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§1 Projective geometry

1.1 Preliminaries. Algebraic geometry deals with figures looking locally1 as a set of solutions for
some system of polynomial equations on affine space. Recall briefly what does the latter mean.

1.1.1 Polynomials. Let  be a vector space of dimension  over a field 𝕜. Its dual space ∗

is the space of all linear maps  → 𝕜, also known as linear forms or covectors. We write ⟨ఝ , ௩ ⟩ =
= ఝ(௩) ∈ 𝕜 for the value of a covector ఝ ∈ ∗ on a vector ௩ ∈ . Given a basis భ, మ, … ,  ∈ ,
its dual basis ௫భ,௫మ, … ,௫ ∈ ∗ consists of the coordinate linear forms defined by prescriptions

⟨௫ , ೕ ⟩ =
{
ଵ if  = 
 otherwise.

�

We write ௌ∗ = 𝕜[௫భ,௫మ, … ,௫] for the algebra of polynomials in ௫’s with coefficients in 𝕜. An-
other choice of basis in ∗ leads to an isomorphic algebra whose generators are obtained from ௫’s by
invertible linear change of variables. We write ௌ∗ ⊂ ௌ∗ for the subspace of homogeneous poly-
nomials of degree ௗ. This subspace is not changed under linear changes of variables. A basis of ௌ∗

is formed by the monomials ௫భ
భ ௫మ

మ …௫ numbered by the collections  = (భ,మ, … ,)
of integers  ⩽  ⩽ ௗ such that ∑ = ௗ.
Exercise 1.1. Make sure that dimௌ∗ = (+−భ

 ) as soon dim = .

Remark 1.1. Actually, the symmetric algebra ௌ∗ and symmetric powers ௌ∗ of a vector space ∗

admit an intrinsic coordinate-free definition, see n∘ 4.3.1 on p. 45 below. The algebra ௌ∗ is graded,
i.e.,

ௌ∗ = ⨁
⩾బ

ௌ∗

as a vector space and ௌೖ∗ ⋅ ௌ∗ ⊂ ௌೖ+∗.

1.1.2 Affine space and polynomial functions. Associated with a vector space  of dimen-
sion  is the affine space 𝔸 = 𝔸(), also called the affinization of . By the definition, the points
of 𝔸() are the vectors of . The point corresponding to the zero vector is called the origin and
denoted ை. All the other points can be imagined as the heads of non zero radius-vectors drawn
from the origin. Every polynomial  = ∑


௫భ

భ …௫ ∈ ௌ∗ produces the polynomial function

∶ 𝔸() → 𝕜 , ௩ ↦ ∑

⟨௫భ , ௩ ⟩భ … ⟨௫ , ௩ ⟩ , (1-1)

which evaluates the polynomial at the coordinates of points ௩ ∈ 𝔸(). Despite Proposition 1.1
below, this function is traditionally denoted by the same letter as polynomial.

Proposition 1.1
The homomorphism of algebras ఌ ∶ 𝕜[௫భ,௫మ, … ,௫] → {functions 𝔸 → 𝕜}, which sends a poly-
nomial  ∈ 𝕜[௫భ,௫మ, … ,௫] to the corresponding polynomial function ∶ 𝔸 → 𝕜, is injective if
and only if the ground field 𝕜 is infinite.

1That is, in some neighbor of every point.
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1.2. Projective space 5

Proof. If 𝕜 consists of  elements, then the space of all functions 𝔸 → 𝕜 consists of  elements
whereas the polynomial algebra 𝕜[௫భ,௫మ, … ,௫] is an infinite set. Hence, homomorphism ఌ is not
injective. Let 𝕜 be infinite. For  = ଵ, any non zero polynomial  ∈ 𝕜[௫భ] has at most deg roots.
Hence, the corresponding polynomial function  ∶ 𝔸భ → 𝕜 is not the zero function. For  > ଵ, we
proceed inductively. Expand  ∈ 𝕜[௫భ,௫మ, … ,௫] as1 (௫భ, … ,௫) = ∑ೖ ഌ(௫భ, … ,௫−భ) ⋅ ௫ೖ. If
the polynomial function  ∶ 𝔸 → 𝕜 vanishes identically, then the evaluation of all coefficients ೖ
at any point ௪ ∈ 𝔸−భ ⊂ 𝔸 turns  into polynomial (௪,௫) ∈ 𝕜[௫] that produces the zero
function on line 𝔸భ ⊂ 𝔸 passing through ௪ parallel to ௫-axis. Hence, (௪,௫) =  in 𝕜[௫], i.e.,
all the coefficients ೖ(௪) are identically zero functions of ௪ ∈ 𝔸−భ. By induction, they all are the
zero polynomials. �

Exercise 1.2. Let  be a prime number, 𝔽 = ℤ∕() the residue field modulo . Give an explicit
example of non-zero polynomial  ∈ 𝔽[௫] that produces the zero function  ∶ 𝔽 → 𝔽.
1.1.3 Affine algebraic varieties. For a polynomial  ∈ ௌ∗, the set of all zeros of the corre-

sponding polynomial function ∶ 𝔸() → 𝕜 is denoted () ≝ { ∈ 𝔸() | () = } and called
an affine algebraic hypersurface. An intersection of affine hypersurfaces is called an affine algebraic
variety. Thus, an algebraic variety is a figure  ⊂ 𝔸 defined by an arbitrary system of polynomial
equations. The simplest example of a hypersurface is an affine hyperplane given by linear equation
ఝ(௩) = , where ఝ ∈ ∗ is a non-zero linear form, and  ∈ 𝕜. Such a hyperplane passes through
the origin if and only if  = . In this case the hyperplane coincides with the affinization 𝔸(Annఝ)
of the vector subspace Ann(ఝ) = {௩ ∈  | ఝ(௩) = }, annihilated by the covector ఝ. In general
case, an affine hyperplane ఝ(௩) =  is the shift of 𝔸(Annఝ) by an arbitrary vector ௨ such that
ఝ(௨) = .
1.2 Projective space. Much more interesting geometric

𝑂

Affine chart  = {௩ | క(௩) = ଵ}

H
yp
er
pl
an
eo

fi
nfi
ni
ty
ℙ(

An
nక

)

Fig. 1⋄1. Projective word.

object associated with a vector space  is the projective
space ℙ(), also called the projectivization of . By the
definition, the points of ℙ() are the vector subspaces of
dimension one in  or, equivalently, the lines in𝔸() pass-
ing through the origin. To see them as «usual dots» we
have to intersect these lines with a screen, an affine hy-
perplane non-passing through the origin, like on fig. 1⋄1.
We write  for such the hyperplane given by linear equa-
tion క(௩) = ଵ, where క ∈ ∗ ∖, and call it the affine chart
provided by covector క.
Exercise 1.3. Convince yourself that the map క ↦ 
establishes a bijection between the non zero covec-
tors and affine hyperplanes in 𝔸() that do not pass
through the origin.

No affine chart covers the whole ℙ(). The difference ℙ() ∖  = ℙ(Ann క) consists of all lines
annihilated by క, i.e., laying inside the parallel copy of  drawn through the origin. The projective
space formed by these lines is called the infinity of affine chart .

Every point of ℙ() is covered by some affine chart. For dim =  + ଵ, the charts are affine
spaces of dimension , and ℙ() is looking locally as 𝔸. By this reason, we say that ℙ() has

1That is, as a polynomial in ௫ with coefficients in the ring 𝕜[௫భ,௫మ, … ,௫−భ]



6 §1Projective geometry

dimension  if dim =  + ଵ, and write ℙ instead of ℙ() when the nature of  is not essential.
Note that in a contrast with 𝔸 = 𝔸భ × ⋯ × 𝔸భ, the space ℙ is not a direct product of  copies of
ℙభ. It follows from fig. 1⋄1 that ℙ = 𝔸 ⊔ ℙ−భ (a disjoint union). If we repeat this for ℙ−భ and
further, we get the decomposition ℙ = 𝔸 ⊔ 𝔸−భ ⊔ ℙ−మ = ⋯ = 𝔸 ⊔ 𝔸−భ ⊔ … ⊔ 𝔸బ, where
𝔸బ = ℙబ is the one point set.
Exercise 1.4. Consider this decomposition over the finite field 𝔽 of  elements and compute
the cardinalities of both sides independently. Do you recognize the obtained identity on ?
1.2.1 Homogeneous coordinates. A choice of basis కబ, కభ, … , క ∈ ∗ identifies  with

𝕜+భ by sending ௩ ∈  to (కబ(௩) , కభ(௩) , … , క(௩)) ∈ 𝕜+భ. Two coordinate rows (௫బ,௫భ, … , ௫)
and (௬బ,௬భ, … , ௬) represent the same point  ∈ ℙ() if and only if they are proportional, i.e.,
௫ഋ ∶ ௫ഌ = ௬ഋ ∶ ௬ഌ for all  ⩽ ఓ ≠ ఔ ⩽ , where the identities of type  ∶ ௫ =  ∶ ௬ and
௫ ∶  = ௬ ∶  are allowed as well. Thus, the points  ∈ ℙ() stay in bijection with the collections
of ratios (௫బ∶ ௫భ∶ … ∶ ௫). The latter are called homogeneous coordinates on ℙ() with respect
to the chosen basis.

1.2.2 Local affine coordinates. Pick an affine chart  = {௩ ∈  | క(௩) = ଵ} on ℙ = ℙ().
Any  covectors కభ, కమ, … , క ∈ ∗ such that క, కభ, కమ, … , క form a basis of ∗ provide  with
local affine coordinates. Namely, consider the basis బ, భ, … ,  in  dual to క, కభ, కమ, … , క, and
the affine coordinate system with origin at బ ∈  and axes భ, మ, … ,  ∈ Ann క. The affine
coordinates of a point  ∈ ℙ in this system are computed as follows: rescale  to get the vector
௨ = ∕క() ∈  and evaluate  linear forms కഌ, ଵ ⩽ ఔ ⩽ , at this vector. The resulting numbers
(௧భ(), ௧మ(), … , ௧()), where ௧() = క(௨) = క()∕క() are called local affine coordinates of 
in the chart  with respect to the covectors క. Note that local affine coordinates are non-linear
functions of homogeneous coordinates.

𝑠 = 𝑝∕𝑝ଵ

𝑡 = 𝑝ଵ∕𝑝
(1, 0)

(0, 1)
(𝑝 ∶ 𝑝ଵ) = (1 ∶ 𝑡) = (𝑠 ∶ 1)

𝑈∶ 𝑥 = 1

𝑈ଵ∶ 𝑥ଵ = 1

𝑂
𝑥

𝑥ଵ

Fig. 1⋄2. The standard affine charts on ℙభ.

Example 1.1 (projective line)
The projective line ℙభ = ℙ(𝕜మ) is covered by two affine charts బ = ೣబ and భ = ೣభ represented
by the affine lines ௫బ = ଵ and ௫భ = ଵ in 𝔸మ = 𝔸(𝕜మ), see fig. 1⋄2. The chart బ covers the whole
ℙభ except for the point ( ∶ ଵ), the vertical axis in 𝕜మ. The function ௧ = ௫భ|ೆబ = ௫భ ∕௫బ can be
taken as a local affine coordinate in బ. The infinite point of the chart భ is (ଵ ∶ ), the horizontal
axis in 𝕜మ. The function ௦ = ௫బ|ೆభ = ௫బ ∕௫భ can be taken as a local affine coordinate in భ. If a
point  = (బ ∶ భ) = (ଵ ∶ భ∕బ) = (బ∕భ ∶ ଵ) is visible in the both charts, then its coordinates
௧ = భ ∕బ and ௦ = బ ∕భ are inverse to one other. Thus, ℙభ is obtained by gluing two distinct
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copies of 𝔸భ = 𝕜 along the complements to zero by the rule: a point ௦ of the first 𝔸భ is identified
with the point ଵ∕௦ of the second. Over the field ℝ of real numbers, this gluing procedure can be
visualized as follows. Consider the circle of diameter one and identify two copies of ℝ with two
tangent lines passing through a pair of opposite points of the circle, see fig. 1⋄3. Then map each
line to the circle via the central projection from the point opposite to the point of contact. It is
immediate from fig. 1⋄3 that ଵ ∶ ௦ = ௧ ∶ ଵ for any two points ௦, ௧ of different lines mapped to the
same point of the circle.

N

S

p

t=1/s

s=1/t

∅
1

Fig. 1⋄3. ℙభ(ℝ) ≃ ௌభ.

The same construction works for the field ℂ of complex numbers as well, see fig. 1⋄4. Consider
the sphere of diameter one and identify two copies of ℂ with two tangent planes drown through
the south and north poles of the sphere in the way1 shown on fig. 1⋄4. The central projection of
each plane to the sphere from the pole opposite to the point of contact sends complex numbers
௦, ௧, laying on different planes, to the same point of sphere if and only if ௦ and ௧ have opposite
arguments and inverse absolute values2, i.e., ௧ = ଵ∕௦. Thus, the complex projective line can be
thought of as the sphere.

p

t=1/s

s=1/t

1

i

1

i

N

S

U0≃C

U1≃C

Fig. 1⋄4. ℙభ(ℂ) ≃ ௌమ.

1Note that the both planes have compatible orientatons with respect to the sphere in the sense that they
can be obtained one from the other by continuous move along the surface of sphere.

2The latter follows from fig. 1⋄3.
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Exercise 1.5. Make sure that a) the real projective plane ℙమ(ℝ) can be obtained by gluing a
Möbius tape with a disc along their boundary circles1 b) the real projective 3D space ℙయ =
= ℙ(ℝర) can be identified with the Lie group SOయ(ℝ) of rotations of the Euclidean space ℝయ
about the origin.

Example 1.2 (standard affine covering for ℙ)
The standard affine covering of ℙ = ℙ (𝕜+భ) is formed by  + ଵ affine charts ഌ ≝ ೣഌ ⊂ 𝕜+భ

given by equations ௫ഌ = ଵ. For every ఔ = , ଵ, … , , the functions

௧(ഌ)
 = ௫|ೆഌ = ௫

௫ഌ
,  ⩽  ⩽  ,  ≠ ఔ ,

are taken as default local affine coordinates inside ഌ. This allows to think of ℙ as the result of
gluing +ଵ distinct copies బ,భ, … , of affine space 𝔸 along their actual intersections inside
ℙ. In terms of homogeneous coordinates ௫ = (௫బ∶ ௫భ∶ … ∶ ௫) on ℙ, the intersection ഋ∩ഌ
consists of all ௫ ∈ 𝕜+భ such that ௫ഋ ≠  and ௫ഌ ≠ . In terms of local affine coordinates inside
ഋ and ഌ respectively, this locus is described by inequalities ௧(ഋ)

ഌ ≠  and ௧(ഌ)
ഋ ≠ . Two points

௧(ഋ) ∈ ഋ and ௧(ഌ) ∈ ഌ are glued together in ℙ if and only if ௧(ഋ)
ഌ = ଵ∕௧(ഌ)

ഋ and ௧(ഋ)
 = ௧(ഌ)

 ∕௧(ഌ)
ഋ for

 ≠ ఓ,ఔ. The right hand sides of these relations are called the transition functions from ௧(ഌ) to ௧(ഋ).

1.3 Projective algebraic varieties. Let us fix some basis ௫బ,௫భ, … ,௫ in ∗. In a contrast with
the affine geometry, a non-constant polynomial  ∈ 𝕜[௫బ,௫భ, … ,௫] does not produce a well
defined function on ℙ() anymore, since typically (௩) ≠ (ఒ௩) for non zero ௩ ∈  and ఒ ∈ 𝕜.
However, for any homogeneous polynomial  ∈ ௌ∗, the zero set () = { ∈ ℙ() | (௩) =  } is
still well defined in ℙ(), because (௩) =  ⟺ (ఒ௩) = ఒ(௩) = . In other words, for such ,
the affine hypersurface () ⊂ 𝔸() is a cone ruled by lines passing through the origin. The set of
these lines is also denoted by () ⊂ ℙ() and called a projective hypersurface of degree ௗ = deg.
An intersection of projective hypersurfaces is called an algebraic projective variety.

The simplest example of a projective variety is a projective subspace ℙ() ⊂ ℙ(), the projec-
tivization of a vector subspace  ⊂ . It is described by a system of linear homogeneous equations
ఝ(௩) = , where ఝ runs through Ann ⊂ ∗. For example, the projectivized linear span of any two
non-proportional vectors , ∈  is denoted () ⊂ ℙ() and called a line. It consists of ll points
represented by the vectors ఒ + ఓ, ఒ,ఓ ∈ 𝕜. Alternatively, it is described by the system of linear
equations క(௫) = , where క runs through the subspace Ann() ∩ Ann() ⊂ ∗ or, equivalently,
through an arbitrary basis of this subspace. The ratio (ఒ ∶ ఓ) can be considered as the internal
homogeneous coordinate of the point ఒ + ఓ on the projective line () with respect to the basis
, .
Exercise 1.6. Show that dim ∩  ⩾ dim + dim  −  for any two projective subspaces
,  ⊂ ℙ. In particular,  ∩  ≠ ∅ soon dim + dim  ⩾ . For example, any two lines on
ℙమ are intersecting.

Example 1.3 (real affine conics)
Consider the real projective plane ℙమ = ℙ(ℝయ) and the curve  defined by homogeneous equation

௫మబ + ௫మభ = ௫మమ . (1-2)
1Note that the boundary of a Möbius tape is a circle as well as the boundary of a disc.
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In the standard affine chart మ, where ௫మ = ଵ, in the default local affine coordinates ௧బ = ௫బ∕௫మ,
௧భ = ௫భ∕௫మ, the equation (1-2) turns to the equation of circle ௧మబ + ௧మభ = ଵ. In the chart భ, where
௫భ = ଵ, in the coordinates ௧బ = ௫బ ∕௫భ , ௧మ = ௫మ ∕௫భ, we get the hyperbola ௧మమ − ௧మబ = ଵ. In the
«slanted» chart ೣభ+ೣమ , where ௫భ + ௫మ = ଵ, in the coordinates

௦ = ௫బ|ೆೣభ+ೣమ
= ௫బ
௫భ + ௫మ

, ௧ = (௫మ − ௫భ)|ೆೣభ+ೣమ
= ௫మ − ௫భ
௫మ + ௫భ

,

the equation (1-2) turns1 to the equation of parabola ௦మ = ௧. Thus, the affine ellipse, hyperbola, and
parabola are just different pieces of the same projective curve  observed in several affine charts.
The shape of  in an affine chart  ⊂ ℙమ is determined by the positional relationship between 
and the infinite line ℓ∞ = (క) of the chart . The curve  is looking as an ellipse, hyperbola, and
parabola as soon ℓ∞ does not intersect , touches  at one point, and intersects  in two distinct
points respectively, see. fig. 1⋄5.

Fig. 1⋄5. Real projective conic.

