mathbb{A}^n$ в каждой точке $x \in X_1 \cap X_2$ выполняется неравенство $\dim_x(X_1 \cap X_2) \geqslant \dim_x(X_1) + \dim_x(X_2) - n$.

 $^{^1}$ Упорядоченный набор функций $f_1,\dots,f_m\in \Bbbk[X]$ с таким свойством называются регулярной последовательностью. При i=1 регулярность означает, что f_1 не делит нуль в $\Bbbk[X]$.

6.3. Размерность 95

Доказательство. Пусть $\varphi_1: X_1 \hookrightarrow \mathbb{A}^n$ и $\varphi_2: X_2 \hookrightarrow \mathbb{A}^n$ — замкнутые вложения. Тогда $X_1 \cap X_2$ является прообразом диагонали $\Delta \subset \mathbb{A}^n \times \mathbb{A}^n$ при отображении

$$\varphi_1 \times \varphi_2 : X_1 \times X_2 \hookrightarrow \mathbb{A}^n \times \mathbb{A}^n$$
.

Внутри $X_1 \times X_2$ он задаётся n уравнениями $(\varphi_1 \times \varphi_2)^* x_i = (\varphi_1 \times \varphi_2)^* y_i$, которые являются поднятиями линейных уравнений $x_i = y_i$, задающих диагональ Δ в $\mathbb{A}^n \times \mathbb{A}^n$. Остаётся применить сл. 6.11.

Предложение 6.5

Если размерности неприводимых проективных многообразий $X_1, X_2 \subset \mathbb{P}_n = \mathbb{P}(V)$ удовлетворяют неравенству $\dim(X_1) + \dim(X_2) \geqslant n$, то $X_1 \cap X_2 \neq \emptyset$.

Доказательство. Для неприводимого проективного многообразия $Z \subset \mathbb{P}(V)$ обозначим через $Z' \subset \mathbb{A}(V)$ аффинный конус над Z, задаваемый теми же самими однородными уравнениями, что и Z, но только теперь в аффинном пространстве. Он содержит начало координат $O \in \mathbb{A}^{n+1}$ и имеет размерность $\dim_O Z' \geqslant \dim Z + 1$, так как любая цепочка $\{z\} \subsetneq Z_1 \subsetneq \cdots \subsetneq Z_m = Z$ в проективном многообразии порождает в аффинном конусе цепочку

$$\{0\} \subsetneq (0z) \subsetneq Z'_1 \subsetneq \dots \subsetneq Z'_m = Z',$$

первыми элементами которой служат начало координат 0 и прямая (0,z). По предл. 6.4 для аффинных конусов $X_1', X_2' \subset \mathbb{A}^{n+1}$ выполняются неравенства

$$\dim_{O}(X_{1}'\cap X_{2}') \geqslant \dim_{O}(X_{1}') + \dim_{O}(X_{2}') - n - 1 \geqslant \dim(X_{1}) + \dim_{O}(X_{2}) - n + 1 \geqslant 1.$$

Поэтому $X_1' \cap X_2''$ не исчерпывается одной только точкой O.

6.3.2. Размерности слоёв регулярных морфизмов. В алгебраической геометрии размерность прообраза при регулярном отображении контролируется почти столь же жёстко, как в линейной алгебре.

Теорема 6.1

Для любого доминантного морфизма $\varphi: X \to Y$ неприводимых алгебраических многообразий в каждой точке $x \in X$ выполняется неравенство $\dim_X \varphi^{-1}(\varphi(x)) \geqslant \dim X - \dim Y$, причём существует такое плотное открытое подмножество $U \subset Y$, что для всех $y \in U$ и $x \in \varphi^{-1}(y)$ имеет место равенство $\dim_X \varphi^{-1}(y) = \dim_X X - \dim_Y Y$.

Доказательство. Беря композицию φ с конечным сюрьективным морфизмом какой-нибудь аффинной окрестности точки $\varphi(x)$ на аффинное пространство \mathbb{A}^m и заменяя X прообразом этой окрестности, мы сводим первое утверждение теоремы к случаю

$$Y = \mathbb{A}^m = \operatorname{Spec}_{m} \mathbb{k}[u_1, \dots, u_m], \quad \varphi(x) = 0.$$

Заменяя X аффинной окрестностью точки x, мы можем считать X аффинным. В этом случае $\varphi^{-1}(0)$ является непустым пересечением m гиперповерхностей $V(\varphi^*(u_i)) \subset X$, и требуемое неравенство вытекает из сл. 6.11. В доказательстве второго утверждения мы также можем считать оба многообразия аффинными. Более того, по упр. 5.21 на стр. 81 можно считать X замкнутым подмногообразием в $Y \times \mathbb{A}^m$, а морфизм $\varphi: X \to Y$ ограничением проекции $\pi: Y \times \mathbb{A}^m \to Y$.

