Порция коммутативной алгебры

- **АГ4** \diamond **1.** Для идеалов I, J кольца A обозначим через IJ идеал, порождённый произведениями ab с $a \in I$, $b \in J$. Верно ли что **a)** произведения ab и так, сами по себе, образуют идеал
 - 6) $IJ = I \cap J$ в) $IJ = I \cap J$, когда I + J = A г) $V(I) \cup V(J) = V(IJ) = V(I \cap J)$ д) $\sqrt{IJ} = \sqrt{I \cap J}$
 - e) $\sqrt{IJ} = \sqrt{I}\sqrt{J}$ ж) $IJ = \sqrt{IJ}$, когда $I = \sqrt{I}$ и $J = \sqrt{J}$
- **АГ4\diamond2.** Пусть $J = (xy, yz, zx) \subset \Bbbk[x, y, z]$. Опишите $V(J) \subset \mathbb{A}^3$ и $I(V(J)) \subset \Bbbk[x, y, z]$. Можно ли задать многообразие V(J) двумя полиномиальными уравнениями?
- **АГ4\diamond3.** Укажите многочлен $f \in I(V(I)) \setminus I$ для $I = (x^2 + y^2 1, y 1) \subset \mathbb{k}[x, y]$.
- **АГ4 4.** Опишите $V(J) \subset \mathbb{A}^3$ и I(V(J)) для **a)** J = (xy, (x-y)z) **б)** $J = (xy + yz + zx, x^2 + y^2 + z^2)$.
- **АГ4<5.** Нётерово ли кольцо **a)** степенных рядов над нётеровым кольцом **б)** рядов $f \in \mathbb{C}[[z]]$, сходящихся всюду в \mathbb{C} **B)** рядов $f \in \mathbb{C}[[z]]$ с ненулевым радиусом сходимости f кольцо рациональных функций $p(z)/q(z) \in \mathbb{C}(z)$ с $q(z) \neq 0$ при $|z| \leq 1$ д*) произвольная подалгебра $A \subset \mathbb{K}[x_1, \dots, x_n]$, имеющая конечную коразмерность как векторное пространство над \mathbb{K} .
- **АГ4 6.** Пусть элементы $m_1, \ldots, m_r \in M$ порождают A-модуль M и A-линейный эндоморфизм $\varphi: M \to M$ действует на них по правилу $(m_1, \ldots, m_r) \mapsto (m_1, \ldots, m_r) \cdot F$, где F квадратная $r \times r$ матрица с элементами из A. Докажите, что **a)** $\det(F) \cdot M \subset \varphi(M)$ **6)** если M A-точен M то $M \neq M$ для любого собственного идеала $M \subseteq A$.
- **АГ4>7.** Покажите, что факториальное кольцо целозамкнуто в своём поле частных.
- **АГ4\diamond8.** Цело ли кольцо непрерывных функций на \mathbb{R}^2 над подкольцом $\{f \mid f(1,0) = f(0,1)\}$?
- **АГ4\diamond9.** Существует ли бесконечное поле, конечно порождённое как \mathbb{Z} -алгебра²?
- **АГ4**\$10*. Покажите, что кольцо многочленов над нормальным кольцом тоже нормально.
- **АГ4** \diamond **11.** Покажите, что кривая $V(x^2 y^3) \subset \mathbb{A}^2$ неприводима, но не нормальна.
- **АГ4•12.** Нормален ли конус $V(x^2 y^2 z^2) \subset \mathbb{A}^3$?
- **АГ4** \diamond **13.** Пусть над алгебраически замкнутым полем многочлен f обращается в нуль в каждой точке гиперповерхности $V(g) \subset \mathbb{A}^n$. Покажите, что каждый неприводимый сомножитель многочлена g делит многочлен f. Так ли тут существенна замкнутость поля?
- **АГ4•14.** Пусть X компактное хаусдорфово топологическое пространство, A кольцо непрерывных функций $X \to \mathbb{R}$. Покажите, что отображение $X \to \operatorname{Spec}_m A$, $x \mapsto \ker \operatorname{ev}_x$, биективно и топология Зарисского на $\operatorname{Spec}_m A$ совпадает с исходной топологией на X.
- **АГ4\diamond15*.** Всякий ли простой идеал кольца непрерывных функций [01] $\to \mathbb{R}$ максимален?
- **АГ4** \diamond **16.** Опишите замыкание единичной сферы $S^3=\{(z_1,z_2)\in\mathbb{C}^2:|z_1|^2+|z_2|^2=1\}$ в топологии Зарисского на комплексной аффинной плоскости $\mathbb{A}^2(\mathbb{C})$.
- **АГ4<17.** Приведите пример непрерывного в топологии Зарисского, но не регулярного морфизма аффинных алгебраических многообразий.
- **АГ4** \diamond **18.** Пусть $X = \operatorname{Spec}_m A$ аффинное алгебраическое многообразие. Покажите, что разложимость A в прямое произведение $A = A_1 \times A_2$ равносильна разложимости $A = A_1 \times A_2$ разносильна разложимости.
- **АГ4•19.** Для аффинных алгебраических многообразий $X \subset \mathbb{A}^n$, $Y \subset \mathbb{A}^m$, уравнения которых известны, опишите систему уравнений, реализующих $X \times Y$ как подмногообразие в \mathbb{A}^{n+m} и покажите, что $X \times Y$ неприводимо, если X и Y неприводимы.

 $^{{}^{1}}$ T. e. $\forall a \in A \ aM = 0 \Rightarrow a = 0$.

 $^{^2}$ С тавтологическим действием $n \cdot a \stackrel{\text{def}}{=} a + a + \cdots + a$ (n одинаковых слагаемых).

³Напомню, что для разложимости алгебры (даже не обязательно коммутативной) в прямое произведение двух подалгебр необходимо и достаточно разложения единицы $1 = e_1 + e_2$ в сумму двух независимых идемпотентов, т. е. таких элементов e_1 , e_2 , что $e_1^2 = e_1$, $e_2^2 = e_2$, $e_1e_2 = e_2e_1 = 0$ (докажите это!).

(напишите свои имя, отчество и фамилию)

No	дата	кто принял	подпись
1a			
б			
В			
Г			
Д			
е			
ж			
2			
3			
4a			
б			
5a			
б			
В			
Г			
Д			
6a			
б			<u></u>
7			
8			
9			
10			
11			
12			
13			
14		1	
15			T T
16			
17		<u> </u>	<u> </u>
		<u> </u>	
18		<u> </u>	
19			