1.3.1 Projective closure of affine variety. The affine space 𝔸 = 𝔸(𝕜) with coordinates

(௫భ,௫మ, … ,௫)

can be considered as the standard affine chart బ in the projective space ℙ = ℙ (𝕜+భ) with
homogeneous coordinates (௫బ∶ ௫భ∶ … ∶ ௫). Every affine algebraic hypersurface ௌ = () ⊂
𝔸, where (௫భ,௫మ, … ,௫) is a (non-homogeneous) polynomial of degree ௗ, admits the canonical
extension to the projective hypersurface ௌ = () ⊂ ℙ called the projective closure of ௌ and defined
by the homogeneous polynomial (௫బ,௫భ, … , ௫) ∈ ௌ∗ of the same degree ௗ such that

(ଵ, ௫భ, … , ௫) = (௫భ,௫మ, … ,௫) .

This polynomial is constructed as follows: write  as

(௫భ,௫మ, … ,௫) = బ + భ(௫భ,௫మ, … ,௫) + మ(௫భ,௫మ, … ,௫) + ⋯ + (௫భ,௫మ, … ,௫)
1Move ௫మభ to the right hand side of (1-2) and divide the both sides by (௫మ + ௫భ)మ.
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where every component  is homogeneous of degree , and put
(௫బ,௫భ, … , ௫) = బ ⋅ ௫బ + భ(௫భ,௫మ, … ,௫) ⋅ ௫−భ

బ + ⋯ + (௫భ,௫మ, … ,௫) .

Note that ௌ∩బ = ௌ and the complement ௌ ∖ௌ = ௌ∩(∞)
బ is cut out of ௌ by the infinite hyperplane

௫బ =  of the chart బ. In terms of the standard homogeneous coordinates (௫భ ∶ ௫మ ∶ ⋯ ∶ ௫) on
the infinite hyperplane, the intersection with ௌ is described by the homogeneous equation

(௫భ,௫మ, … ,௫) = 

of degree ௗ, that is, by the vanishing of top degree homogeneous component of the polynomial 
describing ௌ. Thus, the infinite points of ௌ are nothing else than the asymptotic directions of affine
hypersurface ௌ.

For example, the projective closure of affine cubic curve ௫భ = ௫యమ is the projective cubic ௫మబ௫భ =
௫యమ. The latter has exactly one infinite point ∞ = ( ∶ ଵ ∶ ). In the standard chart భ, which
covers this point, the curve looks like the semi-cubic parabola ௫మబ = ௫యమ with a cusp at ∞.

1.3.2 Space of hypersurfaces. Since proportional polynomials define the same hypersurfaces
() = (ఒ) , the projective hypersurfaces of a fixed degree ௗ can be viewed as the points of
projective space 𝒮 = 𝒮() ≝ ℙ(ௌ∗), which is called the space of degree ௗ hypersufaces in ℙ() .
Exercise 1.7. Find dim 𝒮() assuming that dim =  + ଵ.

Projective subspaces of 𝒮 are called linear systems of hypersurfaces. For example, all degree ௗ
hypersurfaces passing through a given point  ∈ ℙ() form a linear system of codimension one,
i.e., a hyperplane in 𝒮, because the equation () =  is linear in  ∈ ௌ∗. Every hypersurface
laying in a linear system spanned by (భ), (మ), … , () , is given by equation of the form

ఒభభ + ఒమమ + ⋯ + ఒ =  , where ఒభ,ఒమ, … ,ఒ ∈ 𝕜 .

In particular, any such a hypersurface contains the intersection locus (భ) ∩ (మ) ∩ … ∩ ().
The points of this intersection are called the base points of the linear system. Traditionally, linear
systems of dimensions 1, 2, 3 are called pencils, nets, and webs respectively.
Exercise 1.8. Show that each pencil of hypersurfaces contains a hypersurface passing through
an arbitrarily prescribed point.

Caution 1.1. It should be kept in mind that if the ground field is not algebraically closed, then
some polynomials of degree ௗ may determine nothing geometrically reminiscent of a hypersurface
of degree ௗ. For example, the equation ௫మబ + ௫మభ =  over ℝ describes the empty set ∅ on the
projective line ℙభ, and the one point set ( ∶  ∶ ଵ) in the projective plane ℙమ. Even over an
algebraically closed field, some distinct points  ≠  in ℙ(ௌ∗) produce the same zero set () =
() in ℙ(). For example, the non-proportional polynomials ௫మబ௫భ and ௫బ௫మభ define the same two-
point set {( ∶ ଵ), (ଵ ∶ )} on ℙభ. We postpone the discussion of geometric concepts avoiding such
problems up to §7.

1.3.3 Working example: unordered collections of points on the line. Let  = 𝕜మ with the
standard coordinates ௫బ,௫భ. Every set of ௗ not necessary distinct points భ,మ, … , ∈ ℙభ = ℙ()
is the zero set of homogeneous polynomial of degree ௗ

(௫బ,௫భ) =


∏
ഌ=భ

det(௫,ഌ) =


∏
ഌ=భ

(ഌ,భ௫బ − ഌ,బ௫భ) , where ഌ = (ഌ,బ ∶ ഌ,భ) , (1-3)
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which is predicted by the set uniquely up to a scalar factor. We say that the points  are the roots
of . Each non-zero homogeneous polynomial of degree ௗ has at most ௗ distinct roots on ℙభ. If
the ground field 𝕜 is algebraically closed, the number of roots1 equals ௗ, and sending a collection
of points భ,మ, … , to the polynomial (1-3) establishes the bijection between the non-ordered
ௗ-typles of points on ℙభ and the points of projective space ℙ(ௌ∗).

For an arbitrary field 𝕜, those collections where all ௗ points coincide form a curve

 ⊂ ℙ = ℙ(ௌ∗)

called the Veronese curve2 of degree ௗ. It coincides with the image of the Veronese embedding

௩ ∶ ℙ×
భ = ℙ (∗) ↪ ℙ = ℙ (ௌ∗) , ఝ ↦ ఝ , (1-4)

that takes a linear form ఝ ∈ ∗, whose zero set consists of one point  = Annఝ ∈ ℙభ = ℙ(), to
the ௗ th power ఝ ∈ ௌ(∗), whose zero set is the ௗ-tiple point .

Now assume that char 𝕜 = , write polynomials ఝ ∈ ∗ and  ∈ ௌ(∗) in the form3

ఝ(௫) = ఈబ௫బ + ఈభ௫భ , (௫) = ∑
ഌ
ഌ ⋅ (

ௗ
ఔ)௫−ഌ

బ ௫ഌభ ,

and use ఈ = (ఈబ ∶ ఈభ) and  = (బ∶ భ∶ … ∶ ) as homogeneous coordinates in the spaces
ℙ×
భ = ℙ(∗) and ℙ = ℙ(ௌ∗) respectively. Then we get the following parameterization of the

Veronese curve by the points of ℙ×
భ :

(ఈబ ∶ ఈభ) ↦ (బ∶ భ∶ … ∶ ) = (ఈబ ∶ ఈ−భ
బ ఈభ ∶ ఈ−మ

బ ఈమభ ∶ ⋯ ∶ ఈభ ) . (1-5)

It shows that  consists of all those (బ∶ భ∶ … ∶ ) ∈ ℙ that form a geometric progression,
i.e., such that the rows of matrix

 = (
బ భ మ … −మ −భ
భ మ య … −భ  )

are proportional. The condition rk = ଵ is equivalent to the system of homogeneous quadratic
equations ೕ+భ = +భೕ saying that all ଶ × ଶ-minors of  vanish. Thus,  ⊂ ℙ is an algebraic
projective variety rationally parameterized by the points of projective line. The intersection of 
with an arbitrary hyperplane in ℙ given by linear equation బబ +భభ + ⋯ + =  consists
of the Veronese-images of roots (ఈబ ∶ ఈభ) ∈ ℙభ of homogeneous polynomial ∑ഌ ഌ ⋅ ఈ−ഌ

బ ఈഌభ of
degree ௗ. Since it has at most ௗ roots, any ௗ+ଵ distinct points on the Veronese curve do not lie in
a hyperplane. This implies that for ଶ ⩽  ⩽ ௗ + ଵ, any  distinct points of  span a subspace of
dimension  − ଵ and do not lie in a subspace of dimension ( − ଶ).
Exercise 1.9. Make sure that this fails when char 𝕜 is positive and divides ௗ.

If 𝕜 is algebraically closed,  intersects any hyperplane in precisely ௗ points (some of which may
coincide). By this reason we say that  has degree ௗ.

1Counted with multiplicities, where the multiplicity of a root  is defined as the maximal integer  such
that detೖ(௫,) divides  in 𝕜[௫బ,௫భ].

2It has several other names: rational normal curve, twisted rational curve of degree ௗ etc
3Note that for char 𝕜 > , the binomial coefficients (ഌ) may vanish and can not be factored out the

coefficients of .
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Example 1.4 (Veronese conic)
The Veronese conic మ ⊂ ℙమ consists of quadratic trinomials బ௫మబ+ଶభ௫బ௫భ+మ௫మభ that are perfect
squares of linear forms. It is given by the equation  ∕ସ = − det ( ೌబ ೌభೌభ ೌమ ) = మభ − బమ =  and
comes with the rational parametrization బ = ఈమబ, భ = ఈబఈభ, మ = ఈమభ .
1.4 Complementary subspaces and projections. Projective subspaces  = ℙ() and  = ℙ(ௐ)
inℙ = ℙ() are called complementary, if∩ = ∅ and dim+dim  = −ଵ. For example, any two
non-intersecting lines in ℙయ are complementary. In terms of the linear algebra, the complementarity
of ,  means that the vector subspaces ,ௐ ⊂  have zero intersection  ∩  =  and

dim + dimௐ = dim + ଵ + dim  + ଵ =  + ଵ = dim ,
i.e.,  =  ⊕ ௐ. In this case every vector ௩ ∈  has a unique decomposition ௩ = ௨ + ௪, where
௨ ∈ , ௪ ∈ௐ. In particular, ௩ ∉  ∪ ௐ if and only if the both components ௨, ௪ are non zero.
Geometrically, this means that every point  ∉  ⊔  lies on a unique line intersecting the both
subspaces , .
Exercise 1.10. Make it sure.

For a pair of complementary subspaces ,  ⊂ ℙ, the projection గ಼ಽ ∶ (ℙ ∖) →  from  onto 
acts identically on  and sends every point  ∉  ⊔  to the unique point  ∈  such that the line
() intersects . In homogeneous coordinates (௫బ∶ ௫భ∶ … ∶ ௫) such that (௫బ∶ ௫భ∶ … ∶ ௫)
are the coordinates in  and (௫+భ∶ ௫+మ∶ … ∶ ௫) are the coordinates in , the projection గ಼ಽ
just removes the first  + ଵ coordinates ௫ഌ ,  ⩽ ఔ ⩽ .
Example 1.5 (projecting a conic to a line)
Let ,  ⊂ ℙమ be the conic and line given by equations1

𝑞(𝑡′)
𝑡′

𝑞(𝑡″)
𝑡″

 = (ଵ ∶  ∶ ଵ)
( ∶  ∶ ଵ) 𝑥

𝑥ଵ

𝐿
𝐶

ℓ௧′

ℓ௧″

Fig. 1⋄6. Projecting a conic to a line.

௫మబ + ௫మభ = ௫మమ and ௫బ =  respectively. Consider the pro-
jection గಽ ∶  →  of  to  from  = (ଵ ∶  ∶ ଵ) ∈ 
and extend it to  by sending  to ( ∶ ଵ ∶ ) ∈ , the in-
tersection point of  with the tangent line to  at . In the
standard affine chart మ this looks as on fig. 1⋄6. Clearly,
గಽ provides a bijection between  and . This bijection
is birational: the homogeneous coordinates of the corre-
sponding points

 = (బ ∶ భ ∶ మ) ∈ 
௧ = ( ∶ ௧భ ∶ ௧మ) = గಽ () ∈ 

are rational algebraic functions of each other:

(௧భ ∶ ௧మ) = (భ ∶ మ − బ) , (బ ∶ భ ∶ మ) = (௧మభ − ௧మమ ∶ ଶ௧భ௧మ ∶ ௧మభ + ௧మమ)
Exercise 1.11. Check these formulas and use the second of them to list all integer solutions of
the Pythagor equation మ + మ = మ up to common integer factor.

The invertible linear change of homogeneous coordinates by formulas
⎧⎪
⎨
⎪⎩

బ = ௫మ + ௫బ
భ = ௫భ
మ = ௫మ − ௫బ

�
⎧⎪
⎨
⎪⎩

௫బ = (బ − మ)∕ଶ
௫భ = భ
௫బ = (బ + మ)∕ଶ

�

1It is the same as in Example 1.3 on p. 8 above.
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transforms  to the Veronese conic మభ = బమ from Example 1.4 on p. 12 and turns the above
parameterization to the standard parameterization of Veronese conic.

1.5 Linear projective transformations. Any linear isomorphism of vector spaces ி ∶  ⥲ ௐ
produces well defined bijection ி ∶ ℙ() ⥲ ℙ(ௐ) called a linear projective isomorphism.
Exercise 1.12. Given two hyperplanes భ, మ ⊂ ℙ = ℙ() and a point  ∉ భ ∪ మ, verify that
a projection from  to మ induces a linear projective isomorphism ఊ ∶ భ ⥲ మ.

Theorem 1.1
For any two vector spaces , ௐ of the same dimension  + ଵ and two ordered collections of
 + ଶ points బ,భ, … ,+భ ∈ ℙ(), బ,భ, … ,+భ ∈ ℙ(ௐ) such that no  + ଵ points of each
collection lie in a hyperplane, there exists a unique up scalar factor linear isomorphism of vector
spaces ி ∶  ⥲ ௐ such that ி() =  for all .

Proof. Fix some vectors ௨, ௪ representing the points ,  and chose the vectors ௨బ,௨భ, … ,௨
and ௪బ,௪భ, … ,௪ as the bases in  and ௐ. The condition ி() =  means that ி(௨) = ఒ௪
for some non zero ఒ ∈ 𝕜. Thus, the matrix of ி in chosen bases is diagonal with ఒబ,ఒభ, … ,ఒ on
the diagonal. Further, all coordinates ௫ in the expansion ௨+భ = ௫బ௨బ + ௫భ௨భ + ⋯ + ௫௨ are
non zero, because vanishing of ௫ೖ forces  + ଵ points ೕ with  ≠  lie in the hyperplane ௫ೖ = .
The same holds for the expansion ௪+భ = ௬బ௪బ + ௬భ௪భ + ⋯ + ௬௪, certainly. The condition
ி(௨+భ) = ఒ+భ௪+భ implies that ఒ௫ = ఒ+భ௬ for all  ⩽  ⩽ . Therefore the diagonal elements
ఒ = ఒ+భ ⋅ ௬∕௫,  ⩽  ⩽ , are uniquely determined by ி up to non zero scalar factor ఒ+భ. �

Corollar൰ 1.1
Two linear isomorphisms of vector spaces ி,ீ ∶  ⥲ ௐ produce the same linear projective iso-
morphism ி = ீ ∶ ℙ() ⥲ ℙ(ௐ) if and only if ி = ఒீ for some non zero ఒ ∈ 𝕜. �

Example 1.6 (automorphisms of quadrangle)
A figure formed by ସ points భ, మ, య, ర ∈ ℙమ any ଷ of

𝑝ଵ

𝑝ଶ

𝑝ଷ

𝑝ସ

𝑞ଵ

𝑞ଶ

𝑞ଷ
Fig. 1⋄7. Quadrangle and associated

triangle.

which are non-collinear and  lines joining the points like
on fig. 1⋄7 is called a quadrangle. The intersection points of
its opposite sides:

భ = (భమ) ∩ (యర)
మ = (భయ) ∩ (మర)
య = (భర) ∩ (మయ)

and ଷ lines joining them form the associated triangle of the
quadrangle. Every linear projective automorphism of ℙమ
sending the quadrangle to itself permutes its vertexes, and
every permutation of the vertexes is uniquely extended to
a linear projective automorphism of ℙమ by Theorem 1.1.
Hence, the group of all linear projective automorphism of
ℙమ sending the quadrangle to itself is naturally identified
with the symmetric group ௌర. Every transformation from this group permutes the vertexes of as-
sociated triangle. This leads to the surjective homomorphism of groups ௌర ↠ ௌయ. Its kernel is the
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Klein’s normal subgroup

ర = { �(ଵ,ଶ,ଷ,ସ) , (ଶ,ଵ,ସ,ଷ) , (ଷ,ସ,ଵ,ଶ) , (ସ,ଷ,ଶ,ଵ)} �▹ ௌర

formed by the identity permutation and ଷ pairs of independent transpositions. The transpositions
(ଵଶ), (ଵଷ), (ଶଷ) and ଷ-cycles (ଵଶଷ), (ଵଷଶ) from the group ௌర are mapped to the same transpositions
(ଵଶ), (ଵଷ), (ଶଷ) and ଷ-cycles (ଵଶଷ), (ଵଷଶ) from the group ௌయ, see fig. 1⋄7.

1.5.1 Projective linear group. Linear projective automorphisms of ℙ() form a group called
the projective linear group of  and denoted PGL(). It follows from Theorem 1.1 that this group is
isomorphic to the quotient of linear group GL() by the subgroup of scalar dilatations. A choice
of basis in  identifies GL() with the group GL+భ(𝕜) of non-degenerated square matrices. Then
PGL() is identified with group PGL+భ(𝕜) of the same matrices considered up to proportionality.
Such a matrix  acts on a point ௫ = (௫బ∶ ௫భ∶ … ∶ ௫) ∈ ℙ via left multiplication of the
coordinate column: ௫ ↦ (௫) = ௫, where ெ means the transposed ெ.
Example 1.7 (linear fractional transformations of line)
The group PGLమ(𝕜) consists of non-degenerated ଶ × ଶ-matrices  = (

ഀ ഁ
ം ഃ ) with ఈఋ − ఉఊ ≠ 

considered up to a constant factor. Such a matrix acts on ℙభ = ℙ(𝕜మ) by the rule

(௫బ ∶ ௫భ) ↦ (௫బ + ఉ௫భ ∶ ఊ௫బ + ఋ௫భ) .

In the standard affine chart భ ≃ 𝔸భ this action performs the linear fractional transformation of the
local coordinate ௧ = ௫బ∕௫భ by the rule ௧ ↦ (ఈ௧ + ఉ)∕(ఊ௧ + ఋ). Clearly, this transformation is not
changed under rescaling of the matrix . For any triple of distinct points , , ௦, there is a unique
linear fractional map sending them to ∞, , ଵ respectively. Indeed, this map is forced to take

௧ ↦ ௧ − 
௧ −  ⋅ ௦ − 

௦ −  . (1-6)

1.5.2 Cross-ratio. Given two points  = (బ ∶ భ),  = (బ ∶ భ) on ℙభ = ℙ(𝕜మ), the
difference of their affine coordinates in the standard chart భ is expressed trough the determinant
of their homogeneous coordinates by the formula

 −  = బ
భ

− బ
భ

= బభ − భబ
భభ

= det(,)
భభ

.