Мы собираемся применить к слоям этой проекции сл. 6.7. Для этого рассмотрим проективное замыкание $\overline{X} \subset Y \times \mathbb{P}_m$ и выберем в одном из слоёв проекции $\overline{\pi} : Y \times \mathbb{P}_m \twoheadrightarrow Y$ не лежащую на \overline{X} точку $p \in \mathbb{P}_m \setminus \mathbb{A}^m$ и любую гиперплоскость $H \subset \mathbb{P}_m$, не проходящую через p. Проекция из p на H является конечным морфизмом во всех слоях, где точка p не лежит в \overline{X} . Пересечение $(Y \times \{p\}) \cap \overline{X}$ является собственным замкнутым подмножеством в \overline{X} , а его образ при проекции $\overline{\pi}$ — собственным замкнутым подмножеством в Y. Над каждой точкой y из дополнительного к $\overline{\pi} \left((Y \times \{p\}) \cap \overline{X} \right)$ плотного открытого подмножества $U \subset Y$ проекция из p на H конечна. Заменяя Y на любое содержащееся в U главное открытое подмножество (также являющееся аффинным алгебраическим многообразием), мы можем, как в сл. 6.7, конечно спроектировать $X \subset Y \times \mathbb{A}^m$ на аффинную гиперплоскость $Y \times \mathbb{A}^{m-1} \subset Y \times \mathbb{A}^m$. Повторяя эту конструкцию, мы получим конечную сюрьекцию $\psi : X \twoheadrightarrow Y \times \mathbb{A}^n$, ограничение которого на каждый слой $\varphi^{-1}(y)$ является конечным сюрьективным морфизмом $\varphi^{-1}(y) \twoheadrightarrow \{y\} \times \mathbb{A}^n$. Конечность ψ влечёт равенство $n = \dim X - \dim Y$, а конечность его ограничений на слои — равенство $\dim_X \varphi^{-1}(y) = n$.

Следствие 6.12 (теорема о полунепрерывности размерностей слоёв) Для любого морфизма алгебраических многообразий $\varphi: X \to Y$ и каждого $k \in \mathbb{Z}$ множество

$$X_k \stackrel{\text{def}}{=} \{ x \in X \mid \dim_x \varphi^{-1}(\varphi(x)) \geqslant k \}$$

замкнуто в X.

Доказательство. Если $\dim Y = 0$, то теорема тривиально верна для всех X и k. Пусть теперь $\dim Y = m$ и для всех Y меньшей размерности теорема верна для всех X и k. Покажем, что она верна для Y. Можно считать X и Y неприводимыми. Если $k \leqslant \dim(X) - \dim(Y)$, то $X_k = X$ по теор. 6.1. Для $k > \dim(X) - \dim(Y)$ заменим Y на $Y' = Y \setminus U$, где U взято из теор. 6.1, а X — на $X' = \varphi^{-1}(Y')$. Тогда $\dim Y' < \dim Y$, и множество $X_k \subset X'$ замкнуто по индуктивному предположению.

Следствие 6.13

Для любого замкнутого морфизма алгебраических многообразий $\varphi: X \to Y$ и каждого $k \in \mathbb{Z}$ множество $Y_k \stackrel{\mathrm{def}}{=} \{y \in Y \mid \dim \varphi^{-1}(y) \geqslant k\}$ замкнуто в Y.

Теорема 6.2 (размерностный критерий неприводимости)

Если замкнутый регулярный морфизм $\varphi: X \twoheadrightarrow Y$ сюрьективен, а все его слои неприводимы и имеют одинаковые размерности, то неприводимость Y влечёт неприводимость X.

Доказательство. Пусть $X=X_1\cup X_2$, где X_1,X_2 замкнуты. Положим $Y_i\stackrel{\text{def}}{=} \{y\in Y\mid \varphi^{-1}(y)\subset X_i\}$, где i=1,2. Так как каждый слой φ , будучи неприводимым, целиком содержится либо в X_1 , либо в X_2 , мы заключаем, что $Y=Y_1\cup Y_2$, и если $X_i\neq X$, то и $Y_i\neq Y$. Поскольку множество Y_i состоит из всех таких точек в Y, над которыми слой отображения $\varphi|_{X_i}:X_i\to Y$ имеет максимальную из достигаемых слоями этого отображения размерностей, множество Y_i замкнуто по сл. 6.13. Тем самым, приводимость X влечёт приводимость Y.

6.4. Размерности проективных многообразий. Согласно предл. 6.5, каждое d-мерное неприводимое многообразие $X \subset \mathbb{P}_n = \mathbb{P}(V)$ пересекается со всеми проективными подпространствами $H \subset \mathbb{P}_n$ размерности $\dim H \geqslant n-d$. Покажем, что общее подпространство H коразмерности

d+1 не пересекается с X, и тем самым, размерность неприводимого проективного многообразия равна наибольшему такому числу d, что X пересекается со всеми проективными подпространствами коразмерности d.

Проективные подпространства $H \subset \mathbb{P}(V)$ размерности n-d-1 являются точками грассманиана $\mathrm{Gr}(n-d,n+1) = \mathrm{Gr}(n-d,V)$. Рассмотрим многообразие инцидентности

$$\Gamma \stackrel{\text{def}}{=} \{ (x, H) \in X \times \text{Gr}(n - d, V) \mid x \in H \}. \tag{6-7}$$

Упражнение 6.12. Убедитесь, что Γ является проективным алгебраическим многообразием.

