Соображения размерности

- **АГ6** \diamond **1.** Покажите, что изолированные точки слоёв любого регулярного морфизма $\varphi: X \to Y$ заметают открытое (возможно, пустое) подмножество в X.
- **АГ6<2** (теорема Шевалле о конструктивности). Докажите, что образ регулярного морфизма алгебраических многообразий получается применением конечного числа операций пересечения, объединения и разности к конечному числу открытых и замкнутых подмножеств.
- **АГ6** \diamond **3** (геометрическое определение размерности). Покажите, что размерность неприводимого многообразия $X \subset \mathbb{P}_n$ равна: **a)** наибольшему такому $d \in \mathbb{Z}$, что $X \cap L \neq \emptyset$ для любого (n-d)-мерного проективного подпространства $L \subset \mathbb{P}_n$ **6)** наименьшему $d \in \mathbb{Z}$, для которого имеется (n-d-1)-мерное проективное подпространство $L \subset \mathbb{P}_n$ с $X \cap L = \emptyset$ **в)** наименьшему такому $d \in \mathbb{Z}$, что $X \cap L = \emptyset$ для общего (n-d-1)-мерного проективного подпространства $L \subset \mathbb{P}_n$.
- **АГ6 4.** Покажите, что множество (n-d)-мерных проективных подпространств $H \subset \mathbb{P}(V)$, пересекающих произвольно заданное d-мерное проективное многообразие $X \subset \mathbb{P}_n = \mathbb{P}(V)$ по конечному множеству точек, является плотным открытым по Зарисскому подмножеством грассманиана $\operatorname{Gr}(n+1-d,V)$, параметризующего все (n-d)-мерные проективные подпространства в $\mathbb{P}(V)$.
- **АГ6 > 5** (*k*-детерминанталь). Обозначим через $\mathcal{D}_k(m,n) \subset \mathbb{P}\big(\mathrm{Mat}_{m \times n}(\Bbbk)\big)$ проективное многообразие матриц M из m строк и n столбцов с $\mathrm{rk}\, M \leqslant k$. С помощью подходящего многообразия инцидентности $\Gamma = \{(L,M) \mid L \subset \ker M\}$ (где L подпространство, а M матрица) покажите, что $\mathcal{D}_k(m,n)$ неприводимое проективное многообразие и найдите $\dim \mathcal{D}_k(m,n)$.
- **АГ6\diamond6.** Покажите, что множество всех поверхностей 4-й степени $S \subset \mathbb{P}_3 = \mathbb{P}(V)$, на которых имеется хоть одна прямая, образует неприводимую алгебраическую гиперповерхность в пространстве $\mathbb{P}(S^4V^*)$ всех поверхностей 4-й степени.
- **АГ6 «>7** (изотропные грассманианы). Покажите, что множество n-мерных проективных подпространств, лежащих на гладкой (2n+1)-мерной квадрике в \mathbb{P}_{2n+2} (соотв. на гладкой 2n-мерной квадрике в \mathbb{P}_{2n+1}) является неприводимым проективным многообразием (соотв. дизъюнктным объединением двух изоморфных друг другу проективных многообразий) и выясните размерности этих многообразий³.
- **АГ6<8** (многообразие секущих). Для неприводимого $X \subset \mathbb{P}(V)$ обозначим через $\mathcal{S}(X) \subset \operatorname{Gr}(2,V)$ замыкание множества всех прямых (p,q) с $p,q \in X$ и $p \neq q$, а через $\mathcal{S}(X) \subset \mathbb{P}(V)$ объединение в $\mathbb{P}(V)$ всех прямых ℓ из $\mathcal{S}(X)$. Покажите, что **a)** $\mathcal{S}(X)$ неприводимо и $\dim \mathcal{S}(X) = 2\dim X$ **6)** $\mathcal{S}(X)$ неприводимо и $\dim \mathcal{S}(X) \leqslant 2\dim X + 1$ **в)** если X скрученная $\mathcal{S}(X) = 3$.
- **АГ6** \diamond **9*** (нормализация). Размерностью dim K нётерова коммутативного кольца K называется максимальное такое $d \in \mathbb{Z}$, что имеется цепочка простых идеалов $\mathfrak{p}_0 \subsetneq \mathfrak{p}_1 \subsetneq \ldots \subsetneq \mathfrak{p}_d \subsetneq K$. Пусть \mathbb{k} любое поле, K конечно порождённая приведённая \mathbb{k} -алгебра, идеалы $I_1 \subset C$ C C C C C Таковы, что факторы C C имеют размерности C0 C1 C2 C3 C4 C4 C5 C6 C6 C8 C9 C

 $^{^{1}}$ Т. е. лежащего в некотором открытом по Зарисскому плотном подмножестве грассманиана Gr(n-d,V), параметризующего все (n-d-1)-мерные проективные подпространства в $\mathbb{P}(V)$.

подсказка: рассмотрите многообразие инцидентности $\Gamma = \{(x, H) \in X \times \operatorname{Gr}(n+1-d, V) \mid x \in H\}$, при помощи проекции $\Gamma \to X$ установите его проективнсть, неприводимость и найдите размерность, после чего примените порекции $\Gamma \to X$ установите его проективнсть, неприводимость и найдите размерность, после чего примените

⁴Т. е. не содержащаяся в плоскости.

No	дата	кто принял	подпись
1			
2			<u> </u>
3a			
б			
В			
4			
5			
6			
7			
8a			
б			
В			
9			