For an ordered quadruple of distinct points భ, మ, య, ర ∈ ℙభ, the quantity

[భ, మ, య, ర] ≝ (భ − య) (మ − ర)
(భ − ర) (మ − య)

=
det (భ,య) ⋅ det (మ,ర)
det (భ,ర) ⋅ det (మ,య)

(1-7)

is called the cross-ratio of the quadruple భ, మ, య, ర. It follows from (1-6) that [భ, మ, య, ర]
equals the affine coordinate of image of the point ర under the linear projective isomorphism send-
ing భ, మ, య to ∞, , ଵ respectively. It can take any value except for ∞, , ଵ.
Exercise 1.13. Prove that two ordered quadruples of distinct points on ℙభ can be transformed
one to the other by a linear projective automorphism if and only if they have equal cross-ratios.

Since an invertible linear change of homogeneous coordinates is nothing but a linear projective
automorphism, the right hand side of (1-7) does not depend on the choice of coordinates onℙభ. This
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forces the middle part of (1-7) to depend neither on the choice of affine chart containing the points1
nor on the choice of local affine coordinate within the chart. The symmetric group ௌర acts on every
given quadruple of points by permutations. It is clear from (1-7) that the Klein subgroup ర ⊂ ௌర
preserves the cross-ratio: [భ, మ, య, ర] = [మ, భ, ర, య] = [య, ర, భ, మ] = [ర, య, మ, భ].
Exercise 1.14. Check that the values of cross-ratio appearing under the action of ర-cosets of
identity, transpositions (ଵଶ), (ଵଷ), (ଶଷ), and ଷ-cycles (ଵଶଷ), (ଵଷଶ) are related as follows:

[భ, మ, య, ర] = [మ, భ, ర, య] = [య, ర, భ, మ] = [ర, య, మ, భ] =ణ
[మ, భ, య, ర] = [భ, మ, ర, య] = [య, ర, మ, భ] = [ర, య, భ, మ] =ଵ/ణ
[య, మ, భ, ర] = [మ, య, ర, భ] = [భ, ర, య, మ] = [ర, భ, మ, య] =ణ∕(ణ − ଵ)
[భ, య, మ, ర] = [య, భ, ర, మ] = [మ, ర, భ, య] = [ర, మ, య, భ] =ଵ − ణ
[మ, య, భ, ర] = [య, మ, ర, భ] = [భ, ర, మ, య] = [ర, భ, య, మ] =(ణ − ଵ)∕ణ
[య, భ, మ, ర] = [భ, య, ర, మ] = [మ, ర, య, భ] = [ర, మ, భ, య] =ଵ∕(ଵ − ణ) .

(1-8)

These formulas show that there are three special values2 [భ, మ, య, ర] = −ଵ, ଶ, ଵ∕ଶ preserved,
respectively, by the transpositions (ଵଶ), (ଵଷ), (ଶଷ) and cyclically permuted by the ଷ-cycles. Simi-
larly, there are two special values preserved by the ଷ-cycles and interchanged by the transpositions.
They satisfy the equivalent quadratic equations3 ణ = (ణ−ଵ)∕ణ ⇔ ణమ−ణ+ଵ =  ⇔ ణ = ଵ∕(ଵ−ణ).

The five just listed values of [భ, మ, య, ర] are called

a

b

c

d

x

y

z

x′

x′′

Fig. 1⋄8. Harmonic pairs of sides.

special. The quadruples of points with such cross-ratios are
also called special. The permutations of points in a non-
special quadruple lead to  distinct values of the cross-
ratio. For a special quadruple we get either ଷ or ଶ distinct
values.

1.5.3 Harmomic pairs of points. A special quadru-
ple of points ,, ,ௗ ∈ ℙభ with [,, ,ௗ] = −ଵ is called
harmonic. Geometrically, this means that  is the middle
point of [,ௗ] in the affine chart with the infinity at .
Algebraically, the harmonicity means that the cross-ratio
is changed neither by the transposition (ଵଶ), nor by the
transposition (ଷସ), and each of these two properties forces
the quadruple to be harmonic. Since the order preserving
exchange of , with ,ௗ keeps the cross-ratio fixed, the
harmonicity is a symmetric binary relation on the set of
non-ordered pairs of distinct points in ℙభ.
Proposition 1.2 (harmonicit൰ in quadrangle)
For any quadrangle ,, ,ௗ on ℙమ and its associated triangle ௫,௬, ௭, the sides of quadrangle are
harmonic to the sides of triangle in the pencils of lines passing through the vertexes of triangle.

Proof. We verify the proposition at the vertex ௫. The pencil of lines passing through ௫ is pa-
rameterized by the points of line (ௗ) by sending a point  ∈ (ௗ) to the line (௫). We have to

1Algebraically, this means that all four values భ,మ,య,ర ∈ 𝕜 are finite.
2They satisfy the equations ణ = ଵ∕ణ , ణ = ణ∕(ణ − ଵ) , and ణ = ଵ − ణ.
3That is, coincide with two different from −ଵ cubic roots of one as soon those exist in 𝕜.



16 §1Projective geometry

check that [,ௗ, ௭,௫′] = −ଵ, see fig. 1⋄8. Since the central projections from ௫ and ௬ preserve the
cross-ratios, [,ௗ, ௭,௫′] = [, , ௭,௫″] = [ௗ,, ௭,௫′]. Since the transposition in the first pair of
points does not change the cross-ratio, the latter equals −ଵ. �



§2 Projective Quadrics

2.1 Quadratic forms and quadrics. We assume on default in §2 that char 𝕜 ≠ ଶ. Projective
hypersurfaces of degree 2 are called projective quadrics. Given a non-zero quadratic form  ∈ ௌమ∗,
we write ொ = () ⊂ ℙ() for the quadric provided by the zero set of .

2.1.1 The Gram matrix. If char 𝕜 ≠ ଶ, then every quadratic form  ∈ ௌమ∗ on  = 𝕜+భ can
be written as (௫) = ∑,ೕ ೕ௫௫ೕ = ௫௫, where ௫ = (௫బ,௫భ, … , ௫) is the coordinate row, ௫ is
the transposed column of coordinates, and  = (ೕ) ∈ Mat+భ(𝕜) is a symmetric square matrix.
Every non-diagonal element ೕ = ೕ of  equals the half1 of coefficient of monomial ௫௫ೕ in the
reduced expansion for . The matrix  is called the Gram matrix of  in the chosen basis of .

In other words, for any quadratic polynomial  on , there exists a unique symmetric bilinear
form ̃∶  ×  → 𝕜 such that (௩) = ̃(௩, ௩) for all ௩ ∈ . In coordinates,

̃(௫,௬) = ∑ೕ௫௬ೕ = ௫௬ = ଵ
ଶ ∑௬

డ(௫)
డ௫

. (2-1)

In coordinate-free terms, ̃(௫,௬) = భ
మ( �(௫ + ௬) − (௫) − (௬))� = భ

ర( �(௫ + ௬) − (௫ − ௬))� .
Exercise 2.1. Check this.

The symmetric bilinear form ̃ is called the polarization of quadratic form . It can be thought of as
an inner product on , possibly degenerated. The elements of Gram matrix equal the inner products
of basic vectors: ೕ = ̃(, ೕ). In the matrix notations,  =  ⋅ , where  = (బ, భ, … , ) is
the row of basic vectors in ,  is the transposed column of basic vectors, and ௨ ⋅௪ ≝ ̃(௨,௪) ∈ 𝕜
for ௨,௪ ∈ . When we pass to another basis ′ = , where  ∈ GL+భ(𝕜), the Gram matrix  of
 is related with the Gram matrix ′ of ′ as ′ = , because (′) ⋅ ′ =  ⋅ .

2.1.2 The Gram dterminant. Since det ′ = det  ⋅ detమ , the determinant of Gram matrix
does not depend on the choice of basis up to multiplication by non zero squares from 𝕜. We write
det  ∈ 𝕜∕𝕜∗మ for the class of det  modulo multiplication by non zero squares, and call it the Gram
determinant of quadratic form  ∈ ௌమ∗. The form  and quadric ொ = () are called smooth or
non-singular, if det  ≠ . Otherwise they are called singular or degenerated.

2.1.3 The rank. Since the rank of matrix is not changed under multiplications of the matrix by
non-degenerated matrices, the rank of Gram matrix does not depend on the choice of basis as well.
It is called the rang of quadretic form  and quadric ொ = (), and denoted by rk = rkொ ≝ rk.
Proposition 2.1 (Lagrange’s theorem)
For any quadratic form  there exists a basis where the Gram matrix of  is diagonal.

Proof. Induction on dim. If  ≡  or dim = ଵ, then the Gram matrix is diagonal. If dim ⩾ ଶ
and () = ̃(, ) ≠  for some  ∈ , we put భ =  to be the first vector of desired basis.
Every vector ௩ ∈  admits a unique decomposition ௩ = ఒ + ௨, where ఒ ∈ 𝕜 and ௨ ∈ ௩⊥ =
= {௪ ∈  | ̃(௩,௪) =  }. Indeed, the orthogonality of ௩ and ௩ − ఒ forces ఒ = ̃(, ௩)∕ ̃(, ),
then ௨ = ௩ − (̃(,௩)∕̃(, )) ⋅ .
Exercise 2.2. Verify that ௩ − ( �̃(,௩)∕̃(, )) � ⋅  ∈ ⊥.

Thus, we have the orthogonal decomposition  = 𝕜 ⋅  ⊕ ⊥. By induction, there exists a basis
మ, … ,  in ⊥ with diagonal Gram matrix. Hence, భ, మ, … ,  is a required basis for . �

1Note that if char 𝕜 = ଶ, such the matrix  does not always exists.

17
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Corollar൰ 2.1
Every quadratic form  over an algebraically closed field turns to the sum of squares

(௫) = ௫మబ + ௫మభ + ⋯ + ௫మೖ , where  + ଵ = rk ,
in appropriate coordinates on .

Proof. Pass to a basis బ, భ, … ,  in which the Gram matrix is diagonal, renumber the vectors
 in order to have () ≠  exactly for ଵ ⩽  ⩽ , then multiply all these  by ଵ∕√() ∈ 𝕜. �

Example 2.1 (quadrics on ℙభ)
It follows from Proposition 2.1 that the equation of any quadricொ ⊂ ℙభ can be written in appropriate
coordinates on ℙభ either as ௫మబ =  or as ௫మబ +௫మభ = , where  ≠ . In the first case, ொ is singular,
rkொ = ଵ, and the equation of ொ is the squared linear equation of the point ( ∶ ଵ). By this reason,
such a quadric is called a double point. In the second case, rkொ = ଶ, the quadric is smooth, and its
Gram determinant equals  up to multiplication by non-zero squares. If − ∈ 𝕜 is not a square, then
the equation (௫బ∕௫భ)మ = − has no solutions, and the quadric is empty. If − = ఋమ for some ఋ ∈ 𝕜,
then ௫మబ + ௫మభ = (௫బ − ఋ௫భ)(௫బ + ఋ௫భ) has two distinct roots (±ఋ ∶ ଵ) ∈ ℙభ. Thus, the geometry
of quadric ொ = () ⊂ ℙభ is completely determined by the Gram determinant det  ∈ 𝕜∕(𝕜∗)మ. If
det  = , then the quadric is a double point. If − det  = ଵ, that is, − det  ∈ (𝕜∗)మ is a non zero
square, then the quadric consists of two distinct points. If − det  ≠ ଵ, that is, − det  ∈ 𝕜 is not
a square, then the quadric is empty. Note that the latter case never appears over an algebraically
closed field 𝕜.
2.2 Tangent lines. It follows from Example 2.1 that there are precisely 4 different positional
relationships between a quadric ொ and a line ℓ in ℙ: either ℓ ⊂ ொ, or ℓ ∩ ொ is a double point, or
ℓ∩ொ is a pair of distinct points, or ℓ∩ொ = ∅, and the latter case never appears over an algebraically
closed field.
Definition 2.1 (tangent space of quadric)
A line ℓ is called tangent to a quadric ொ at a point  ∈ ொ, if either  ∈ ℓ ⊂ ொ or ொ ∩ ℓ is the double
point . In these cases we say that ℓ touches ொ at . The union of all tangent lines touching ொ at a
given point  ∈ ொ is called the tangent space to ொ at  and denoted by ்ொ.
Proposition 2.2
A line () touches a quadric ொ = () at the point  ∈ ொ if and only if ̃(,) = .

Proof. The Gram matrix of restriction |(ೌ,್) in the basis , of line () is

(
̃(,) ̃(,)
̃(,) ̃(,)) .

Since ̃(,) = () =  by assumption, the Gram determinant det |(ೌ,್) = ̃(,)మ. It vanishes
if and only if ̃(,) = . �

Corollar൰ 2.2 (apparent contour of quadric)
For any point  ∉ ொ, the apparent contour of ொ viewed from , i.e., the set of all points  ∈ ொ such
that the line () touches ொ at , is cut out ொ by the hyperplane  ≝ {௫ ∈ ℙ | ̃(,௫) = }.

Proof. Since ̃(,) = () ≠ , the equation ̃(,௫) =  is a non-trivial linear homogeneous
equation on ௫. Thus,  ⊂ ℙ is a hyperplane, and ொ ∩  coincides with the apparent contour of
ொ viewed from  by Proposition 2.2. �
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2.2.1 Smooth and singular points. Associated with a quadratic form  ∈ ௌమ∗ is the linear
mapping

̂ ∶  → ∗ , ௩ ↦ ̃( ∗ , ௩) , (2-2)
sending a vector ௩ ∈  to the linear form ̂(௩)∶  → 𝕜, ௪ ↦ ̃(௪, ௩). The map (2-2) is called the
correlation of quadratic form .
Exercise 2.3. Convince yourself that the matrix of linear map (2-2) written in dual bases , ௫ of
 and ∗ coincides with the Gram matrix of  in the basis .

This shows once more, that the rank rk = dim− dim ker ̂ does not depend on a choice of basis.
The vector space ker() ≝ ker ̂ = {௩ ∈  | ̃(௪, ௩) =  ∀௪∈ } is called the kernel of quadratic
form . The projectivization of the kernel is denoted

Singொ ≝ ℙ(ker ) = { ∈ ℙ() | ∀௨ ∈  ̂(,௨) = }

and called the vertex space or the singular locus of quadric ொ = () ⊂ ℙ. The points of Singொ
are called singular. All points of the complement ொ ∖ Singொ are called smooth. Thus, a point
 ∈ ொ ⊂ ℙ() is smooth if and only if the tangent space ்ொ = {௫ ∈ ℙ | ̃(,௫) = } is a
hyperplane in ℙ. Conversely, a point  ∈ ொ ⊂ ℙ() is singular if and only if the tangent space
்ொ = ℙ() is the whole space, that is, any line passing through  either lies on ொ or does not
intersect ொ anywhere besides .
Exercise 2.4. Convince yourself that the singularity of a point  ∈ ொ ⊂ ℙ means that

డ
డ௫

() =  for all  ⩽  ⩽ .

Note that a quadric is smooth in the sense of n∘ 2.1.2 if and only if it has no singular points.
Lemma 2.1
If a quadric ொ ⊂ ℙ has a smooth point  ∈ ொ, then ொ is not contained in a hyperplane.

Proof. For  = ଵ, this follows from Example 2.1. Consider  ⩾ ଶ. If ொ lies inside a hyperplane ு,
then every line ℓ ⊄ ு passing through  intersects ொ only in  and therefore is tangent to ொ at .
Hence, ℙ = ு ∪ ்ொ. This contradicts to Exercise 2.5 below. �
Exercise 2.5. Show that the projective space over a field of characteristic ≠ ଶ is not a union of
two hyperplanes.

Theorem 2.1
For any quadric ொ ⊂ ℙ() and projective subspace  ⊂ ℙ() complementary to Singொ, the inter-
section ொ′ =  ∩ ொ is a smooth quadric in , and ொ is the linear join1 of ொ′ and Singொ.

Proof. Let  = ℙ(). Then  = ker  ⊕ . Assume that there exists a vector ௨ ∈  such that
̃(௨,௨′) =  for all ௨′ ∈ . Since ̃(௨,௪) =  for all ௪ ∈ ker  as well, the equality ̃(௨,௩) = 
holds for all ௩ ∈ . Hence, ௨ ∈ ker  ∩  = . That is, ொ′ is smooth. Every line ℓ that intersects
Singொ but is not contained in Singொ does intersect  and either is contained in ொ or does not
intersect ொ anywhere besides the point ℓ ∩ Singொ. This forces ொ to be the union of lines (௦) such
that ௦ ∈ Singொ,  ∈  ∩ ொ. �

1For sets , ⊂ ℙ, their linear join is the union of all lines (௫௬) such that ௫ ∈ , ௬ ∈ .
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2.3 Duality. Projective spaces ℙ = ℙ(), ℙ×
 ≝ ℙ(∗), obtained from dual vector spaces , ∗,

are called dual. Geometrically, ℙ×
 is the space of hyperplanes in ℙ, and vice versa. The linear

equation ⟨ క , ௩ ⟩ = , being considered as an equation on ௩ ∈  for a fixed క ∈ ∗, defines
a hyperplane ℙ(Ann క) ⊂ ℙ. As an equation on క for a fixed ௩, it defines a hyperplane in ℙ×


formed by all hyperplanes in ℙ passing through ௩. For every  = , ଵ, … , there is the canonical
involutive1 bijection  ↔ Ann  between projective subspaces of dimension  in ℙ and projective
subspaces of dimension (−−ଵ) inℙ×

. It is called the projective duality. For a given  = ℙ() ⊂ ℙ,
the dual subspace Ann  ≝ ℙ(Ann) ⊂ ℙ×

 consists of all hyperplanes in ℙ containing . The
projective duality reverses inclusions:  ⊂ ு ⟺ Ann  ⊃ Annு, and sends intersections to linear
joins, and vise versa. This allows to translate the theorems true for ℙ to the dual statements
about the dual figures in ℙ×

. The latter may look quite dissimilar to the original. For example, the
collinearity of ଷ points in ℙ is translated as the existence of codimension-ଶ subspace common for
ଷ hyperplanes in ℙ×

.
2.3.1 The polar mapping. For a smooth quadric ொ = (), the correlation ̂ ∶  → ∗ is

an isomorphism. The induced linear projective isomorphism  ∶ ℙ() ⥲ ℙ(∗) is called the polar
mapping or the polarity provided by quadric ொ. The polarity sends a point  ∈ ℙ to the hyperplane

 = Ann() = {௫ ∈ ℙ() | ̃(,௫) = } ,

which cuts apparent contour of ொ viewed from  in accordance with Corollary 2.2. The hyperplane
 and point  are called the polar and pole of one other with respect to ொ. If  ∈ ொ, then = ்ொ
is the tangent plane to ொ at . Note that  lies on the polar of  if and only if  lies on the polar
of , because the condition ̃(,) =  is symmetric. Such points ,  are called conjugated with
respect to the quadric ொ = ().
Proposition 2.3
Let a line () intersect a smooth quadric ொ in two distinct points , ௗ different from , . Then
,  are conjugated with respect to ொ if and only if they are harmonic to , ௗ.