Проекция $\pi_1: \Gamma \twoheadrightarrow X$ сюрьективна, и её слой над каждой точкой x состоит из всех проходящих через x проективных подпространств размерности n-d-1. Такие подпространства образуют грассманиан $\mathrm{Gr}(n-d-1,n)=\mathrm{Gr}(n-d-1,V/\Bbbk\cdot x)$ всех векторных (n-d-1)-мерных подпространств в фактор пространстве $V/\Bbbk\cdot x$. По теор. 6.2 многообразие Γ неприводимо и имеет размерность d+(n-d-1)(d+1)=(n-d)(d+1)-1. Образ $\pi_2(\Gamma)\subset \mathrm{Gr}(n-d,V)$ второй проекции $\pi_2:\Gamma\to \mathrm{Gr}(n-d,V)$ состоит из всех (n-d-1)-мерных подпространств, пересекающих X. Это неприводимое замкнутое подмногообразие размерности, не превышающей dim Γ и, тем самым, строго меньшей, чем dim $\mathrm{Gr}(n-d,V)=(n-d)(d+1)$. Поэтому множество не пересекающих X (n-d-1)-мерных подпространств содержит в себе открытое по Зарисскому всюду плотное подмножество грассманиана dim $\mathrm{Gr}(n-d,V)$.

Соображения размерности позволяют сказать и больше. Повторяя предыдущее рассуждение для (n-d)-мерных подпространств H' вместо (n-d-1)-мерных, мы получим неприводимое проективное многообразие

$$\Gamma' \stackrel{\text{def}}{=} \{ (x, H') \in X \times \text{Gr}(n - d + 1, V) \mid x \in H \}$$

размерности $\dim X + \dim \operatorname{Gr}(n-d,n) = d + d(n-d) = d(n-d+1)$. Так как $X \cap H' \neq \emptyset$ для всех H', проекция $\pi_2 : \Gamma' \twoheadrightarrow \operatorname{Gr}(n-d+1,V)$ эпиморфна, и её общий слой имеет по теор. 6.1 размерность $\dim \Gamma - \dim \operatorname{Gr}(n-d+1,n+1) = d(n-d+1) - (n-d+1)d = 0$. Это означает, что общее подпространство H' коразмерности d пересекает X по конечному числу точек.

Беря одну из таких плоскостей H' и проводя внутри неё (n-d-1)-мерную плоскость H через одну из точек пересечения $p\in X\cap H'$, мы видим, что $H\cap X$ конечно и непусто. Это означает, что у проекции $\pi_2:\Gamma\to \operatorname{Gr}(n-d,V)$ первого многообразия инцидентности (6-7) имеется нульмерный слой. Тем самым, минимальная размерность непустого слоя этой проекции нулевая, откуда по теор. 6.1 вытекает, что $\dim\pi_2(\Gamma)=\dim\Gamma=\dim\operatorname{Gr}(n-d,V)-1$, т. е. пересекающиеся с X подпространства размерности n-d-1 образуют неприводимую гиперповерхность 2 в грассманиане $\operatorname{Gr}(n-d,n+1)$.

Упражнение 6.13. Выведите отсюда, что существует неприводимый многочлен от плюккеровых координат (n-d-1)-мерного подпространства в \mathbb{P}_n , обращение которого в нуль на данном подпространстве H равносильно тому, что $H \cap X \neq \emptyset$.

Проделанные рассуждения иллюстрируют стандартный метод подсчёта размерностей при помощи многообразий инцидентности, часто используемый в геометрии.

 $^{^{1}}$ Т. е. слой над любой точкой из некоторого плотного открытого подмножества в грассманиане.

 $^{^{2}}$ Т. е. подмногообразие коразмерности 1

Пример 6.8 (результант)

Фиксируем n+1 степеней $d_0,d_1,\ldots,d_n\in\mathbb{N}$ и обозначим через $\mathbb{P}_{N_i}=\mathbb{P}(S^{d_i}V^*)$ пространство проективных гиперповерхностей степени d_i в $\mathbb{P}_n=\mathbb{P}(V)$, как в n° 4.5 на стр. 66. Покажем, что результантное многообразие $\mathcal{R}=\{(S_0,\ldots,S_n)\in\mathbb{P}_{N_0}\times\ldots\times\mathbb{P}_{N_n}\mid S_0\cap\ldots\cap S_n\neq\varnothing\}$ системы n+1 однородных полиномиальных уравнений на n+1 неизвестных является неприводимой гиперповерхностью в $\mathbb{P}_{N_0}\times\ldots\times\mathbb{P}_{N_n}$, т. е. существует единственный с точностью до пропорциональности неприводимый многочлен от коэффициентов уравнений системы, однородный по коэффициентам каждого уравнения, обращение в нуль которого на наборе многочленов $f_0,\ldots,f_n\in\mathbb{K}[x_0,\ldots,x_n]$ равносильно существованию ненулевого решения у системы полиномиальных уравнений $f_0=\ldots=f_n=0$. Этот многочлен называется результантом системы однородных полиномиальных уравнений степеней d_0,d_1,\ldots,d_n на n+1 переменных. Рассмотрим многообразие инцидентности

$$\varGamma \stackrel{\text{def}}{=} \left\{ (S_1, \dots, S_n, \, p) \in \mathbb{P}_{N_0} \times \dots \times \mathbb{P}_{N_n} \times \mathbb{P}_n \, | \, p \in S_0 \cap \dots \cap S_n \right\}.$$

Упражнение 6.14. Убедитесь, что G является проективным алгебраическим многообразием.

Так как уравнение f(p)=0 линейно по f, проходящие через данную точку $p\in\mathbb{P}_n$ проективные гиперповерхности степени d_i образуют в \mathbb{P}_{N_i} гиперплоскость. Поэтому проекция $\pi_2:\Gamma\twoheadrightarrow\mathbb{P}_n$ сюрьективна, а все её слои являются произведениями проективных гиперплоскостей и имеют одинаковую размерность $\sum (N_i-1)=\sum N_i-n-1$. Таким образом, Γ является неприводимым проективным многообразием размерности $\sum N_i-1$.