Proof. Chose some homogeneous coordinate ௫ = (௫బ ∶ ௫భ) on the line ℓ = () = (ௗ). The
intersection ொ ∩ ℓ = {,ௗ} considered as a quadric in ℓ is the zero set of quadratic form

(௫) = det(௫, ) ⋅ det(௫,ௗ) ,

whose polarization is ̃(௫,௬) = భ
మ ( �det(௫, ) ⋅ det(௬,ௗ) + det(௬, ) ⋅ det(௫,ௗ)) �. Thus, ̃(,) = 

means that det(, ) ⋅ det(,ௗ) = − det(, ) ⋅ det(,ௗ), i.e., [,, ,ௗ] = −ଵ. �

Proposition 2.4
Let ீ,ொ ⊂ ℙ be two quadrics with Gram matrices , ௰ in some basis of ℙ. If ீ is smooth, then
the polar mapping of ீ sends ொ to the quadric ொ×

ಸ ⊂ ℙ×
 which has the Gram matrix ×

೨ = ௰−భ௰−భ

in the dual basis of ℙ×
. Note that rkொ×

ಸ = rkொ.

Proof. Write the homogeneous coordinates in ℙ as row vectors ௫ and dual coordinates in ℙ×


as column vectors క. The polarity ℙ ⥲ ℙ×
 provided by ீ sends ௫ ∈ ℙ to క = ௰௫. Since ௰ is

invertible, ௫ is recovered from క as ௫ = క௰−భ. When ௫ runs through the quadric ௫௫ = , the
corresponding క fills the quadric క௰−భ௰−భక = . �

1That is, inverse to itself: Ann Ann  = .
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Corollar൰ 2.3
The tangent spaces to a smooth quadric ொ ⊂ ℙ form the smooth quadric ொ× ⊂ ℙ×

. The Gram
matrices of ொ, ொ× in dual bases of ℙ, ℙ×

 are inverse to each other.

Proof. Put ீ = ொ and ௰ =  in Proposition 2.4. �
2.3.2 Polarities over non-closed fields. If 𝕜 is not algebraically closed, then there are non-

singular quadratic forms  ∈ ௌమమ with () = ∅. However, their polarities ∶ ℙ() → ℙ(∗),
that is, the bijective correspondences between points and hyperplanes, are non-trivial anyway.
Exercise 2.6. Describe geometrically the polarity with respect to «imaginary circle» ௫మ+௬మ = −ଵ
in the Euclidean plane ℝమ.

Thus, the polarities are much more informative than the quadrics. The quadric is recovered from
its polarity as the set of all points lying on the own polars, i.e., the self-conjugated points. It follows
from Theorem 1.1 that two polarities coincide if and only if the corresponding quadratic forms are
proportional. Thus, the polarities on ℙ = ℙ() stay in bijection with the points of projective space
ℙ(ௌమ∗) = ℙ (+య)

మ
. Somewhat erroneous, the latter is called the space of quadrics in ℙ(). The

quadrics ொ ⊂ ℙ passing through a given point  ∈ ℙ form a hyperplane in the space of quadrics,
because the equation () =  is linear homogeneous in  ∈ ℙ(ௌమ∗).
Proposition 2.5
Every collection of ( + ଷ)∕ଶ points in ℙ lies on some quadric.

Proof. Any ( + ଷ)∕ଶ hyperplanes in ℙ (+య)
మ

have a non empty intersection. �

Proposition 2.6
Over an infinite field, two nonempty smooth quadrics coincide if and only if their equations are
proportional.

Proof. If (భ) = (మ) in ℙ(), then two polarities భ,మ ∶ ℙ() ⥲ ℙ(∗) coincide in all points
of the quadrics. It follows from Corollary 1.1 on p. 13 and Exercise 2.7 below that the correlation
maps ̂భ, ̂మ ∶  ⥲ ∗ and therefore the Gram matrices are proportional. �
Exercise 2.7. Check that over an infinite field, every nonempty smooth quadric ℙ contains
 + ଶ points such that no  + ଵ of them lie within a hyperplane.

2.4 Conics. Plane quadrics are called conics. For ℙమ = ℙ(), the space of conics ℙ(ௌమ∗) = ℙఱ.
Conics of rank ଵ are called a double lines. In appropriate coordinates, such a conic has the equation
௫మబ = . It is totally singular, i.e., has no smooth points at all. By Theorem 2.1 on p. 19, a conic
ௌ of rank ଶ is the linear join of the singular point ௦ ∈ ௌ and a smooth quadric ௌ ∩ ℓ within a line
ℓ ∌ ௦. By Example 2.1 on p. 18, ௌ ∩ ℓ either consists of two distinct points or is empty. In the first
case, ௌ is the union of two lines intersecting at the singular point ௦. Such a conic is called split. If
ௌ ∩ ℓ = ∅, then ௌ = {௦} consists of the singular point only. For example, the conic ௫మబ + ௫మభ =  in
ℙ(ℝయ) is of this sort. Over an algebraically closed field, there are no such conics, certainly.
Lemma 2.2 (rational parametriඋation of non-empt൰ smooth conic)
Every non-empty smooth conic  ⊂ ℙమ over any field 𝕜 with char 𝕜 ≠ ଶ admits a rational quadratic
parametrization, i.e., there exist homogeneous quadratic polynomials ఝబ,ఝభ,ఝమ ∈ 𝕜[௧బ, ௧భ] such
that the mapఝ∶ ℙభ → ℙమ, (௧బ ∶ ௧భ) ↦ ( �ఝబ(௧బ, ௧భ) ∶ ఝభ(௧బ, ௧భ) ∶ ఝమ(௧బ, ௧భ)) �, establishes a bijection
between ℙభ and .
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Proof. Given a point  ∈ , a required parametrization is provided by the projection ఝ∶ ℓ ⥲ 
of an arbitrary line ℓ ∌  from  onto . For every ௧ ∈ ℓ, the line (௧) intersects  at  and one
more point, which coincides with , if (௧) = ், and differs from  for all other ௧. In the first
case we put ఝ(௧) = . For all other ௧, the second intersection point can be written as ௧+ఒ, where
ఒ ∈ 𝕜, and satisfies the equation ̃(௧ + ఒ, ௧ + ఒ) = , which is equivalent to (௧) = −ଶఒ̃(௧,).
Thus, the map ఝ∶ ℓ ⥲  takes ௧ ∈ ℓ to ఝ(௧) = (௧) ⋅  − ଶ(, ௧) ⋅ ௧ ∈ . �
Exercise 2.8. Verify that the right hand side of the latter formula equals  for ௧ = ் ∩ ℓ, and
make sure that ఝ is described in coordinates by a triple of quadratic homogeneous polynomials
in the coordinates of ௧ as required.

Lemma 2.3
The intersection  ∩  of a smooth conic  with a curve  of degree ௗ in ℙమ either consists of at
most ଶௗ points or coincides with .

Proof. Let ఝ∶ ℙభ → ℙమ, (௧బ ∶ ௧భ) ↦ ( �ఝబ(௧బ, ௧భ) ∶ ఝభ(௧బ, ௧భ) ∶ ఝమ(௧బ, ௧భ)) � be a rational
quadratic parameterization of , and  = () for some homogeneous polynomial (௫బ,௫భ,௫మ)
of degree ௗ. The values of parameter ௧ corresponding to the intersection point  ∩  satisfy the
equation ( �ఝబ(௧),ఝభ(௧),ఝమ(௧)) � = , whose left hand side is either the zero polynomial or a non-
zero homogeneous polynomial of degree ଶௗ. In the first case  ⊂ . In the second case the equation
has at most ଶௗ solutions in ℙభ. �

Proposition 2.7
Any ହ points in ℙమ lie on a conic. Such a conic  is unique if and only if every ସ of the points are
non-collinear. If every ଷ of the points are non-collinear, the conic  is smooth.

Proof. The first statement is exactly Proposition 2.5 for  = ଶ. Let a line ℓ pass through some ଷ
of the given points. Then any conic  passing through the given points contains ℓ. If the remaining
two pints ,  do not lie on ℓ, then  = ℓ ∪ () is unique. If  ∈ ℓ, then for any line ℓ′ ∋ , the
split conic ℓ ∪ ℓ′ contains all five given points. If any ଷ of the given points are non-collinear, then
every conic passing through the ହ given points is smooth, because a singular conic is either a line,
or a pair of lines, or a point. Since two different smooth conics have at most ସ intersection points
by Lemma 2.3, a smooth conic passing through ହ points is unique. �

Corollar൰ 2.4
Any ହ lines without triple intersections in ℙమ do touch a unique smooth conic.

Proof. This is projectively dual to the last statement in Proposition 2.7. �

2.5 Quadratic surfaces. The space of quadrics in ℙయ = ℙ() is ℙ(ௌమ∗) = ℙవ. In particular, any
ଽ points in ℙయ lie on some quadric.
Exercise 2.9. Show that any ଷ lines in ℙయ lie on a quadric.

A quadratic surface of rank ଵ is called a double plane. It is totally singular and has the equation
௫మబ =  in appropriate coordinates on ℙయ. A quadratic surface ௌ of rang ଶ either is a split quadric,
i.e., a union of two planes intersecting along the singular line ℓ = Sing ௌ, or is exhausted by the
singular line, and the latter case is impossible over an algebraically closed field.
Exercise 2.10. Prove this.
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A quadratic surface ௌ ⊂ ℙయ of rank ଷ is called a simple cone. It is ruled by the lines (௦), where
௦ ∈ ௌ is the singular point and ௧ runs through a smooth conic  = ௌ ∩  laying in a plane  ∌ ௦.
Note that  may be empty as soon the ground field is not algebraically closed. In this case ௌ = {௦}
is exhausted by the singular point. If  ≠ ∅, the linear span of  is the whole .
Exercise 2.11. Convince yourself that the lines laying on a simple cone with vertex ௦ over a
smooth conic  are exhausted by the lines (௦௧), ௧ ∈ .

As a byproduct of the previous discussion, we get

Proposition 2.8
Every ଷ mutually non-intersecting lines in ℙయ lie on a smooth quadratic surface. �

Over an algebraically closed field, all smooth quadrics in ℙయ are congruent modulo the linear pro-
jective automorphisms of ℙయ. The most convenient model of the smooth quadric is described below.

2.5.1 The Segre quadric. Let  be a vector space of dimension ଶ. Writeௐ = End() for the
space of linear maps ி∶  → , and consider ℙయ = ℙ(ௐ). A choice of basis in  identifiesௐ with
the space Matమ(𝕜) of ଶ × ଶ matrices. The quadric

ௌ ≝ {ி ∶∈ End() | det ி = } = {�(
௫బ ௫భ
௫మ ௫య) | � ௫బ௫య − ௫భ௫మ =  ��} � ⊂ ℙయ (2-3)

is called the Segre quadric. It is formed by endomorphisms of rank ଵ considered up to proportionality.
The image of an operator ி ∶  →  of rank ଵ has dimension ଵ and is spanned by a non zero vector
௩ ∈ , uniquely determined by ி up to proportionality. The value of ி on an arbitrary vector
௨ ∈  equals ி(௨) = క(௨) ⋅ ௩, where క ∈ ∗ is a linear form such that Ann క = ker ி. Note that
క is uniquely determined by ி and ௩ ∈ imி ∖ . Conversely, for any non-zero ௩ ∈ , క ∈ ∗ the
operator

క ⊗ ௩∶  →  , ௨ ↦ క(௨) ௩

has rank ଵ, its image is spanned by ௩, and the kernel equals Ann క. Thus, we have the well defined
injective map

௦ ∶ ℙ(∗) × ℙ() ↪ ℙEnd() , (క, ௩) ↦ క ⊗ ௩ , (2-4)
whose image coincides with the Segre quadric (2-3). This map is called the Segre embedding.

The rows of any ଶ × ଶ matrix of rank ଵ are proportional, as well as the columns. The matrices
with a fixed ratio ([row 1] ∶ [row 2]) = (௧బ ∶ ௧భ) or ([column 1] ∶ [column 2]) = (కబ ∶ కభ) form a
vector subspace of dimension ଶ inௐ = Matమ(𝕜). After the projectivization these subspaces turns to
the two families of lines ruling the Segre quadric. These lines are the images of «coordinate lines»
ℙ×
భ ×௩ and క×ℙభ on the product ℙ×

భ ×ℙభ = ℙ(∗)×ℙ() under the bijection ℙ×
భ ×ℙభ ⥲ ௌ provided

by the Segre embedding (2-4). Indeed, the operator క ⊗ ௩ build from from క = (కబ ∶ కభ) ∈ ∗ and
௩ = (௧బ ∶ ௧భ) ∈  has the matrix

(
௧బ
௧భ) ⋅ (కబ కభ) = (

కబ௧బ కభ௧బ
కబ௧భ కభ௧భ) (2-5)

with the prescribed ratios (௧బ ∶ ௧భ) and (కబ ∶ కభ) between the rows and columns respectively.
Since the Segre map ℙ×

భ × ℙభ ⥲ ௌ is bijective, the incidence relations among coordinate lines in
ℙ×
భ × ℙభ are the same as among their images in ௌ. That is, within each ruling family, all the lines
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are mutually non-intersecting, every two lines from different ruling families are intersecting, and
each point on the Segre quadric is an intersection point of exactly two lines from different families.
Exercise 2.12. Prove that all lines ℓ ⊂ ௌ are exhausted by these two ruling families.

Proposition 2.9 (continuation of Proposition 2.8)
A smooth quadric ொ passing through a triple ℓభ, ℓమ, ℓయ of mutually non-intersecting lines in ℙయ, as
in Proposition 2.8, is ruled by all those lines in ℙయ that do intersect all the lines ℓ. In particular,
this quadric is unique.

Proof. If a line ℓ intersects all the lines ℓ, it has at least ଷ distinct points on ொ and therefore
lies on ொ. On the other side, for any point  ∈ ொ not laying on the lines ℓ, the tangent plane
்ೌொ intersects every line ℓ at some point  ≠ . Since the line () touches ொ at , it lies on
ொ. Thus, all three lines () lie on the conic ொ ∩ ்ೌொ. Hence, at least two of them, say (భ),
(మ), coincide. If య does not belong to the line ℓ = (భ) = (మ), then the tangent plane ்యொ
intersects ℓ at a point  different from  and all ’s. The line (య) ⊂ ொ by the same reason as
above. Thus, ொ contains the triangle య formed by ଷ distinct lines ℓ, (య), and (). Hence, ொ
contains the whole plane spanned by this triangle1.
Exercise 2.13. Show that a smooth quadric in ℙయ can not contain a plane.

Therefore, the points , భ, మ, య are collinear, that is,  lies on a line intersecting all the lines ℓ.
�

Exercise 2.14. Given ସ mutually non-intersecting lines in ℙయ, how many lines intersect them
all?

2.6 Linear subspaces lying on a smooth quadric. A smooth quadric ொ is called -planar, if
there is a projective subspace  ⊂ ொ of dimension dim  =  and ொ does not contain a subspace of
higher dimension. By the definition, the planarity of the empty quadric is −ଵ. Thus, the quadrics
of planarity  are non-empty and do not contain lines.
Proposition 2.10
The planarity of a smooth quadric ொ ⊂ ℙ does not exceed dimொ∕ଶ = ( − ଵ)∕ଶ.

Proof. Let ℙ = ℙ() and  = ℙ(ௐ) ⊂ ொ = () for some non-singular quadratic form  ∈ ௌమ∗

and a vector subspace ௐ ⊂ . Since |ೈ = , the correlation ̂ ∶  ⥲ ∗ sends ௐ into Ann(ௐ).
Since ̂ is injective, dim(ௐ) = dim ̂(ௐ) ⩽ dim Annௐ = dim − dimௐ. Thus, ଶ dimௐ ⩽ dim
and ଶ dim  ⩽  − ଵ. �

Lemma 2.4
For any smooth quadric ொ and hyperplane , the intersection  ∩ ொ either is a smooth quadric in
 or has exactly one singular point  ∈  ∩ ொ. The latter happens if and only if  = ்ொ.

Proof. Let ொ = () ⊂ ℙ(),  = ℙ(ௐ). Since dim ker (̂|ೈ) = dim (ௐ ∩ ̂−భ(Annௐ) ) ⩽
⩽ dim ̂−భ(Annௐ) = dim Annௐ = dim − dimௐ = ଵ, the quadric  ∩ ொ ⊂  has at most one
singular point. If Singொ = {} ≠ ∅, then the kernel ker ̂|ೈ ⊂ ௐ has dimension ଵ and is spanned
by . Thus, Ann(̂()) = ௐ, that is, ்ொ = . Vice versa, if  = ்ொ = ℙ(Ann ̂()), then
 ∈ Ann ̂() belongs to the kernel of the restriction of ̂ on Ann ̂. �

1Because for every point of the plane except for the vertexes of triangle, every line passing through this
point intersects all three lines ℓ, (య), and ().
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Proposition 2.11
Let ொ ⊂ ℙ+భ be a smooth quadric of dimension . For every ଵ ⩽  ⩽ ∕ଶ, the projective
subspaces of dimension  laying in ொ and passing through a given point  ∈ ொ stay in bijection
with all projective subspaces of dimension  − ଵ laying on a smooth quadric of dimension  − ଶ
cut out of ொ by any hyperplane ு ⊂ ்ொ complementary to  within the tangent hyperplane
்ொ ≃ ℙ−భ.

Proof. Every projective subspace  ⊂ ொ of dimension  passing through  ∈ ொ lies inside the
intersection ொ ∩ ்ொ, which is the singular quadric in ℙ−భ = ்ொ with just one singular point 
by Lemma 2.4. It accordance with Theorem 2.1 on p. 19, the quadric ொ ∩ ்ொ ⊂ ℙ−భ is the cone
ruled by lines (), where  runs through the smooth quadric ொ′ cut out of ொ by a hyperplane
ு ⊂ ℙ−భ not passing through . Thus, the subspaces  ⊂ ொ ∩ ்ொ of dimension  are exactly the
linear joins of  with the subspaces ′ =  ∩ு =  ∩ ொ′ of dimension  − ଵ laying on ொ′. �

Corollar൰ 2.5
For any two distinct points ,  on a smooth quadric ொ and all  ⩽  ⩽ dimொ∕ଶ there is a
bijection between the subspaces of dimension laying on ொ and passing through the points  and
 respectively. In particular, a projective subspace of dimension  laying on a smooth -planar
quadric can be drown through every point of the quadric.

Proof. If  ∉ ்ೌொ, then ு = ்ೌொ ∩ ்್ொ does not pass through ,  and lies in the both tangent
spaces ்ೌொ, ்್ொ as a hyperplane. By Proposition 2.11, the sets of projective subspaces  ⊂ ொ
of dimension  passing through  and  respectively both stay in bijection with the subspaces
′ ⊂ ொ ∩ ு of dimension  − ଵ. If  ∈ ்ೌொ, pick up a point  ∈ ொ ∖ (்ೌொ ∪ ்್ொ) and repeat the
previous arguments twice for the pairs ,  and , . �

Corollar൰ 2.6
A smooth quadric of dimension  over an algebraically closed field is [∕ଶ]-planar.