Упражнение 6.15. Предъявите n+1 гиперповерхностей $S_i \subset \mathbb{P}_n$, имеющих заданные степени d_i и ровно одну общую точку.

Упражнение показывает, что у проекции $\pi_1: \Gamma \to \mathbb{P}_{N_0} \times \ldots \times \mathbb{P}_{N_n}$ есть нульмерный слой. Поэтому общий непустой слой тоже нульмерен, откуда $\dim \pi_1(\Gamma) = \dim \Gamma$. Тем самым, $\pi_1(\Gamma)$ является неприводимой гиперповерхностью в $\mathbb{P}_{N_0} \times \ldots \times \mathbb{P}_{N_n}$.

Упражнение 6.16. Покажите, что всякое неприводимое подмногообразие коразмерности 1 в произведении проективных пространств задаётся неприводимым многочленом от однородных координат, однородным по координатам каждого из проективных пространств.

Пример 6.9 (прямые на поверхностях в \mathbb{P}_3)

Пространство $\mathbb{P}_N=\mathbb{P}(S^dV^*)$ поверхностей степени d в $\mathbb{P}_3=\mathbb{P}(V)$ имеет размерность

$$N = \frac{1}{6}(d+1)(d+2)(d+3) - 1.$$

Прямые в \mathbb{P}_3 составляют грассманиан $\mathrm{Gr}(2,4)=\mathrm{Gr}(2,V)$, который мы отождествим с квадрикой Плюккера $P\subset\mathbb{P}_5=\mathbb{P}(\Lambda^2V)$. Рассмотрим многообразие инцидентности

$$\varGamma \stackrel{\text{\tiny def}}{=} \left\{\; (S,\ell) \in \mathbb{P}_N \times P \;\middle|\; \ell \subset S \;\right\} \subset \mathbb{P}_N \times \mathbb{P}_5 \;.$$

Упражнение 6.17. Докажите, что Γ является замкнутым подмногообразием в $\mathbb{P}_N \times \mathbb{P}_5$.

Покажем, что проекция π_2 : $\Gamma \twoheadrightarrow Q_P$ сюрьективна и все её слои являются проективными пространствами одинаковой размерности. Прямая ℓ , заданная уравнениями $x_2=x_3=0$, лежит на поверхности V(f) если и только если $f=x_2g+x_3h$ лежит в образе линейного отображения

$$\psi: S^{d-1}V^* \oplus S^{d-1}V^* \to S^dV^*, (g,h) \mapsto x_2g + x_2h,$$

который изоморфен фактору пространства $S^{d-1}V^* \oplus S^{d-1}V^*$ размерности $\frac{1}{3}$ d(d+1)(d+2) по подпространству $\ker \psi = \{(g,h) = (x_3q,-x_2q) \mid q \in S^{d-2}V^*\}$ размерности $\frac{1}{6}(d-1)d(d+1)$. Поэтому содержащие ℓ поверхности составляют проективное пространство размерности

$$\frac{1}{6}\left(\,2\,d(d+1)(d+2)-(d-1)d(d+1)\,\right)-1=\frac{1}{6}\,d(d+1)(d+5)-1\,.$$

Мы заключаем, что Γ является неприводимым проективным многообразием размерности

$$\dim \Gamma = \frac{1}{6} d(d+1)(d+5) + 3.$$

Проекция $\pi_1(\Gamma) \subset \mathbb{P}_N$ представляет собою множество поверхностей, содержащих хотя бы одну прямую. Из сл. 6.2 на стр. 90 вытекает, что это замкнутое неприводимое подмногообразие в \mathbb{P}_N , размерность которого равна разности $\dim \Gamma$ и минимальной из размерностей непустых слоёв проекции π_1 . Поскольку $\dim \mathbb{P}_N - \dim \Gamma = \frac{1}{6} \left((d+1)(d+2)(d+3) - d(d+1)(d+5) \right) - 4 = d-3$, мы заключаем, что при $d \geqslant 4$ образ $\pi_1(\Gamma) \subset \mathbb{P}_N$ заведомо является собственным подмногообразием. Поэтому общая \mathbb{P}_N поверхность степени $d \geqslant 4$ в \mathbb{P}_3 не содержит прямых.

Упражнение 6.18. Убедитесь, что на проективном замыкании аффинной кубической поверхности xyz = 1 лежат ровно три прямых.

Упражнение показывает, что при d=3 у проекции $\pi_1: \Gamma \to \mathbb{P}_N$ есть непустой нульмерный слой. Следовательно, $\dim \pi_1(\Gamma) = \dim \Gamma = N$, и из неприводимости $\pi_1(\Gamma)$ вытекает равенство $\pi_1(\Gamma) = \mathbb{P}_N$. Таким образом, на каждой кубической поверхности в \mathbb{P}_3 лежит хотя бы одна прямая, причём на общей кубической поверхности лежит конечное число прямых.

Упражнение 6.19. Опишите все слои проекции $\pi_1: \Gamma \to \mathbb{P}_N$ для d=2.

Упражнение 6.20. Найдите все прямые на кубике Ферма $x_0^3 + x_1^3 + x_2^3 + x_3^3 = 0$.

6.5. Отступление: 27 прямых на гладкой кубической поверхности. Рассмотрим гладкую 2 кубическую поверхность $S = V(F) \subset \mathbb{P}_3$.

Лемма 6.3

Приводимое плоское сечение поверхности S является либо объединением прямой и гладкой коники, либо объединением трёх различных прямых.

Доказательство. Предложение утверждает, что никакое плоское сечение $\pi \cap V(F)$ не содержит двойной прямой. Допустим, что такая двойная прямая $\ell \subset \pi \cap S$ имеется. Выберем координаты так, чтобы плоскость π имела уравнение $x_2=0$, а прямая ℓ — уравнения $x_2=x_3=0$. Тогда $F=x_2Q+x_3^2L$ с линейным L и квадратичным Q. Обозначим через a одну из точек пересечения прямой ℓ с квадрикой V(Q). Тогда $x_2(a)=x_3(a)=Q(a)=0$ и все частные производные $\partial F/\partial x_i$ равны нулю в точке a, т. е. кубика S особа в точке a.

Следствие 6.14

В одной точке поверхности S может пересекаться не более трёх лежащих на S прямых, и такие прямые лежат в одной плоскости.

¹Т. е. принадлежащей некоторому плотному по Зарисскому открытому подмножеству в пространстве всех гиперповерхностей.

²См. n° 1.5 на стр. 16.

Доказательство. Все лежащие на S прямые, проходящие через точку $p \in S$, содержатся в пересечении $S \cap T_p S$ поверхности S с её касательной плоскостью $T_p S$ в точке p.

Лемма 6.4

Для каждой прямой $\ell \subset S$ существуют ровно 5 различных плоскостей π_1, \dots, π_5 , содержащих ℓ и пересекающих ℓ по тройке прямых ℓ по ℓ по одну из двух прямых ℓ по одну из ℓ по одну ℓ по одну

Доказательство. Рассмотрим такой базис $e_0, e_1, e_2, e_3 \in V$, что прямая $\ell = (e_0 e_1)$ задаётся уравнениями $x_2 = x_3 = 0$. Тогда задающий поверхность S многочлен F имеет вид

$$\begin{split} L_{00}(x_2,x_3) \cdot x_0^2 + 2\,L_{01}(x_2,x_3) \cdot x_0 x_1 + L_{11}(x_2,x_3) \cdot x_1^2 + \\ &\quad + 2\,Q_0(x_2,x_3) \cdot x_0 + 2\,Q_1(x_2,x_3) \cdot x_1 + R(x_2,x_3) = 0 \,, \end{split} \tag{6-8}$$

где $L_{ij}, Q_{\mathcal{V}}, R \in \mathbb{k}[x_2, x_3]$ являются однородными многочленами степеней 1, 2, 3 соответственно. Каждая содержащая прямую ℓ плоскость пересекает прямую (e_2e_3) в единственной точке $e_{\vartheta} = \vartheta_2 e_2 + \vartheta_3 e_3$. Обозначим такую плоскость через $\pi_{\vartheta} = (e_0e_1e_{\vartheta})$ и будем использовать однородную координату $\vartheta = (\vartheta_2 : \vartheta_3) \in \mathbb{P}_1$ точки e_{ϑ} относительно базиса e_2, e_3 в качестве параметра в пучке плоскостей, проходящих через прямую ℓ . Обозначим через $(t_0 : t_1 : t_2)$ однородные координаты в плоскости π_{ϑ} относительно базиса e_0, e_1, e_{ϑ} . Прямая $\ell \subset \pi_{\vartheta}$ задаётся в этих координатах уравнением $t_2 = 0$, а уравнение плоской коники $(\pi_{\vartheta} \cap S) \setminus \ell$ получается из уравнения (6-8) подстановкой $x = (t_0 : t_1 : \vartheta_2 t_2 : \vartheta_3 t_2)$ и сокращением общего множителя t_2 в левой части. Таким образом, матрица Грама этой коники равна

$$G = \begin{pmatrix} L_{00}(\vartheta) & L_{01}(\vartheta) & Q_0(\vartheta) \\ L_{01}(\vartheta) & L_{11}(\vartheta) & Q_1(\vartheta) \\ Q_0(\vartheta) & Q_1(\vartheta) & R(\vartheta) \end{pmatrix}$$

а её определитель $D(\vartheta)=\det G$ является однородным многочленом степени 5 от ϑ

$$\begin{split} D(\vartheta) &= L_{00}(\vartheta) L_{11}(\vartheta) R(\vartheta) + 2\,L_{01}(\vartheta) Q_0(\vartheta) Q_1(\vartheta) - \\ &\quad - L_{11}(\vartheta) Q_0^2(\vartheta) - L_{00}(\vartheta) Q_1^2(\vartheta) - L_{01}(\vartheta)^2 R(\vartheta) \in \mathbb{k}[\vartheta_2,\vartheta_3] \,. \end{split} \tag{6-9}$$

Он обращается в нуль в пяти точках $\vartheta \in \mathbb{P}_1$, учтённых с кратностями. Мы должны показать, что все эти кратности равны единице. Каждый нуль детерминанта (6-9) соответствует вырождению коники в пару прямых. Точка пересечения этих прямых либо лежит на ℓ , либо нет.