Proof. This holds for  = ,ଵ,ଶ. Then we use Proposition 2.11 and induction in . �
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3.1 Homographies. A linear projective isomorphism between two projective lines is called a ho-
mography. An important example of homography is provided by a perspective  ∶ ℓభ ⥲ ℓమ, the
central projection of a line ℓభ ⊂ ℙమ to another line ℓమ ⊂ ℙమ from a point  ∉ ℓభ ∪ ℓమ, see fig. 3⋄1.
Exercise 3.1. Make sure that a perspective is a homography.

o

q

a

b

ϕ(a)

ϕ(b)

ϕ(x)

x

ℓ1

ℓ2

Fig. 3⋄1. The perspective  ∶ ℓభ ⥲ ℓమ.

A homography ఝ ∶ ℓభ ⥲ ℓమ is a perspective if and only if it sends the intersection point ℓభ ∩ ℓమ to
itself. Indeed, choose two distinct points , ∈ ℓభ∖ℓమ and put  = (ఝ())∩(ఝ()) as on fig. 3⋄1.
Then the perspective  ∶ ℓభ ⥲ ℓమ sends the points , , ℓభ ∩ ℓమ to ఝ(), ఝ(), ℓభ ∩ ℓమ. Thus, it
coincides with ఝ if and only if ఝ maps the intersection of lines to itself.

3.1.1 The cross-axis. Given two lines ℓభ, ℓమ ⊂ ℙమ intersecting at the point  = ℓభ ∩ ℓమ, then
for any line ℓ ⊂ ℙమ and points భ ∈ ℓభ, మ ∈ ℓమ the composition of perspectives

(భ ∶ ℓ → ℓమ) ∘ (మ ∶ ℓభ → ℓ) (3-1)

takes భ ↦ మ, ℓభ ∩ ℓ ↦ ,  ↦ ℓమ ∩ ℓ, see fig. 3⋄2.

ℓ1

ℓ2
ℓ

q

a1
b1

c1

a2 = ϕ(a1)

b2 = ϕ(b1)

c2 = ϕ(c1)

ϕ(q)ϕ−1(q)

Fig. 3⋄2. The cross-axis of a homography.
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Every homography ఝ ∶ ℓభ ⥲ ℓమ admits a decomposition (3-1) in which the point భ ∈ ℓభ can be
chosen arbitrarily, మ = ఝ(భ), and the line ℓ is uniquely predicted by ఝ and does not depend on
the choice of భ ∈ ℓభ. Indeed, fix some distinct points భ,భ, భ ∈ ℓభ ∖ ℓమ and write మ,మ, మ ∈ ℓమ
for their images under ఝ. Put ℓ as the line joining the cross-intersections (భమ) ∩ (భమ) and
(భమ) ∩ (భమ). Then the composition (3-1) sends భ,భ, భ to మ,మ, మ and therefore coin-
cides with ఝ, see fig. 3⋄2. If we repeat this argument for the ordered triple భ,భ,భ instead
of భ,భ, భ, then we get the decomposition ఝ = (భ ∶ ℓ′ → ℓమ) ∘ (మ ∶ ℓ′ → ℓ), where ℓ′ joins the
cross-intersections (భమ) ∩ (భమ) and (భమ) ∩ (భ,మ), see fig. 3⋄3. Since both lines ℓ, ℓ′ pass
through the points1 (భమ) ∩ (భ,మ), ఝ(), ఝ−భ(), we conclude that ℓ = ℓ′. Hence, all the cross-
intersections (௫,ఝ(௬)) ∩ (௬,ఝ(௫)), where ௫ ≠ ௬ are running through ℓభ, lie on the same line ℓ,
which is uniquely determined by this property.

ℓ1

ℓ2
ℓ′ = ℓ

q

a1
b1

c1

a2 = ϕ(a1)

b2 = ϕ(b1)

c2 = ϕ(c1)

ϕ(q)ϕ−1(q)

Fig. 3⋄3. Coincidence ℓ′ = ℓ.
Definition 3.1 (the cross-axis of homograph൰)
Given a homography ఝ ∶ ℓభ ⥲ ℓమ, the line ℓ drown by cross-intersections (௫,ఝ(௬)) ∩ (௬,ఝ(௫)) as
௫ ≠ ௬ run through ℓభ is called the cross-axis of ఝ.

Remark 3.1. The cross-axis of non-perspective homography ఝ ∶ ℓభ ⥲ ℓమ is well defined as the
line joining ఝ (ℓభ ∩ ℓమ) and ఝ−భ (ℓభ ∩ ℓమ), which are distinct. If ఝ is a perspective, then the point
ఝ (ℓభ ∩ ℓమ) = ఝ−భ (ℓభ ∩ ℓమ) = ℓభ ∩ ℓమ still lies on the cross-axis but does not fix it uniquely.

Exercise 3.2. Let a homography ఝ ∶ ℓభ ⥲ ℓమ send 3 given points భ,భ, భ ∈ ℓభ to 3 given
points మ,మ, మ ∈ ℓమ. Using only the ruler, construct ఝ(௫) for a given ௫ ∈ ℓభ.

Lemma 3.1
Let 𝕜 be an algebraically closed field of zero characteristic. If a bijection

ఝ∶ ℙభ(𝕜) ∖ {finite set of points} ⥲ ℙభ(𝕜) ∖ {finite set of points}

can be described in some affine chart with a local coordinate ௧ by a formula
ఝ∶ ௧ ↦ ఝబ(௧)/ఝభ(௧) , where ఝబ,ఝభ ∈ 𝕜[௧] , (3-2)

then ఝ is the restriction of a unique homography ℙభ ⥲ ℙభ.
1Note that the latter two coincide as soon ఝ is a perspective.



28 §3Working examples: lines and conics on the plane

Proof. In the homogeneous coordinates (௫బ ∶ ௫భ) such that ௧ = ௫బ ∕௫భ, the formula (3-2) can
be rewritten1 as ఝ∶ (௫బ ∶ ௫భ) ↦ ( �బ(௫బ,௫భ) ∶ భ(௫బ,௫భ)) �, where బ,భ ∈ 𝕜[௫బ,௫భ] are non-
proportional homogeneous polynomials of the same degree ௗ. Write ℙ for the projectivization of
space of homogeneous polynomials of degree ௗ in ௫బ,௫భ. As soon a point ణ = (ణబ ∶ ణభ) ∈ ℙభ has
a unique preimage under ఝ, the polynomial ഛ(௫బ,௫భ) = ణభ(௫బ,௫భ) − ణబ(௫బ,௫భ) has just one
root in ℙభ. Since 𝕜 is algebraically closed, ഛ is the proper ௗ th power of a linear form, that is,
lies on the Veronese curve2  ⊂ ℙ. On the other hand, the polynomial ഛ runs through the line
(బ,భ) ⊂ ℙ as ణ runs through ℙభ. Since ℙభ(𝕜) is infinite, we conclude that the Veronese curve
has infinitely many intersections with the line (బ,భ). But for ௗ ⩾ ଶ, any ଷ distinct points of 
are non-collinear3. Hence, ௗ = ଵ and ఝ ∈ PGLమ(𝕜). �

3.1.2 Homographies provided by conics. Let a homography ఝ∶ ℓభ ⥲ ℓమ send an ordered
triple of distinct points భ,భ, భ ∈ ℓభ ∖ ℓమ to మ,మ, మ ∈ ℓమ. If the lines (భమ), (భమ), (భమ)
meet all together at some point , then ఝ coincides with the perspective ∶ ℓభ ⥲ ℓమ, and this
happens if and only if ఝ() = , see fig. 3⋄4.

a2 b2 c2

a1

b1

c1

p
ℓ1

ℓ2

a2

b2

c2

a1

b1

c1
ℓ1

ℓ2

Fig. 3⋄4. Perspective  ∶ ℓభ → ℓమ. Fig. 3⋄5. Homography  ∶ ℓభ → ℓమ.

If the lines (భమ), (భమ), (భమ) are not concurrent, then any ଷ of the ହ lines ℓభ, ℓమ, (భ,మ),
(భ,మ), (భ, మ) are not concurrent, and there exists a unique smooth conic  touching all these
ହ lines by Corollary 2.4 on p. 22, see fig. 3⋄5. In this case, the homography ఝ is provided by the
tangent lines to , i.e., ௬ = ఝ(௫) if and only if the line (௫௬) is tangent to . Indeed, the map
∶ ℓభ → ℓమ, which sends ௫ ∈ ℓభ to the intersection point of ℓమ with the tangent line from ௫ to 
other than ℓభ, is obviously bijective.
Exercise 3.3. Convince yourself that this map satisfies Lemma 3.1.

We conclude that  ∶ ℓభ → ℓమ is a homography that acts on భ, భ, భ exactly as ఝ.
Thus, every homography ఝ ∶ ℓభ ⥲ ℓమ is either a perspective ∶ ℓభ ⥲ ℓమ provided by some

point  ∉ ℓభ ∪ ℓమ or a homography ∶ ℓభ → ℓమ provided by a smooth conic  touching the both
lines ℓభ, ℓమ. In both cases, the point  and conic  are uniquely predicted by ఝ. The perspective
∶ ℓభ ⥲ ℓమ can be treated as a degeneration of the non-perspective homography  ∶ ℓభ ⥲ ℓమ
arising when  splits in two lines crossing at the centre of perspective. However these two lines can

1Perhaps, after a modification of the finite set on which ఝ is undefined.
2See n∘ 1.3.3 on p. 10.
3See n∘ 1.3.3 on p. 10.
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be chosen in many ways: any two lines joining the corresponding points are fitted in the picture.
Note also that the image and preimage of ℓభ∩ℓమ under the homography  ∶ ℓభ ⥲ ℓమ are the points
of contact ℓమ ∩  and ℓభ ∩  respectively.

Proposition 3.1 (inscribed-circumscribed triangles)
Two triangles ▵ భభభ and ▵ మమమ are both inscribed in some smooth conic ொ′ if and only if
they are both circumscribed about some smooth conic ொ″.

Proof. Let  points భ, భ, భ, మ, మ, మ lie on a smooth conic ொ′ like in fig. 3⋄6. Put ℓభ = (భభ),
ℓమ = (మమ) and write మ ∶ ℓభ ⥲ ொ′ for the projection of ℓభ onto ொ′ from భ and భ ∶ ொ′ ⥲ ℓమ for
the projection of ொ′ onto ℓమ from మ. The composition [భ ∶ ொ′ ⥲ ℓమ] ∘ [మ ∶ ℓభ ⥲ ொ′] ∶ ℓభ ⥲ ℓమ
is a non-perspective homography sending భ ↦  ,  ↦ మ ,  ↦ మ , భ ↦ ௦. Let ொ″ be a smooth
conic whose tangent lines join the homographic points. Then ொ″ is obviously inscribed in the both
triangles. The opposite implication is projectively dual to just proven. �

𝑎ଶ

𝑏ଶ

𝑐ଶ

𝑎ଵ

𝑏ଵ

𝑐ଵ

𝑞 𝑟

𝑝 𝑠

𝑄

𝑄
ℓଵ

ℓଶ

Fig. 3⋄6. Inscribed circumscribed triangles.

Corollar൰ 3.1 (Poncelet’s porism for triangles)
Assume that a triangle ▵భభభ is simultaneously inscribed in a smooth conic ொ′ and circumscribed
about a smooth conic ொ″. Then every point of ொ′ except for a finite set is a vertex of triangle
simultaneously inscribed in ொ′ and circumscribed about ொ″.

Proof (see fig. 3⋄6). For any మ,మ, మ ∈ ொ′ such that (మమ), (మమ) are two different tangent
lines to ொ″, the triangles ▵భభభ and ▵మమమ are both circumscribed about some smooth conic 
by Proposition 3.1. Since  touches ହ lines (భభ), (భభ), (భభ), (మమ), (మమ), it coincides
with ொ″ by Corollary 2.4 on p. 22. �

3.1.3 Homographic pencils of lines. Projectively dual version of the construction from n∘ 3.1.2
deals with a homography ఝ∶ ×

భ ⥲ మమ between two pencils of lines in ℙమ passing through the
points భ and మ respectively. Let ఝ sent ଷ distinct lines ℓ′

భ, ℓ′
మ, ℓ′

య ∋ భ other than (భమ) to the
lines ℓ″

భ , ℓ″
మ , ℓ″

య ∋ భ. Write  = ℓ′
 ∩ ℓ″

 ,  = ଵ,ଶ,ଷ, for the intersection points of corresponding
lines. Since every ସ points from భ, మ, భ, మ, య are non-collinear, there exists the unique conic



30 §3Working examples: lines and conics on the plane

ക passing through these ହ points, see fig. 3⋄7 and fig. 3⋄8 below. Provided by this conic is the
homography  ∶ ×

భ ⥲ ×
మ sending (భ) ↦ (మ) for all  ∈ ക.

Exercise 3.4. Use Lemma 3.1 on p. 27 to convince yourself that this map is actually a homogra-
phy.

𝑝ଵ 𝑝ଶ

𝑞ଵ

𝑞ଶ

𝑞ଷ

ℓ ∩ 𝜑ℓ

𝜑−ଵ(𝑝ଵ𝑝ଶ) 𝜑(𝑝ଵ𝑝ଶ)

𝑝ଵ 𝑝ଶ

𝑞ଷ
𝑞ଶ𝑞ଵ

ℓ ∩ 𝜑ℓ

Fig. 3⋄7. Perspective homography
ఝ∶ ×

భ → ×
మ .

Fig. 3⋄8. Non-perspective homography
ఝ∶ ×

భ → ×
మ .

Since this homography takes ℓ′
 ↦ ℓ″

 for  = ଵ,ଶ,ଷ, it coincides with ఝ, see. fig. 3⋄8. The homog-
raphy provided by a smooth conic ക takes ்భക ↦ (భమ) and (భమ) ↦ ்మക. The conic ക
splits if and only if the points భ, మ, య are collinear or, equivalenly, when the line (భమ) goes
to itself. In this case ക = (భమ) ∪ (ೕ) and the homography is a perspective, see fig. 3⋄7. In a
contrast with n∘ 3.1.2, the split conic ക is uniquely determined by the perspective ఝ in this case.
Example 3.1 (tracing conic b൰ the ruler)
Let  be a conic drawn through ହ given points భ,మ, … ,ఱ no ଷ of which are collinear. The points
of  can be constructed by the ruler as follows. Draw the lines ℓభ = (మఱ), ℓమ = (మర) and mark
the point  = (భర) ∩ (యఱ), see fig. 3⋄9.
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Fig. 3⋄9. Tracing a conic by a ruler.
The perspective  ∶ ℓభ ⥲ ℓమ is decomposed as the projection భ ∶ ℓభ ⥲  of ℓభ onto  from భ
followed by projection య ∶  ⥲ ℓమ from  onto ℓమ from య.
Exercise 3.5. Check this by comparing the action on points మ,ఱ, ∈ ℓభ, see fig. 3⋄9.
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Thus, for any line ℓ ∋ , the lines joining భ, మ with the intersection points ௫భ = ℓ∩ℓభ, ௫మ = ℓ∩ℓమ
are crossing at the point (ℓ) = (భ௫భ) ∩ (మ௫మ) ∈ , see fig. 3⋄9. As ℓ turns about , the point
(ℓ) draws the conic .
Theorem 3.1 (Pascal’s theorem)
Six points భ,మ, … ,ల no ଷ of which are collinear lie on a smooth conic if and only if ଷ intersection
points1 ௫ = (యర) ∩ (లభ) , ௬ = (భమ) ∩ (రఱ) , ௭ = (మయ) ∩ (ఱల) are collinear.

p1

p3

p5

p2p4

p6

x
y

zℓ
ℓ

Fig. 3⋄10. The hexogram of Pascal.

Proof. Let ℓభ = (యర), ℓమ = (యమ), see fig. 3⋄10. Assume that ௭ ∈ (௫௬). Then the perspective
௬ ∶ ℓభ → ℓమ takes ௫ ↦ ௭ and is decomposed2 as (ఱ ∶  ⥲ ℓమ) ∘ (భ ∶ ℓభ ⥲ ), where  is
the smooth conic passing trough భ,మ, … ,ఱ. Thus, ల = (ఱ௭) ∩ (య௫) ∈ . Conversely, if
(ఱ௭) ∩ (య௫) ∈ , then the above composition takes ௫ ↦ ௭. Hence, the perspective ௬ ∶ ℓభ → ℓమ
also sends ௫ ↦ ௭ forcing ௭ ∈ (௫௬). �
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Fig. 3⋄11. Inscribed hexagon. Fig. 3⋄12. Circumscribed hexagon.

Corollar൰ 3.2 (Brianchon’s theorem)
A hexagon భ,మ, … ,ల is circumscribed about a non-singular conic if and only if «the main diag-
onals» (భర), (మఱ), (యల) are concurrent, see fig. 3⋄12.

Proof. This is dual to Theorem 3.1, comp. fig. 3⋄11 and fig. 3⋄12. �
1They can be thought of as intersection points of «the opposite sides» of hexagon భ,మ, … ,ల.
2See Example 3.1 on p. 30.
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3.2 Internal geometry of a smooth conic. In this section we assume on default that the ground
field 𝕜 is algebraically closed and char(𝕜) ≠ ଶ. Dual projective lines ℙభ = ℙ(), ℙೣభ = ℙ(∗) are
naturally identified by the canonical homography provided by projective duality:

ఋ ∶ ℙభ ⥲ ℙ×
భ , ௩ ↦ Ann ௩ . (3-3)

In coordinates, it takes a point (బ ∶ భ) ∈ ℙభ to the linear form det(, ௧) = బ௧భ − భ௧బ, whose
coordinates in the dual basis of ℙ×

భ are (−భ ∶ బ). The plane ℙమ = ℙ(ௌమ∗) can be thought1 of
as the space of non-ordered pairs of possibly coinciding points in ℙభ = ℙ() by mapping a pair of
points  = (బ ∶ భ),  = (బ ∶ భ) on ℙభ to the binary quadratic form with roots {,}:

(௧బ, ௧భ) = det (
బ ௧బ
భ ௧భ) det (

బ ௧బ
భ ௧భ) =

= బబ ⋅ ௧మబ − (బభ + భబ) ⋅ ௧బ௧భ + భభ ⋅ ௧మభ ∈ ௌమ∗ .
(3-4)

We will often misuse the notations and write {,} ∈ ℙమ for the quadratic form (3-4). Pairs
{, ௧} ∈ ℙమ, where  ∈ ℙభ is fixed and ௧ runs through ℙభ, form a line in ℙమ. This line consists of all
 ∈ ௌమ(∗) such that () = . Pairs of coinciding points {,} ∈ ℙమ form the smooth Veronese
conic  ⊂ ℙమ. The above line {, ௧} is tangent to  at the point {,}, certainly. Thus, the pair
of tangent lines to  drown through a point {,} ∉  is formed by {, ௧}, {, ௧}, where ௧ ∈ ℙభ,
which meet  at the points {,}, {,}.

The Veronese conic stays in the natural bijection with ℙభ provided by the Veronese map2

ℙభ ↪ ℙమ ,  ↦ {,} .

In coordinates, it takes a point (బ ∶ భ) ∈ ℙభ to the binary quadratic form ௫బ௧మబ + ଶ௫భ௧బ௧భ + ௫మ௧మమ
with coefficients

(௫బ ∶ ௫భ ∶ ௫మ) = (మబ ∶ −బభ ∶ మభ) . (3-5)
We refer the ratio (బ ∶ భ) as the internal homogeneous coordinate of the point {,} on the Veronese
conic, and define the cross-ratio of four points {,},  = ଵ, … ,ସ, on  as [భ,మ,య,ర] on ℙభ.
Note that the internal homogeneous coordinates on  are predicted by a choice of basis in ℙభ
whereas the cross-ratio does not depend on a choice of coordinates.

As soon 𝕜 is algebraically closed and char 𝕜 ≠ ଶ, every smooth conic  on the plane can be
identified with the Veronese conic  by means of linear projective automorphism of the plane. This
allows to introduce internal homogeneous coordinates and the cross-ratio on . We would like to
verify that different choices of the linear projective automorphism ఝ∶ ℙమ ⥲ ℙమ such that ఝ() =
=  do not change the cross-ratio and lead to invertible linear changes of the internal homogeneous
coordinates. To this aim, let us redefine the cross-ratio more geometrically.

Definition 3.2 (the cross-ratio on a smooth conic)
Given an ordered quadruple of different points భ, మ, య, ర on a smooth conic , consider a point
 ∈  other than given. The cross-ratio of lines [�(భ), (మ), (య), (ర)]� in the pencil × of lines
passing through  is called the cross-ratio of points  on .

1See n∘ 1.3.3 on p. 10.
2Note that this map differs from the map ℙೣభ ↪ ℙమ, described in formula (1-5) on p. 11 and Example 1.4,

by composing with the latter with duality isomorphism ℙభ ⥲ ℙ×
భ from (3-3).
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Exercise 3.6. Prove that the cross-ratio does not depend on the choice of  and is preserved by
linear projective automorphisms of the plane.

Since the parameterization (3-5) of the Veronese conic  ∶ ௫బ௫మ = ௫మభ can be obtained by composing
the projection1  ∶ ℓ ⥲  of the line ℓ ∶ ௫మ =  onto  from the point  = ( ∶  ∶ ଵ) ∈ 
Exercise 3.7. Verify that this projection takes (బ ∶ భ ∶ ) ↦ (మబ ∶ బభ ∶ మభ).

with the homography ℓ ⥲ ℓ, (బ ∶ భ ∶ ) ↦ (బ ∶ −భ ∶ ), Definition 3.2 agrees with the
previous definition of homogeneous coordinates and cross-ratio on the Veronese conic.

Proposition 3.2
The smooth conic  passing through ହ points భ,మ, … ,ఱ no ଷ of which are collinear consists of
all the points  ∈ ℙమ such that [ �(భ), (మ), (య), (ర)] � = [ �(ఱభ), (ఱమ), (ఱయ), (ఱర)] �.

Proof. It follows from Exercise 3.7 that the equality between cross-ratios holds for all points  ∈ .
Consider any point  ∈ ℙమ for which the equality holds, and write ொ for the conic passing through
, భ, మ, య, ఱ. Provided by ொ is the homography2 ொ ∶ × → ×

ఱ sending a line () to the line
(ఱ) for all  ∈ ொ. It takes () ↦ (ఱ) for  = ଵ,ଶ,ଷ. Since [(భ), (మ), (య), (ర)] =
= [(ఱభ), (ఱమ), (ఱయ), (ఱర)], the line (ర) goes to the line (ఱర). Hence, ర ∈ ொ and
therefore ொ = , because  is the only conic passing through భ,మ, … ,ఱ. Thus,  ∈ . �
Exercise 3.8. Given ହ points ,,,,  ∈ ℙమ any ଷ of which are non-collinear, consider the
homography of pencils ఊ ∶ × → × sending the lines (), (), () to the lines (), (),
(). Describe the locus of intersection points ℓ ∩ ఊ(ℓ) for ℓ ∈ ×.
3.2.1 Homographies on a smooth conic. A bijection ఝ ∶  ⥲  provided by an invertible

linear change of internal homogeneous coordinates on a smooth conic  is called a homography. It
follows from Lemma 3.1 on p. 27 that every rational bijection of the form

ఝ∶  ∖ {finite set of points} ⥲  ∖ {finite set of points} (3-6)
(௧బ ∶ ௧భ) ↦ ( �బ(௧బ∕௧భ) ∶ భ(௧బ∕௧భ)) � , (3-7)

where బ,భ ∈ 𝕜[௧బ, ௧భ], is the restriction of unique homography  ⥲ . For any two ordered
triples of distinct points on  there exists a unique homography sending one triple to the other. A
bijection  ⥲  is a homography if and only if it preserves the cross-ratio on .

Proposition 3.3
Every homography ఊ ∶  ⥲  on a smooth conic  ⊂ ℙమ admits the unique extension to a
linear projective automorphism ఊ̃ ∶ ℙమ ⥲ ℙమ of the plane. Conversely, any linear projective
automorphism ఝ ∶ ℙమ ⥲ ℙమ such that ఝ() =  induces the homography ఝ|∶  ⥲ .

Proof. Chose ହ distinct points భ,మ, … ,ఱ ∈ , let ఊ∶  ⥲  be a homography, and put
 = ఊ(). There exists a unique linear projective automorphism ఊ̃ ∶ ℙమ ⥲ ℙమ such that ఊ̃() = 
for ଵ ⩽  ⩽ ସ. Since ఊ̃ preserves the cross-ratio in the corresponding pencils of lines, the cross-ratio
of lines (ఱ,), ଵ ⩽  ⩽ ସ, in the pencil ×

ఱ equals the cross-ratio of lines (ఱ,), ଵ ⩽  ⩽ ସ,
in the pencil ×

ఱ . Since the latter equals the cross-ratio of lines (ఱ,), ଵ ⩽  ⩽ ସ, in the same
pencil, because ఊ ∶  ⥲  is the homography and preserves the cross-ratio on . Thus, for any ହ

1See Example 1.5 on p. 12.
2See n∘ 3.1.3 on p. 29.
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points భ,మ, … ,ఱ ∈  the cross-ratios of lines passing through భ, మ, య, ర in the pencils ×
ఱ

and ఊ̃(ఱ)× coincide. Hence, ఊ̃(ఱ) ∈  by Proposition 3.2. The converse statement follows from
Exercise 3.6. �

Example 3.2 (involutions)
A self-inverse homography ఙ ∶  → , ఙమ = Id, is called an involution of the conic . The identity

{p,q}

{p,p}

{q,q}

a′

a′′

b′

b′′

σ
{
p
,
q
}

σ
{
p
,q}

C

Fig. 3⋄13. Involution of conic.

involution ఙ = Id is referred to as trivial.
Let an involution ఙ ∶  →  interchange ′ with ″ and ′

with ″ for some mutually different points ′,″,′,″ ∈ , as
on fig. 3⋄13. Consider the intersection point ௦ = (′″)∩(′″).
Provided by ௦ is the involution ఙೞ ∶  ⥲  swapping the pair of
intersection points ℓ ∩  on every line ℓ ∋ ௦.
Exercise 3.9. Convince yourself that the map ఙೞ satisfies the
conditions of Lemma 3.1 on p. 27, and therefore it is a ho-
mography.

Since the actions of ఙೞ and ఙ on ସ points ′, ″, ′, ″ coincide,
ఙ = ఙೞ. In particular, every non-trivial involution has exactly
two distinct fixed points1, the points of contact of two tangent
lines to  coming from ௦. If  is identified with the Veronese
conic, the fixed points of involution ఙ, are {,} and {,}. We conclude that every involutive
homography ఊ ∶ ℙభ → ℙభ over algebraically closed field has exactly two distinct fixed points
, ∈ ℙభ, and ఊ() =  if and only if the points {,}, {,}, {,} are collinear in ℙమ.

Exercise 3.10. Verify that the latter is equivalent to the harmonicity [,,,] = −ଵ.

a1

a2

c1

c2

b1

b2

x

ϕ(x)

p = ϕ(p)
q = ϕ(q)ℓ

Fig. 3⋄14. The cross-axis of a homography on conic.

3.2.2 The cross-axis of a homography on conic.A homographyఝ∶  ⥲  sending భ,భ, భ
to మ,మ, మ ∈  is decomposed as projection మ ∶  → ℓ followed by projection భ ∶ ℓ → , where
ℓ is the line joining cross-intersections (భమ) ∩ (భమ) and (భమ) ∩ (భమ), see fig. 3⋄14. Since the
intersection points ℓ ∩  are exactly the fixed points2 of ఝ, the line ℓ is uniquely predicted by ఝ

1Recall, we assume that 𝕜 is algebraically closed and char 𝕜 ≠ ଶ.
2In particular, this forces ఝ to have either two distinct fixed points or just one fixed «double point», and

the latter means that ℓ is tangent to  at the fixed point. Note that in both cases ℓ is uniquely recovered from
the set of fixed points.
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and does not depend on the choice of points భ,భ, భ ∈ . In other words, the intersection point
of crossing lines (௫,ఝ(௬)) ∩ (௬,ఝ(௫)) draws the line ℓ as ௫ ≠ ௬ run through . This gives another
proof for the Pascal theorem1: the opposite sides of hexagon భమభమభమ inscribed in  are the
crossing lines for the homography sending భ,భ, భ to మ,మ, మ, and therefore their intersection
points lie on the cross-axix ℓ of this homography.

The cross axis of a homography ఝ ∶  →  can be easily drawn by the ruler as soon the action
of ఝ on some triple of points is known. This allows to construct the image ఝ(௭) of any given point
௭ ∈ , and to find the fixed points of ఝ using only the ruler. In particular, given a smooth conic 
and point ௦ in ℙమ, it is not hard to draw the tangent lines to  from ௦ by means of the ruler only:
one could either construct the fixed points of involution ఙೞ ∶  →  provided by the pencil ௦×, as
on fig. 3⋄15, or use more elegant method based on Exercise 3.11 below.

p

p

ℓ(p)

C

Fig. 3⋄15. Drawing the tangent lines. Fig. 3⋄16. Drawing the polar.

Exercise 3.11 (Steiner’s construction). Shown on fig. 3⋄16 is the construction of polar line
ℓ() for a point  with respect to a conic  due to Jacob Steiner2 (1796 – 1863) and using only
the ruler. Explain how and why does it work.

3.3 Pencils of conics. Recall3 that lines in the space of conics ℙ(ௌమ∗) on the plane ℙమ = ℙ()
are called pencils of conics. A pencil  ⊂ ℙ(ௌమ∗) is uniquely described by any pair of distinct
conics బ = (బ), భ = (భ) from  and consists of the conics ഊ = (ఒబబ + ఒభభ), where
ఒ = (ఒబ ∶ ఒభ) ∈ ℙభ = ℙ(𝕜మ). The intersection  = బ ∩ భ is called the base set of the pencil. It
does not depend on the choice of basis బ,భ ∈ , because every conic ഊ = (ఒబబ + ఒభభ) ∈ 
contains  = (బ) ∩ (భ) for any two distinct conics బ = (బ), భ = (భ) in .

The polynomial ఞ(బభ)(௧బ, ௧భ) ≝ det(௧బబ + ௧భభ) ∈ 𝕜[௧బ, ௧భ] is called the characteristic polyno-
mial of the pencil with respect to the base conics బ, భ. This is a cubic homogeneous polynomial.
Up to multiplication by non zero constants, it does not dependent on a choice of basis in  used for
the evaluation of determinant. However, in a contrast with the base set, the characteristic polyno-
mial depends on a choice of basis in the pencil, and a change of basis leads to an invertible linear
change of variables (௧బ, ௧భ). Thus, an invariant of the pencil is not the characteristic polynomial

1See Theorem 3.1 on p. 31.
2See J. Steiner. «Die geometrischen Konstruktionen, ausgeführt mittelst der geraden Linie und eines festen

Kreises: als Lehrgegenstand auf höheren Unterrichts-Anstalten und zur praktischen Benutzung», Ostwald’s
Klassiker der exakten Wissenschaften, vol. 60.

3See n∘ 1.3.2 on p. 10.
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itself but the combinatorial structure of its zero set in ℙభ. Over algebraically closed field, the latter
is either the whole ℙభ, or one point of multiplicity ଷ, or a pair of distinct points of multiplicities ଵ
and ଶ, or a triple of distinct points, each of multiplicity ଵ. In the first case, the pencil is called
degenerated; in the latter case, it is called simple. Thus, a pencil is degenerated if and only it consists
of singular conics. A non-degenerated pencil over algebraically closed field can contain ଵ, ଶ, or ଷ
degenerated conics, and Singబ ∩ Singభ = ∅ for any two different conics బ, భ in the pencil,
because a vector ௩ ∈ ker ̂బ ∩ ker ̂భ belongs to ker(ఒబ̂ഊ + ఒభ̂భ) for all ఒ ∈ ℙభ. The base set of a
non-degenerated pencil over algebraically closed field can consist of ଵ, ଶ, ଷ, or ସ points.

Lemma 3.2
For every conic ഊ = (ఒబబ + ఒభభ) in a non-degenerated pencil, dim Singഊ is strictly less than
the maximal power of det(ఒ, ௧) = ఒబ௧భ − ఒభ௧బ dividing the characteristic polynomial ఞ(బభ)(௧బ, ௧భ)
in 𝕜[௧బ, ௧భ].

Proof. Let  be an arbitrary conic of the pencil, and  a smooth conic. Fix a basis in  such that
the Gram matrix of  is the identity matrix ா, and write  for the Gram matrix of . Then the
conics in pencil () become the Gram matrices ௧ா + , where ௧ ∈ 𝕜 is a coordinate on affine
line () ∖ . The conic  appears for ௧ = . We have to show that dim ker  can not exceed the
maximal power of ௧ dividing det(௧ா +) = ௧య + ௧మఋభ() + ௧ఋమ() + ఋయ(), where ఋೖ() is the sum
of principal  ×  minors in . This is obvious, because all minors of order > ଷ −  in  vanish as
soon rk ⩽ ଷ − . �

Exercise 3.12. Prove that a non-degenerated pencil of conics contains at most one double line.

ℓ
𝑝

ℓଵ

ℓଶ

𝑆 = ℓଵ ∪ ℓଶ 𝑝ଵ

𝑝ଶ

Fig. 3⋄17. A pencil with ଵ base point. Fig. 3⋄18. A pencil with ଶ base points and
ଵ singular conic.

Example 3.3 (non-degenerated pencil with just one base point)
If the base set of a non-degenerated pencil consists of just one point , then the only singular conic
in the pencil is the double line tangent to any smooth conic of the pencil at the point . Thus, such
a pencil is spanned by a smooth conic  ∋  and the double line ℓ = ். Note that any two
smooth conics in such a pencil have the unique intersection point and share the common tangent
line at this point, see fig. 3⋄17.
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Example 3.4 (non-degenerated pencils with two base points)
If the base set of a pencil consists of two points భ ≠ మ, then a singular conic in such pencil has to

𝑝ଶ

𝑝ଵ

𝑆ଵ = ℓଵ ∪ ℓଶ

𝑆 ଶ
=
2ℓ

ℓଶ

ℓଵ
Fig. 3⋄19. A pencil with ଶ base points and ଶ

singular conics ௌభ, ௌమ.

be either the double line ℓ = (భమ) or a split conic ℓభ ∪ ℓమ such that భ ∈ ℓభ, మ ∈ ℓమ and either
భ, మ both differ from ℓభ ∩ ℓమ, as on fig. 3⋄19, or
భ = ℓభ ∩ ℓమ, మ ≠ ℓభ ∩ ℓమ, as on fig. 3⋄18.

In the latter case the split conic ℓభ∩ℓమ is the only
singular conic in the pencil. All the other conics are
smooth, touch the line ℓభ at భ, and pass through
మ like on fig. 3⋄18. In particular, any two smooth
conics in such a pencil have exactly two different in-
tersection points భ, మ and share the same tangent
line at భ.

The first two possibilities for a singular conic,
i.e., the double line ℓ = (భమ) or a split conic ℓభ∪ℓమ
such that భ ∈ ℓభ ∖ ℓమ, మ ∈ ℓమ ∖ ℓమ, can be realized
in a pencil with ଶ base points only simultaneously.
Exercise 3.13. Prove that all conics in ℙమ that
touch two given lines ℓభ, ℓమ at two given points
భ ∈ ℓభ ∖ ℓమ, మ ∈ ℓమ ∖ ℓభ form a pencil with
exactly two singular conics: the double line ℓ = (భమ) and the split conic ℓభ ∪ ℓమ.

Both lines ℓభ, ℓమ are uniquely recovered from the double line ℓ and any smooth conic  of the
pencil as the tangent lines to  at the intersection points  ∩ ℓ.

𝑝ଶ

𝑝ଷ

𝑝ଵ
𝑆″ = ℓ″

ଵ ∪ ℓ″
ଶ 𝑆′ = ℓ′

ଵ ∪ ℓ′
ଶ

ℓ″
ଵ

ℓ″
ଶ

ℓ′
ଶ

ℓ′
ଵ

Fig. 3⋄20. A pencil with ଷ base poins has ଶ singular conics.

Example 3.5 (non-degenerated pencil with three base points)
If the base set of a pencil consists of ଷ distinct points భ, మ, య, then these points are not collinear1.
Hence, such a pencil does not contain a double line. For any split conic ℓభ ∪ ℓమ in the pencil, there
are two possibilities: either భ = ℓభ ∩ℓమ, మ ∈ ℓభ ∖ℓమ, య ∈ ℓమ ∖ℓభ or భ ∈ ℓభ ∖ℓమ, మ,య ∈ ℓమ ∖ℓభ.
On fig. 3⋄20, the first happens for the lines ℓ′

భ, ℓ′
మ, the second for the lines ℓ″

భ , ℓ″
మ . If the pencil

contains ℓ″
భ ∪ ℓ″

మ , then every smooth conic from the pencil touches ℓ″
భ at భ. Note that the split

1Otherwise the line passing through them would intersect every smooth conic of the pencil in ଷ distinct
points.
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conic ℓ′
భ ∪ ℓ′

మ satisfies this property.
Exercise 3.14. Prove that all conics passing through ଷ given distinct points , ,  and touching
a given line ℓ ∋  form a pencil containing exactly ଶ singular conics: () ∪ ℓ and () ∪ ().

If the pencil contains ℓ′
భ ∪ ℓ′

మ, then all smooth conics in the pencil also have to share the same
tangent line at the point భ, because a line ℓ ∋ భ tangent to a smooth conic  ∋ భ touches at
భ every conic  from the pencil spanned by  and ℓ′

భ ∪ ℓ′
మ. Thus, such a pencil is described by

Exercise 3.13 as well.
Example 3.6 (simple pencil of conics)
A pencil of conics over algebraically closed field is simple if and only if it contains three distinct

𝑎

𝑏

𝑐
𝑑

𝑆ଵ

𝑆ଷ

𝑆ଶ
Fig. 3⋄21. ଷ singular conics and ସ base

points of a simple pencil.

singular conics. Each of these singular conics splits by Lemma 3.2, and does not pass trough the
singular points of two others. Therefore every pair of sin-
gular conics has ସ intersection points any ଷ of which are
non-collinear, see fig. 3⋄21. These ସ points form the base
set of pencil.
Exercise 3.15. Prove that all conics passing through ସ
given points , , , ௗ no ଷ of which are collinear
form a simple pencil containing exactly ଷ singular
conics formed by the pairs of opposite sides in quad-
rangle ௗ.