В первом случае выберем базис так, чтобы этими двумя прямыми были прямые $\ell'=(e_0e_2)$ и $\ell''=\left(e_0\left(e_1+e_2\right)\right)$, которые задаются уравнениями $x_3=x_1=0$ и $x_3=(x_1-x_2)=0$. Тогда вырождение происходит при $\vartheta=(1:0)$, и кратность этого корня равна наибольшей степени ϑ_3 , на которую делится $D(\vartheta_2,\vartheta_3)$. Так как $\ell,\ell',\ell''\subset S$, уравнение (6-8) имеет вид

$$x_1 x_2 (x_1 - x_2) + x_3 q = 0$$

для некоторого квадратичного многочлена q. Не делящимися на ϑ_3 элементами матрицы G могут быть лишь $L_{11}\equiv x_2\pmod{\vartheta_3}$ и $Q_1\equiv -x_2^2/2\pmod{\vartheta_3}$, при условии, что мономы $x_1x_2^2$ и $x_0^2x_2$ входят в (6-8) с ненулевыми коэффициентами, и это действительно так, поскольку моном $x_1x_2^2$

является единственным, дающим ненулевой вклад в частные производные от F в точке $e_2 \in S$, а моном $x_0^2x_2$ — единственным с ненулевым вкладом в частные производные от F в точке $e_0 \in S$. Таким образом, $D(\vartheta_2, \vartheta_3) \equiv -L_{00}Q_1^2 \equiv \vartheta_3 \pmod{\vartheta_3^2}$ имеет по ϑ_3 порядок 1.

Во втором случае выберем базис так, чтобы $\ell'=(e_0e_2)$, $\ell''=(e_1e_2)$ задавались уравнениями $x_3=x_1=0$ и $x_3=x_0=0$. Это вырождение также происходит при $\vartheta=(1:0)$, а уравнение (6-8) имеет вид $x_0x_1x_2+x_3q=0$. Не делящимся на ϑ_3 элементом матрицы G является лишь $L_{01}\equiv x_2/2\ (\text{mod }\vartheta_3)$, и определитель $D(\vartheta_2,\vartheta_3)\equiv -L_{01}^2R\equiv \vartheta_3\ (\text{mod }\vartheta_3^2)$ тоже имеет по ϑ_3 порядок 1. Оставшиеся утверждения о пересечениях прямых вытекают из сл. 6.14, лем. 6.3 и того, что каждая прямая в \mathbb{P}_3 пересекает любую плоскость.

Следствие 6.15

Любая гладкая кубическая поверхность содержит не пересекающиеся прямые.

Лемма 6.5

Ни через какие четыре лежащие на поверхности S попарно не пересекающиеся прямые нельзя провести квадрику. В частности, для любой такой четвёрки прямых существует по крайней мере одна, но не более двух лежащих на S прямых, пересекающих каждую прямую четвёрки.

Доказательство. Если через данные четыре попарно непересекающиеся лежащие на S прямые проходит квадрика Q, то это гладкая квадрика Сегре 1 , заметаемая двумя семействами прямых, и все четыре данные прямые лежат в одном из этих двух семейств. Поскольку каждая прямая другого семейства пересекает все четыре данные прямые, она лежит на кубической поверхности S. Тем самым, $Q \subset S$, т. е. поверхность S приводима, а значит, особа.

Теорема 6 3

Каждая гладкая кубическая поверхность $S \subset \mathbb{P}_3$ содержит ровно 27 прямых, причём матрица их попарных пересечений с точностью до нумерации прямых не зависит от поверхности.

Доказательство. Зафиксируем пару скрещивающихся прямых $a, b \in S$ и построим 5 пар прямых ℓ_i, ℓ_i' , расположенных в проходящих через прямую a плоскостях согласно лем. 6.4, причём в каждой паре обозначим через ℓ_i ту прямую, которая пересекается с b, а через ℓ_i' — ту, что не пересекает. Далее, обозначим через ℓ_i'' ещё 5 прямых, образующих вместе с прямыми ℓ_i пять пар прямых, расположенных согласно лем. 6.4 в плоскостях проходящих через прямую b. Таким образом, каждая из прямых ℓ_i'' не пересекается ни с a, ни с прямым ℓ_j , у которых $j \neq i$, но пересекается с b и со всеми прямыми ℓ_i' , у которых $j \neq i$.

Любая прямая $c \subset S$, отличная от 17 перечисленных, не пересекает ни a, ни b, но при каждом i пересекает ровно одну из двух прямых ℓ_i , ℓ_i' . Из лем. 6.5 вытекает, что все лежащие на S прямые, пересекающие не менее четырёх прямых ℓ_i , исчерпываются парой прямых a, b. С другой стороны, если лежащая на S прямая c пересекает не более двух прямых ℓ_i , то с точностью до перестановки индексов, она пересекается с тремя прямыми ℓ_1' , ℓ_2' , ℓ_3' и ещё либо с прямой ℓ_4' , либо с прямой ℓ_5 . В обоих случаях по лем. 6.5 прямая c это одна из двух прямых a, ℓ_5'' .

Таким образом, каждая прямая $c \subset S$, отличная от 17 прямых $a, b, \ell_i, \ell'_i, \ell''_i$, пересекается в точности с тремя прямыми ℓ_i . Покажем, что на поверхности S есть ровно 10 таких прямых, и

¹См. форм. (2-11) на стр. 28.

 $^{^2}$ Т. е. симметричная матрица размера 27 × 27, в позиции ij которой стоит нуль, если $\ell_i \cap \ell_j = \emptyset$, и единица, если $\ell_i \cap \ell_j \neq \emptyset$. При перенумерации прямых эта матрица сопрягается матрицей перестановки номеров.