Thus, a simple pencil of conics is uniquely determined by
its base points , , , ௗ. In homogeneous coordinates
௫ = (௫బ ∶ ௫భ ∶ ௫మ) on ℙమ, the equations of conics from
this pencil can be written as

det(௫,,) ⋅ det(௫, ,ௗ)
det(௫,,ௗ) ⋅ det(௫,, ) = ఒబ

ఒభ
,

where ఒ = (ఒబ ∶ ఒభ) runs through ℙభ = ℙ(𝕜మ).
All the previous examples of pencils can be viewed as degenerations of a simple pencil appearing

when some of the base points stick together. For , → భ,  = మ, ௗ = య, we get the pencil
on fig. 3⋄20. For , → భ, ,ௗ → మ, we come to the pencil on на fig. 3⋄19. When ,,  → భ,
ௗ = మ, we get fig. 3⋄18. Finally, on fig. 3⋄17, all ସ base points are collapsed to one point .

3.3.1 The hypersurface of singular conics. The singular conics in ℙమ = ℙ() form a cubic
hypersurface ௌ = (det) in the spaceℙఱ = ℙ(ௌమ) of all conics. The roots of characteristic polynomial
ఞ(బభ)(௧బ, ௧భ) correspond to the intersection points of ௌ with the line  = (బభ) spanned by conics
బ = (బ), భ = (భ). The character of intersection ௌ ∩  completely determines the geometric
properties of the pencil . A simple pencil  intersects ௌ in ଷ distinct points with the multiplicity ଵ
at each point. If  touches ௌ at a smooth point of ௌ and intersects ௌ with the multiplicity ଵ in one
more point, then the pencil  looks as on fig. 3⋄20, where the split conic with singularity at a base
point of  corresponds to the touch point of  with ௌ. If  passes through a singular point of ௌ
and intersects ௌ once more in another point, then  looks as on fig. 3⋄19, where the double line
corresponds to the singular intersection point of  and ௌ. If  intersects ௌ with the multiplicity ଷ
in one smooth point of ௌ, the pencil looks as on fig. 3⋄18. The most degenerated pencil shown
on fig. 3⋄17 is provided by a line  intersecting ௌ with the multiplicity ଷ in one singular point of ௌ.
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4.1 Tensor products and Segre varieties. Let భ,మ, … , and ௐ be vector spaces of dimen-
sions ௗభ,ௗమ, … ,ௗ and  over a field 𝕜. A map ఝ∶ భ × మ × ⋯ ×  → ௐ is called multilinear,
if it is linear in each argument when all the other are fixed:

ఝ( … , ఒ௩′ + ఓ௩″ , …) = ఒఝ(… , ௩′ , …) + ఓఝ(… , ௩″ , …) .
Multilinear maps భ ×మ × ⋯ × → ௐ form a vector space denoted Hom(భ,మ, … ,;ௐ) . As
soon some bases భ, మ, … ,  ∈ ௐ and ()

భ , ()
మ , … , ()

 ∈ , ଵ ⩽  ⩽ , are fixed, every multilin-
ear map ఝ ∈ Hom(భ,మ, … ,;ௐ) can be uniquely described by the values on all collections of
basis vectors:

ఝ( � (భ)
ഀభ , (మ)

ഀమ , … , ()
ഀ ) � = ∑

ഌ
(ഀభ,ഀమ,…,ഀ)
ഌ ⋅ ഌ ∈ ௐ ,

that is, by ⋅ ∏ௗഌ constants (ഀభ,ഀమ,…,ഀ)
ഌ ∈ 𝕜, which can be organized in the matrix of dimension

( + ଵ) and size1  × ௗభ × ௗమ × ⋯ × ௗ. The multilinear map ఝ corresponding to such a matrix
sends a collection of vectors ௩భ,௩మ, … ,௩, where ௩ = ∑

ഀ=భ ௫
()
ഀ 

()
ഀ ∈  for ଵ ⩽  ⩽ , to the

vector

ఝ(௩భ, ௩మ, … , ௩) =


∑
ഌ=భ

(� ∑
ഀభ,ഀమ,…,ഀ

(ഀభ,ഀమ,…,ഀ)
ഌ ⋅ ௫(భ)

ഀభ ⋅ ௫(మ)
ഀమ ⋅ ⋯ ⋅ ௫()

ഀ ) � ⋅ ഌ ∈ ௐ .

Thus, dim Hom(భ,మ, … ,;ௐ) = dimௐ ⋅ ∏ഌ dimഌ .
Exercise 4.1. Check that a) a collection of vectors ௩భ,௩మ, … ,௩ ∈ భ × మ × ⋯ × 
does not contain the zero vector if and only if there exists a multilinear map ఝ such that
ఝ(௩భ,௩మ, … ,௩) ≠  b) for a linear ி∶  → ௐ and multilinear ఝ∶ భ × మ × ⋯ ×  → ,
the composition ி ∘ఝ∶ భ × మ × ⋯ ×  → ௐ is multilinear.
4.1.1 Tensor product of vector spaces. Given a multilinear map

ఛ∶ భ × మ × ⋯ ×  →  (4-1)
and a vector spaceௐ, composing ఛ with linear maps ி∶  → ௐ assigns the map

Hom(,ௐ) ಷ↦ಷ∘ഓ−−−−−−−→ Hom(భ,మ, … ,;ௐ) (4-2)
which is obviously linear in ி.
Definition 4.1
A multilinear map (4-1) is called universal if for any vector space ௐ, the linear map (4-2) is an
isomorphism. In the expanded form, this means that for every vector spaceௐ and multilinear map
ఝ∶ భ × మ × ⋯ ×  → ௐ, there exist a unique linear operator ி∶  → ௐ such that ఝ = ி ∘ ఛ,
i.e., two solid multilinear arrows in the diagram



ಷ

��

భ × మ × ⋯ × 

ഓ
77

ക
'' ௐ

1The usual matrices of dimension 2 and size ௗ × describe linear maps  → ௐ.

39
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are uniquely completed to a commutative triangle by the dashed linear arrow.

Lemma 4.1
For every two universal multilinear maps

ఛభ∶ భ × మ × ⋯ ×  → భ , ఛమ∶ భ × మ × ⋯ ×  → మ ,

there exists a unique linear isomorphism ఐ∶ భ ⥲ మ such that ఛమ = ఐఛభ.

Proof. By the universal properties of ఛభ, ఛమ, there exists a unique pair of linear maps ிమభ∶ భ → మ
and ிభమ∶ మ → భ that fit in the commutative diagram

భ

Idೆభ

ಷమభ   

మ

Idೆమ

ಷభమ~~
మ

ಷభమ

~~

భ × మ × ⋯ × 

ഓభ
jj

ഓమ
44

ഓభ
tt

ഓమ
**

ഓమoo ഓభ // భ
ಷమభ

  
భ మ

Since the factorizations ఛభ = ఝ ∘ ఛభ, ఛమ = ట ∘ ఛమ are unique and hold for ఝ = Idೆభ , ట = Idೆమ , we
conclude that ிమభிభమ = Idೆమ and ிభమிమభ = Idೆభ . �

Lemma 4.2
Given a basis ()

భ , ()
మ , … , ()

 ∈  for ଵ ⩽  ⩽ , write భ ⊗ మ ⊗ ⋯ ⊗  for the vector space
with basis formed by ∏ௗ formal expressions

(భ)
ഀభ ⊗ (మ)

ഀమ ⊗ … ⊗ ()
ഀ , ଵ ⩽ ఈ ⩽ ௗ . (4-3)

Then the multilinear map ఛ ∶ భ × మ × ⋯ ×  → భ ⊗ మ ⊗ ⋯ ⊗  sending every collection
of basis vectors ( �(భ)

ഀభ , (మ)
ഀమ , … , ()

ഀ ) � ∈ భ × మ × ⋯ ×  to the expression (4-3) is universal.

Proof. For a multilinear ఝ∶ భ × మ × ⋯ ×  → ௐ and linear ி∶ భ ⊗ మ ⊗ ⋯ ⊗  → ௐ,
the identity ఝ = ி ∘ ఛ mans exactly that ி( �(భ)

ഀభ ⊗ (మ)
ഀమ ⊗ … ⊗ ()

ഀ ) � = ఝ( �(భ)
ഀభ , (మ)

ഀమ , … , ()
ഀ ) � for all

collections of basis vectors. �

Definition 4.2
The universal multilinear map (4-1) is denoted by

ఛ ∶ భ × మ × ⋯ ×  → భ ⊗ మ ⊗ ⋯ ⊗  , (௩భ,௩మ, … ,௩) ↦ ௩భ ⊗ ௩మ ⊗ ⋯ ⊗ ௩ (4-4)

and called tensor multiplication. The target space భ ⊗ మ ⊗ ⋯ ⊗  is called the tensor product of
spaces భ,మ, … , and its elements are called tensors.

4.1.2 Decomposable tensors and Segre varieties. The image of tensor multiplication (4-4)
consists of the tensor products ௩భ ⊗ ௩మ ⊗ ⋯ ⊗ ௩ called tensor monomials or decomposable tensors.
They do not form a vector space, because the map (4-4) is not linear but multilinear. However, the
linear span of decomposable tensors is the whole space భ⊗మ⊗ ⋯ ⊗. Over an infinite ground
field, a random tensor is most likely an indecomposable linear combination of tensor monomials.
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Geometrically, the tensor multiplication assigns a map

௦ ∶ ℙ(భ) × ℙ(మ) × ⋯ × ℙ() → ℙ (భ ⊗ మ ⊗ ⋯ ⊗ ) (4-5)

sending a collection of dimension ଵ subspaces 𝕜 ⋅ ௩ ⊂  spanned by non zero vectors ௩ ∈  to
the dimension ଵ subspace 𝕜 ⋅ ௩భ ⊗ ௩మ ⊗ ⋯ ⊗ ௩ ⊂ భ ⊗ మ ⊗ ⋯ ⊗ .
Exercise 4.2. Verify that the map (4-5) is a well defined and injective.

The map (4-5) is called the Segre embedding and its image, i.e., the projectivization of the set of
decomposable tensors, is called the Segre variety. Since the decomposable tensors linearly span the
whole space, the Segre variety is not contained in a hyperplane. Note that the dimension of Segre
variety equals ∑, where  = ௗ − ଵ, and is much smaller then dimℙ (భ ⊗ మ ⊗ ⋯ ⊗ ) =
= ∏(ଵ+)−ଵ. By the construction, the Segre variety is ruled by  families of projective subspaces
of dimensionsభ,మ, … ,. The simplest example of the Segre variety is provided by the Segre
quadric from n∘ 2.5.1 on p. 23.

Example 4.1 (decomposable linear maps)
For any two vector spaces , ௐ, the bilinear map ∗ × ௐ → Hom(,) is provided by sending
(క,௪) ∈ ∗ × ௐ to the linear operator  → ௐ, ௨ ↦ ⟨ క , ௨ ⟩ ⋅ ௪. By the universal property of
tensor multiplication, there exists a unique linear map

∗ ⊗  → Hom(,) (4-6)

sending every decomposable tensor క⊗௪ to the same operator. Note that this operator has rank ଵ,
its image is spanned by ௪ ∈ ௐ, and the kernel is Ann(క) ⊂ .
Exercise 4.3. Check that a) every linear map ி∶  → ௐ of rank ଵ equals క⊗௪ for appropriate
క ∈ ∗, ௪ ∈ ௐ uniquely up to proportionality determined by ி b) the linear map (4-6) is an
isomorphism for any vector spaces  and  of finite dimensions.

Geometrically, the operators of rank ଵ form the Segre variety ௌ ⊂ ℙ−భ = ℙ(Hom(,ௐ)), which is
ruled by two families of projective spaces క⊗ℙ(ௐ), ℙ(∗)⊗௪ and is not contained in a hyperplane.
If we fix some bases in , ௐ, write operators  → ௐ by their matrices  = (ೕ) in these bases,
and use the matrix elements ೕ as the homogeneous coordinates in ℙ(Hom(,ௐ)), then the Segre
variety is described by the equation rk = ଵ, which encodes the system of homogeneous quadratic
equations

det (
ೕ ೖ
ℓೕ ℓೖ) = ℓೕℓೖ − ೖℓೕ = 

for all ଵ ⩽  < ℓ ⩽ dimௐ, ଵ ⩽  <  ⩽ dim. The Segre embedding

ℙ(∗) × ℙ() = ℙ−భ × ℙ−భ ↪ ℙ−భ = ℙ(Hom(,ௐ))

takes a pair of points ௫ = (௫భ ∶ ௫మ ∶ ⋯ ∶ ௫) , ௬ = (௬భ ∶ ௬మ ∶ ⋯ ∶ ௬) to the rank ଵ matrix
(௫,௬) = ௬ ⋅௫ whose ೕ = ௫ೕ௬. For dim = dimௐ = ଶ, we get the Segre quadric in ℙయ discussed
in n∘ 2.5.1 on p. 23.

4.2 Tensor algebra and contractions. Given a vector space , we write ⊗ = ⊗⊗ ⋯ ⊗
for the tensor product of  copies of  an call it the  th tensor power of . We also put ⊗ బ ≝ 𝕜,
⊗ భ ≝ . The infinite direct sum T ≝ ⨁⩾బ ⊗ is called the tensor algebra of . This is
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an associative (non-commutative) graded algebra with the multiplication provided by the tensor
product of vectors. For every basis భ, మ, … ,  in , the tensor monomials

ഌభ ⊗ ഌమ ⊗ ⋯ ⊗ ഌ (4-7)

form a basis of T over 𝕜. These monomials are multiplied just by writing them sequentially
with the sign ⊗ between then. Linear combinations of monomials are multiplied by the usual
distributivity rules. Thus, T may be thought of as the algebra of polynomials in  non-commuting
variables ഌ. Another name for T is the free associative 𝕜-algebra with unit spanned by the vector
space . This name emphasizes the following universal property of the 𝕜-linear map

ఐ ∶  ↪ T (4-8)

embedding  into T as the subspace ⊗భ of linear homogeneous polynomials.
Exercise 4.4. Prove that for every associative 𝕜-algebra with unit and 𝕜-linear map ∶  → ,
there exists a unique homomorphism of associative 𝕜-algebras ఈ∶ T →  such that1  = ఈ∘ఐ.
Convince yourself that this property characterizes the inclusion (4-8) uniquely up to a unique
isomorphism of the target space commuting with the inclusion.
4.2.1 Total contraction and duality. There is the canonical pairing between (∗)⊗ and ⊗

provided by the total contraction, which sends క = కభ ⊗ కమ ⊗ ⋯ ⊗ క, ௩ = ௩భ ⊗ ௩మ ⊗ ⋯ ⊗ ௩ to

⟨ క , ௩ ⟩ ≝


∏
=భ

⟨క , ௩ ⟩ . (4-9)

Since the right hand side is multilinear in ௩’s, every collection of క’s assigns the well defined linear
map ⊗ → 𝕜, which depends on క’s also multilinearly. Hence, the contraction of decomposable
tensors (4-9) is uniquely extended to the bilinear pairing ∗⊗ × ⊗ → 𝕜. For a pair of dual
bases భ, మ, … ,  ∈ , ௫భ,௫మ, … ,௫ ∈ ∗, the tensor monomials భ ⊗ మ ⊗ ⋯ ⊗ ೝ and
௫ೕభ ⊗ ௫ೕమ ⊗ ⋯ ⊗ ௫ೕೞ form the dual bases of T and T∗ with respect to this pairing. In particular,
for a finite dimensional vector space , we have the canonical isomorphism

(⊗)
∗ ≃ (∗)⊗ . (4-10)

It follows from the universal property of ⊗ that the space (⊗)
∗ of the linear maps ⊗ → 𝕜

is canonically isomorphic to the space of multilinear maps  ×  × ⋯ ×  → 𝕜, i.e.,

(⊗)
∗ ≃ Hom(, … , ; 𝕜) . (4-11)

Combining (4-10) and (4-11) leads to the canonical isomorphism

(∗)⊗ ≃ Hom(, … , ; 𝕜) . (4-12)

It sends a decomposable tensor కభ ⊗ కమ ⊗ ⋯ ⊗ క to the multilinear map  ×  × ⋯ ×  → 𝕜
taking (௩భ, ௩మ, … , ௩) ↦ ∏

=భ క(௩).
1In other words, for every 𝕜-algebra , the homomorphisms of 𝕜-algebras T →  stay in bijection with

the 𝕜-linear maps  → .
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4.2.2 Partial contractions. Consider two inclusions1 of sets

{ଵ,ଶ, … , } {ଵ,ଶ, … , }? _oo � �  // {ଵ,ଶ, … , } ,

and write ഌ, ഌ for ூ(ఔ), (ఔ) respectively. Thus, we have two numbered collections of indexes
ூ = (భ, మ, … , ),  = (భ, మ, … , ) staying in the fixed bijection. A partial contraction of ∗⊗

and ⊗ in indexes ூ,  is the linear map

 ∶ ∗⊗ ⊗ ⊗→∗⊗(−) ⊗ ⊗(−)

which contracts ഌ th factor of ∗⊗ with ഌ th factor of ⊗ for every ఔ = ଵ, ଶ, … ,  and keeps
all the other factors in their initial order:

కభ ⊗ కమ ⊗ ⋯ ⊗ క ⊗ ௩భ ⊗ ௩మ ⊗ ⋯ ⊗ ௩ ↦ ∏
ഌ=భ⟨కഌ , ௩ೕഌ ⟩ ⋅ (⊗

∉
క) ⊗ ( ⊗

ೕ∉
௩ೕ) . (4-13)

Note that different choices of the maps ூ,  lead to the different contraction maps even if the images
of ூ,  remain unchanged.
Example 4.2 (innner product between vectors and multilinear forms)
Let us treat a -linear form ఝ(௩భ, ௩మ, … , ௩) as a tensor from ∗⊗ via isomorphism (4-12). The
contraction of this tensor with a vector ௩ ∈  in the first tensor factor is a tensor from ∗⊗(−భ),
which can be considered as an ( − ଵ)-linear form on . This form is called the innner product of ௩
and ఝ and denoted by ೡఝ or ௩⌞ఝ.

Exercise 4.5. Check that ೡఝ(௪భ,௪మ, … ,௪−భ) = ఝ(௩, ௪భ,௪మ, … ,௪−భ).
4.2.3 The linear support of a tensor. Given a tensor ௧ ∈ ⊗, the intersection of all vector

subspacesௐ ⊂  such that ௧ ∈ ௐ⊗ is called the linear support of ௧ and denoted by Supp(௧) ⊂ . It
follows from the next Exercise 4.6 that Supp(௧) is the unique minimal2 subspace in  among those
ௐ ⊂  for which ௧ ∈ ௐ⊗.
Exercise 4.6. For any subspaces ,ௐ ⊂ , verify that ⊗ ∩ ௐ⊗ = ( ∩ ௐ)⊗ in ⊗.