они биективно соответствуют $\binom{5}{3}=10$ тройкам $\{i,j,k\}\subset\{1,2,3,4,5\}$. Для каждой тройки прямых ℓ_i имеется самое большее одна отличная от a прямая c, пересекающая все прямые из тройки и оставшиеся две прямые ℓ'_j . С другой стороны, по лем. 6.4 для каждого i на S лежит ровно 10 прямых, пересекающих прямую ℓ_i . В их число входят 4 прямые a,b,ℓ'_i,ℓ''_i , а оставшиеся 6 должны, как мы знаем, пересекать ещё ровно две из оставшихся четырёх прямых ℓ_j . Поскольку таких пар и имеется ровно $\binom{4}{2}=6$, мы получаем нужную биекцию между прямыми c и тройками (i,j,k).

Упражнение 6.21. Поле $\mathbb{F}_4 \stackrel{\text{def}}{=} \mathbb{F}_2[x]/(x^2+x+1)$ является квадратичным расширением поля $\mathbb{F}_2 = \mathbb{Z}/(2)$ и обладает автоморфизмом Фробениуса $z \mapsto \overline{z} \stackrel{\text{def}}{=} z^2$, тождественным на \mathbb{F}_2 и переводящим корни многочлена x^2+x+1 друг в друга. Обозначим через $\mathrm{PU}_4(\mathbb{F}_4)$ фактор унитарной группы $\mathrm{U}_4(\mathbb{F}_4) = \{M \in \mathrm{Mat}_4(\mathbb{F}_4) \mid \overline{M}M^t = E\}$ по подгруппе скалярных унитарных матриц, а через $G \subset S_{27}$ — группу всех сохраняющих матрицу инцидентности перестановок прямых, лежащих на гладкой кубической поверхности S. Покажите, что $\mathrm{PU}_4(\mathbb{F}_4)$ является подгруппой индекса 2 в G, и найдите порядок группы G.

 $^{^1}$ Расширение $\mathbb{F}_2 \subset \mathbb{F}_4$ аналогично расширению $\mathbb{R} \subset \mathbb{C} = \mathbb{R}[x]/(x^2+x+1)$, и автоморфизм Фробениуса служит аналогом комплексного сопряжения.

Ответы и указания к некоторым упражнениям

- Упр. 6.1. Если $x_i x_j \neq 0$, то $t_{j,\nu} = x_{\nu}/x_j = \left(x_{\nu}: x_i\right)/\left(x_j: x_i\right) = t_{i,\nu}/t_{i,j}$ (при $\nu=i$ надо считать $t_{i,i}=1$). Поэтому $\varphi_{ji}^*: t_{j,\nu} \mapsto t_{i,\nu}/t_{i,j}$. Обратный к φ_{ji}^* гомоморфизм $\Bbbk\left[\mathcal{D}\left(t_{i,j}\right)\right] \to \Bbbk\left[\mathcal{D}\left(t_{j,i}\right)\right]$ действует по той же формуле $t_j^{(i)} \mapsto 1/t_i^{(j)}$, $t_{i,\nu} \mapsto t_{j,\nu}/t_{j,i}$.
- Упр. 6.2. В каждом таком W имеется единственный базис w_1, \ldots, w_k , проектирующийся в стандартный базис e_{i_1}, \ldots, e_{i_k} координатной плоскости. Матрица z, по строкам которой стоят координаты векторов w_i в стандартном базисе пространства \mathbb{k}^m , имеет $s_I(z) = E$. В GL_k -орбите каждой матрицы x im U_I также имеется единственная матрица z с $s_I(z) = E$ именно, $z = s_I(x)^{-1} \cdot x$.
- Упр. 6.3. Элементы $k \times m$ -матрицы $s_J^{-1}\left(\varphi_I(t)\right) \cdot \varphi_I(t)$ являются рациональными функциями от элементов матрицы t со знаменателями $\det s_J\left(\varphi_I(t)\right)$ и, стало быть, регулярны в $\mathcal{D}\left(\det s_J\left(\varphi_I(t)\right)\right)$. Поэтому отображение φ_{JI} , переводящее эту матрицу в её $k \times (m-k)$ -подматрицу, образованную столбцами с не лежащими в J номерами, регулярно. Обратное отображение задаётся той же формулой: $t\mapsto s_{\hat{I}}\left(s_I^{-1}\left(\varphi_I(t)\right)\cdot\varphi_I(t)\right)$ (удостоверьтесь в этом!).
- Упр. 6.4. Это следует из определения локальной регулярной функции и зам. 5.1. на стр. 79.
- Упр. 6.5. Отображение \varkappa можно задать формулой $(x_0:x_1:x_2)\mapsto (x_1x_2:x_0x_2:x_0x_1)$, из которой видно, что оно не определено только в точках (1:0:0), (0:1:0), (0:0:1) и образ \varkappa тоже равен дополнению до этих трёх точек.
- Упр. 6.6. В обозначения из прим. 6.1 на стр. 84 пересечение множества нулей однородного многочлена $\overline{f}(x_0,x_1,\dots,x_n)$ со стандартной картой $U_i\subset \mathbb{P}_n$ задаётся в аффинных координатах t_i карты U_i полиномиальным уравнением

$$\overline{f}(t_{i,0},\ldots,t_{i,i-1},1,t_{i,i+1},\ldots,t_{i,n})=0.$$

- Упр. 6.10. Пусть $X_1, X_2 \subset X$ два замкнутых неприводимых подмножества и $U \subset X$ открытое множество, такое что оба пересечения $X_1 \cap U, X_2 \cap U$ непусты. Тогда $X_1 = X_2 \Longleftrightarrow X_1 \cap U = X_2 \cap U$, поскольку $X_i = \overline{X_i \cap U}$.
- Упр. 6.11. Докажите, что произведение конечных сюрьекций $X \to \mathbb{A}^n$, $Y \to \mathbb{A}^m$ является конечной сюрьекцией $X \times Y \to \mathbb{A}^n \times \mathbb{A}^m$.
- Упр. 6.12. Выберите в H какой-нибудь базис, запишите координаты векторов этого базиса и координаты точки p по строкам $(n-d+1)\times(n+1)$ -матрицы. Условие $p\in H$ означает, что ранг этой матрицы равен n-d. Зануление всех миноров порядка n-d+1 является системой билинейных уравнений на плюккеровы координаты 1 подпространства 1 и однородные координаты точки 10.
- Упр. 6.14. Γ задаётся однородными по каждому f_i и по p уравнениями $f_0(p)=f_1(p)=\cdots=f_n(p)=0.$
- Упр. 6.15. Возьмите n+1 гиперплоскостей, пересекающихся в одной точке, и возведите задающие их линейные формы в подходящие степени.
- Упр. 6.17. Линейная оболочка векторов $u, w \in V$ является образом линейного отображения

$$V^* \to V$$
, $\xi \mapsto \partial_{\xi}(u \wedge w) = \langle \xi, u \otimes w - w \otimes u \rangle$.

¹напомню, что плюккеровыми координатами подпространства являются старшие миноры матрицы, составленной из координат какого-нибудь базиса в этом подпространстве

Прямая $(uw)\subset \mathbb{P}_3$ лежит на поверхности $V(f)\subset \mathbb{P}_3$ если и только если $f\left(\partial_\xi(u\wedge w)\right)=0$ для всех $\xi\in V^*$. Пусть векторы e_ν образуют базис в $V,u=\sum u_ie_i,v=\sum v_ie_i,\xi=\sum \xi_ie_i^*$. Тогда

$$u \wedge w = \sum_{i \neq j} p_{ij} \, e_i \wedge e_j \,, \quad \text{где} \quad p_{ij} = -p_{ji} = u_i v_j - u_j v_i$$

обозначают плюккеровы координаты на $\mathbb{P}_5 = \mathbb{P}(\Lambda^2 V)$. Поскольку

$$\partial_{\xi}(u \wedge w) = \sum_{k} \sum_{i \neq j} \xi_{k} p_{ij} \frac{\partial}{\partial e_{k}} (e_{i} \wedge e_{j}) = \sum_{k} \left(\sum_{i \neq j} p_{ij} \xi_{k} \right) \cdot e_{j},$$

подставляя $x_j = \sum_{i \neq j} p_{ij} \xi_i$ в f(x) и приравнивая к нулю коэффициент при каждом мономе от ξ_j , получаем систему полиномиальных уравнений на коэффициенты многочлена f и плюккеровы

координаты p_{ij} , описывающую Γ как замкнутое алгебраическое подмногообразие в $\mathbb{P}_N \times \mathbb{P}_5$.

Упр. 6.18. В аффинной части прямых нет вообще, так как подставляя вместо (x,y,z) точку, бегущую по прямой с параметрическим уравнением $x=x_0+\alpha t, y=y_0+\beta t, z=z_0+\gamma t$ получаем несовместную систему уравнений

$$\begin{cases} \alpha\beta\gamma = 0\\ \alpha\beta z_0 + \beta\gamma x_0 + \gamma\alpha y_0 = 0\\ \alpha y_0 z_0 + \beta x_0 z_0 + \gamma x_0 y_0 = 0\\ x_0 y_0 z_0 = 1 \end{cases}$$

(убедитесь в этом!). Пересечение поверхности с бесконечно удалённой гиперплоскостью задаётся уравнением xyz = 3 и является объединением трёх прямых.

Упр. 6.19. В этом случае $\mathbb{P}_N=\mathbb{P}(S^2V^*)=\mathbb{P}_5$ это пространство квадрик. Слой проекции $\pi_1:\Gamma\to\mathbb{P}_5$ над каждой гладкой квадрикой является дизъюнктным объединением двух проективных прямых, слой над любой гладкой точкой гиперповерхности вырожденных квадрик $V(\det)\subset\mathbb{P}_5$ является одной проективной прямой, слой над парой пересекающихся плоскостей изоморфен дизъюнктному объединению двойственных плоскостей, а слой над двойной плоскостью — двойственной плоскости.

Упр. 6.20. С точностью до перенумерации координат, пара линейных уравнений, задающих прямую на кубике Ферма, приводится методом Гаусса к виду $x_0 = \alpha x_2 + \beta x_3$, $x_1 = \gamma x_2 + \delta x_3$. Подставьте эти значения в уравнение кубики, покажите, что $\alpha\beta\gamma\delta = 0$, а затем найдите их.

Упр. 6.21. Кубическая форма Ферма $\sum x_i^3$ над \mathbb{F}_4 совпадает со стандартной эрмитовой формой $\sum x_i \overline{x}_i$. Поэтому проективная унитарная группа $\mathrm{PU}_4(\mathbb{F}_4)$ действует на кубике Ферма $C_F \subset \mathbb{P}_3(\mathbb{F}_4)$ из упр. 6.20, переводя прямые в прямые с сохранением инцидентности. При этом $|\mathrm{PU}_4(\mathbb{F}_4)| = 2^6 \cdot 3^4 \cdot 5$, а $|G| = 51\,840$.