The dimension of Supp ௧ is called the rank of ௧ and denoted by rk ௧ ≝ dim Supp ௧. We say that ௧ is
degenerated if rk ௧ < dim. In this case, the number of variables in the expansion of ௧ through the
basis tensor monomials can be reduced by a linear change of variables.
Exercise 4.7. Show that if dim Supp(௧) = ଵ and the ground field is algebraically closed, then
௧ = ఒ ⋅ ௩⊗ for some ఒ ∈ 𝕜, ௩ ∈ .

The space Supp(௧) admits an effective description as a linear span of some finite collection of vectors
constructed by means of contraction maps. Namely, for every injective3 map

 ∶ {ଵ, ଶ, … , ( − ଵ)} ↪ {ଵ, ଶ, … , } , (4-14)

write {భ, మ, … , −భ} ⊂ {ଵ,ଶ, … , } for the image of  and ̂ for the remaining index outside
im . Consider the contraction map

 ∶ ∗⊗(−భ) →  , క ↦ (భ, మ, … , (−భ))
(ೕభ,ೕమ,…,ೕ−భ) (క ⊗ ௧) (4-15)

1Not necessary monotonous.
2With respect to inclusions.
3Not necessary monotonous.
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which couples ఔ th tensor factor of ∗⊗(−భ) with ഌ th tensor factor of ௧ for all ଵ ⩽ ఔ ⩽ ( − ଵ).
The result of such contraction is obviously a linear combination of ̂ th tensor factors of ௧. Thus, it
belongs to Supp(௧).
Theorem 4.1
For every ௧ ∈ ⊗, the linear support Supp(௧) ⊂  is spanned by the images of all contraction maps
(4-15) coming from ! different choices of the map (4-14).

Proof. Let Supp(௧) = ௐ ⊂ . It is enough to check that every linear form క ∈ ∗ annihilating
all the subspaces im (


) annihilates ௐ as well. Assume the contrary: let a linear form క ∈ ∗

annihilate all  (∗⊗(−భ)
) but have a non-zero restriction onௐ. Chose a basis కభ, కమ, … , క ∈ ∗

such that కభ = క and the restrictions of కభ, కమ, … , కೖ on ௐ form a basis in ௐ∗. Expand ௧ through
the tensor monomials built from the dual basis vectors ௪భ,௪మ, … ,௪ೖ ∈ ௐ. The value

క(�

( �కഌభ ⊗ కഌమ ⊗ ⋯ ⊗ కഌ−భ) �) �

is equal to the complete contraction of ௧ with the basic monomial కభ ⊗ కഌభ ⊗ కഌమ ⊗ ⋯ ⊗ కഌ−భ in
the order of coupling prescribed by . This contraction kills all tensor monomials in the expansion
of ௧ except for the one, dual to the monomial obtained from కభ ⊗ కഌభ ⊗ కഌమ ⊗ ⋯ ⊗ కഌ−భ by some
permutation of factors depending on . Thus, the result of contraction is equal to the coefficient of
some monomial containing ௪భ in the expansion of ௧. Since every such monomial can be reached
by appropriate choice of , we conclude that ௪భ ∉ Supp(௧). Contradiction. �

4.3 Symmetric and grassmannian algebras. A multilinear map ఝ∶  ×  × ⋯ ×  →  is
called symmetric if it remains unchanged under permutations of the arguments, and alternating if it
vanishes as soon some of the arguments coincide.
Exercise 4.8. Verify that under a permutation of the arguments, the value of an alternating
multilinear map is multiplied by the sign of permutation. Convince yourself that this property
implies the alternating property if char 𝕜 ≠ ଶ.

We write Sym(,) ⊂ Hom(, … ,;) and Alt(,) ⊂ Hom(, … ,;) for subspaces of
symmetric and alternating multilinear maps. Everything said about the universal multilinear maps
in n∘ 4.1.1 on p. 39 makes sense separately for the symmetric and alternating maps as well. The
universal symmetric multilinear map is denoted by

ఙ ∶  ×  × ⋯ ×  → ௌ , (௩భ, ௩మ, … , ௩) ↦ ௩భ௩మ … ௩ , (4-16)

and called the commutativemultiplication of vectors. Its target space ௌ is called the  th symmetric
power of . The universal alternating multilinear map is denoted by

ఈ ∶  ×  × ⋯ ×  → ௸ , (௩భ, ௩మ, … , ௩) ↦ ௩భ ∧ ௩మ ∧ … ∧ ௩ , (4-17)

and called the exterior1 multiplication of vectors. Its target space ௸ is called the  th exterior
power of . The universal symmetric and alternating multilinear maps are unique up to a unique
isomorphism of the target space commuting with the universal map. The both can be constructed
for all  at once by factorizing the tensor algebra T by appropriate two-sided ideals.

1Also known as grassmannian or super-commutative.
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4.3.1 The symmetric algebra. Write ூcom ⊂ T for a two-sided ideal spanned by all the
differences

௨ ⊗ ௪ − ௪ ⊗ ௨ , ௨,௪ ∈  . (4-18)
This ideal is obviously homogeneous in the sense that ூcom = ⊕⩾బ (ூcom ∩ ⊗), and the degree 
component ூcom ∩ ⊗ of ூcom is linearly generated over 𝕜 by all differences of the form

( ⋯ ⊗ ௩ ⊗ ௪ ⊗ ⋯ ) − ( ⋯ ⊗ ௪ ⊗ ௩ ⊗ ⋯ ) , (4-19)

where the both terms are decomposable of degree  and vary only in the order of ௩,௪. The factor
algebra ௌ ≝ T∕ூcom is called the symmetric algebra of . The multiplication in ௌ comes from
the tensor multiplication in T and is commutative, because of the relations ௨௪ = ௪௨ appearing
after the factorization through (4-18). The symmetric algebra is graded

ௌ = ⨁
⩾బ

ௌ , where ௌ ≝ ⊗∕(ூcom ∩ ⊗) .

Exercise 4.9. Show that for every basis భ, మ, … ,  ⊂ , the monomials భ
భ మ

మ … 
 form

a basis of ௌ over 𝕜.
Thus, we get an isomorphism of algebras ௌ ≃ 𝕜[భ, మ, … , ]. Under this isomorphism, ௌ
turns to the subspace of homogeneous polynomials of degree .
Exercise 4.10. Deduce from the universal property of tensor multiplication that the map

 ×  × ⋯ ×  → ௌ

provided by the multiplication in ௌ is the universal symmetric multilinear map. Convince
yourself that ௌ is the free commutative 𝕜-algebra spanned by  in the sense that for every
commutative 𝕜-algebra  and 𝕜-linear map ∶  → , there exists a unique homomorphism
of 𝕜-algebras ̃∶ ௌ →  such that  = ఝ̃ ∘ ఐ, where ఐ ∶  ↪ ௌ embeds  in ௌ as the space
of linear homogeneous polynomials. Show that the latter embedding is uniquely characterized
by the previous universal property up to a unique isomorphism commuting with ఐ.
4.3.2 The exterior1algebra of a vector space  is defined as the factor algebra ௸ ≝ T∕ூalt ,

where ூalt ⊂ T is the two-sided ideal generated by all tensor squares ௩ ⊗ ௩, ௩ ∈ .
Exercise 4.11. Check that the space ூalt ∩ ⊗మ contains all sums ௩ ⊗௪ +௪ ⊗ ௩, ௩,௪ ∈ , and
is linearly generated over 𝕜 by these sums if char 𝕜 ≠ ଶ.

The ideal ூalt also splits in the direct sum of homogeneous components

ூalt = ⊕
⩾బ

(ூalt ∩ ⊗) .

The degree  component ூalt ∩ ⊗ is spanned by decomposable tensors of the form

(⋯ ⊗ ௩ ⊗ ௩ ⊗ ⋯) , ௩ ∈  .

By Exercise 4.11, all the sums ( ⋯ ⊗ ௩ ⊗ ௪ ⊗ ⋯ ) + ( ⋯ ⊗ ௪ ⊗ ௩ ⊗ ⋯ ) belong to ூalt ∩ ⊗

as well and linearly generate it over 𝕜 as soon char 𝕜 ≠ ଶ. The multiplication in ௸ is called the
1Also known as the grassmannian algebra or free super-commutative algebra of .
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exterior1 multiplication and denoted by the wedge sign ∧. Note that for any ௨,௪ ∈ , the relations
௨ ∧ ௨ =  and ௨ ∧ ௪ = −௪ ∧ ௨ hold in ௸మ. Hence, under a permutation of factors, the exterior
product of vectors is multiplied by the sign of permutation:

∀ ∈ ௌೖ ௩భ ∧ ௩మ ∧ … ∧ ௩ೖ = sgn() ⋅ ௩భ ∧ ௩మ ∧ … ∧ ௩ೖ .

This property of a multiplication is known as the super-commutativity. Like the symmetric algebra,
the exterior algebra is graded:

௸ = ⨁
⩾బ

௸ , where ௸ ≝ ⊗∕(ூalt ∩ ⊗) .

Exercise 4.12. Deduce from the universal property of tensor multiplication that the map

 ×  × ⋯ ×  → ௸

provided by the exterior multiplication in ௸ is the universal alternating multilinear map.
Convince yourself that ௸ is the free super-commutative 𝕜-algebra spanned by  in the sense that
for every super-commutative 𝕜-algebra  and 𝕜-linear map ∶  → , there exists a unique
homomorphism of 𝕜-algebras ̃∶ ௌ →  such that  = ఝ̃ ∘ ఐ, where ఐ ∶  ↪ ௌ embeds  in
௸ as the subspace ௸భ = ⊗భ. Show that the latter embedding is uniquely characterized by
the previous universal property up to a unique isomorphism commuting with ఐ.

Proposition 4.1
For every basis భ, మ, … ,  in  the grassmannian monomials  ≝ భ ∧ మ ∧ … ∧  , numbered
by strictly increasing multi-indexes ூ = (భ, మ, … , ), ଵ ⩽ భ < మ < ⋯ <  ⩽ ௗ, form a basis of
௸.

Proof. Write  for the vector space of dimension () with the basis formed by symbols క, where
ூ = (భ, మ, … , ) runs through all strictly increasing sequences of length  in ଵ,ଶ, … ,ௗ. Consider
the multilinear map ఈ ∶  ×  × ⋯ ×  →  that takes an arbitrary collection ೕభ , ೕమ , … , ೕ of
the basis vectors from  to ఈ(ೕభ , ೕమ , … , ೕ) = sgn(ఙ) ⋅ క, where ூ = ((భ), (మ), … , ()) is
the strictly increasing permutation of the indexes భ, మ, … ,  and we put ఈ(ೕభ , ೕమ , … , ೕ) = 
when some of ഌ’s coincide. For any alternating multilinear map ఝ∶  ×  × ⋯ ×  → ௐ, there
exists a unique linear operator ி∶  → ௐ such that ఝ = ி ∘ ఈ : the action ி on the basis of 
has to be ி(క(భ,మ,…,)) = ఝ(భ , మ , … , ). Thus, ఈ is the universal alternating multilinear map.
Hence, there exists an isomorphism  ⥲ ௸ sending క ↦ భ ∧ మ ∧ … ∧  = . �

Corollar൰ 4.1
dim௸ = (), where ௗ = dim. In particular, ௸ =  for  > ௗ, and dim௸ = ଶ.

Exercise 4.13. Check that ఈ ∧ ఉ = (−ଵ)ೌ್ఉ ∧ ఈ for any ఈ ∈ ௸ೌ, ఉ ∈ ௸್, and describe the
centre2  (௸).

1Or grassmannian, or super-commutative
2That is, all elements commuting with every element of the algebra.
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4.3.3 Grassmannian polynomials. It follows from Proposition 4.1 that every choice of basis
భ, మ, … ,  in a vector space  assigns the isomorphism of 𝕜-algebras

௸ ⥲  ⧼భ, మ, … , ⧽ ,

where  ⧼భ, మ, … , ⧽ stays for the algebra of grassmannian polynomials, i.e., polynomials with
coefficients from 𝕜 in the variables  satisfying the relations  ∧  =  and  ∧ ೕ = −ೕ ∧ .
When work with the grassmannian polynomials, we always write ூ = (భ, మ, … , ) for a strictly
increasing collection of indexes, ̂ூ = ( ̂భ, ̂మ, … , ̂−) = {ଵ,ଶ, … ,ௗ} ∖ ூ for the complementary
strictly increasing collection, and #ூ ≝  for the length of ூ. The sum |ூ| ≝ ∑ഌ ഌ is called the weight
of ூ.
Exercise 4.14. Check that  ∧  ̂ = (−ଵ)||+ భ

మ #(భ+#) ⋅ భ ∧ మ ∧ … ∧  .

Example 4.3 (linear substitution of variables)
Let the variables భ, మ, … ,  be linearly expressed through the variables కభ, కమ, … , క as

 = ∑
ೕ
ೕ కೕ (4-20)

for some  × matrix  = (ೕ). Then the grassmannian monomials  are expressed through క
as

 = భ ∧ మ ∧ … ∧  = (�∑
ೕభ
భೕభ కೕభ) � ∧ (�∑

ೕమ
మೕమ కೕమ)� ∧ ⋯ ∧ ( �∑

ೕ
ೕ కೕ)� =

= ∑
భ⩽ೕభ<ೕమ<⋯<ೕ⩽

∑
∈ೄ

sgn(ఙ)భೕ(భ)మೕ(మ) ⋯ ೕ() కೕభ ∧ కೕమ ∧ … ∧ కೕ = ∑

 క ,

where  runs through increasing collections of length  and  denotes the  ×  minor of 
situated in the rows భ, మ, … ,  and columns భ, మ, … , .
Example 4.4 (multirow cofactor expansions of determinant)
Let us perform the substitution (4-20) in the identity from Exercise 4.14 using a square ௗ×ௗ matrix
. The left hand side of the identity turns to

( �∑಼
∶

#಼=#

಼ క಼) � ∧ (� ∑
ಽ∶

#ಽ=(−#)

 ̂ಽ కಽ)� = (−ଵ) భమ #(భ+#)
∑಼

∶
#಼=#

(−ଵ)|಼|಼ ̂ ಼̂ కభ ∧ కమ ∧ … ∧ క .

The right hand side becomes (−ଵ) భమ #(భ+#)(−ଵ)|| det(ೕ)⋅కభ∧కమ∧…∧క. Thus, for every collection
ூ = (భ, మ, … , ) of rows in a square matrix  = (ೕ), the following relation holds

∑಼
∶

#಼=#

(−ଵ)|಼|+||಼ ̂ ಼̂ = det(ೕ) , (4-21)

where the summation goes over all  ×  minors ಼ situated in the rows (భ, మ, … , ).
If we replace ̂ூ by another collection ̂ complementary to the other  ≠ ூ, then we get in the

right hand side  ∧ ̂ = . Thus, for every  ≠ ூ,

∑಼
∶

#಼=#

(−ଵ)|಼|+||಼ ̂ ಼̂ =  . (4-22)
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The identities (4-21) and (4-22) are known as the Laplace relations. They generalize the cofactor
expansions of determinants. If we organize × minors of  and their complements in two ()×()
matrices 𝒜 = () and 𝒜∨

 = (∨
), where1 ∨

 = (−ଵ)||+||̂ ̂, then all the Laplace relations
can be combined in the one matrix identity 𝒜 ⋅𝒜∨

 = det  ⋅ ா.

Exercise 4.15. Write the Laplace relations for multicolumn cofactor expansions and prove that
𝒜∨
 ⋅𝒜 = det  ⋅ ா as well.

Example 4.5 (reduction of grassmannian quadratic form)
Certainly, a grassmannian quadratic form can not be reduced to a «sum of squares» like in Propo-
sition 2.1 on p. 17. However, every homogeneous grassmannian polynomial of degree two over an
arbitrary field 𝕜 takes in appropriate coordinates the form

కభ ∧ కమ + కయ ∧ కర + ⋯ + కమೝ−భ ∧ కమೝ , (4-23)

called the Darboux normal form. To achieve it for a given ఠ ∈ ௸మ, we renumber the initial basis
భ, మ, … ,  of  in such a way that ఠ = భ ∧ (ఈమమ + ⋯ + ఈ) + మ ∧ (ఉయయ + ⋯ + ఉ) +
(terms without భ, మ) , where ఈమ ≠ . Then we pass to the new basis {భ, కమ, య, … , } which has
కమ = ఈమమ + ⋯ + ఈ. The substitution మ = (కమ − ఉయయ − ⋯ − ఉ)∕ఈమ in ఠ leads to

ఠ = భ ∧ కమ + కమ ∧ (ఊయయ + ⋯ + ఊ) + (terms without కమ) =
= (భ − ఊయయ − ⋯ − ఊ) ∧ కమ + (terms without భ, కమ) .

Now we pass to the basis {కభ, కమ, య, … , }, where కభ = భ − ఊయయ − ⋯ − ఊ. In this basis,

ఠ = కభ ∧ కమ + (terms without కభ, కమ)

and we can continue by induction.

Convention 4.1. In the rest of §4 we assume on default that char(𝕜) = .

4.4 Symmetric and alternating tensors. The symmetric group ௌ acts on ⊗ by permutations
of factors in decomposable tensors: for  ∈ ௌ, we put

(௩భ ⊗ ௩మ ⊗ ⋯ ⊗ ௩) = ௩(భ) ⊗ ௩(మ) ⊗ ⋯ ⊗ ௩() . (4-24)

Since the right hand side is multilinear in ௩భ,௩మ, … ,௩, this formula assigns the well defined linear
map  ∶ ⊗ → ⊗.

Definition 4.3
A tensor ௧ ∈ ⊗ is called symmetric, if (௧) = ௧ for all  ∈ ௌ. A tensor ௧ ∈ ⊗ is called
alternating, if (௧) = sgn() ⋅ ௧ for all  ∈ ௌ. We write Sym  = {௧ ∈ ⊗ | ∀ ∈ ௌ ఙ(௧) = ௧}
and Alt  = {௧ ∈ ⊗ | ∀ ∈ ௌ (௧) = sgn()} for the space of symmetric and alternating
tensors respectively. Note that both are the subspaces in ⊗, and they should not be confused
with the quotient spaces ௌ, ௸ of ⊗.

1Note that ூ,  swap places.
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4.4.1 Standard bases. For every basis భ, మ, … ,  in , a basis of Sym  is formed by the
complete symmetric tensors

[భ,మ,…,] ≝
(

the sum of all tensor monomials containing
భ factors భ, మ factors మ, … ,  factors  ,)

(4-25)

because all the summands appear in the expansion of every symmetric tensor ௧ with equal coeffi-
cients. The tensors (4-25) are indexed by the collections of non-negative integers (భ,మ, … ,)
such that ∑ഌഌ = .
Exercise 4.16. Make it sure that the sum (4-25) consists of !

భ!మ!⋯! terms.
Similarly, a basis of Alt  is formed by the complete alternating tensors

⟨భ,మ,…,⟩ ≝ ∑
∈ೄ

sgn() ⋅ (భ) ⊗ (మ) ⊗ ⋯ ⊗ () (4-26)

numbered by increasing sequences ଵ ⩽ భ < మ < ⋯ <  ⩽ ௗ.

4.5 Polarization of commutative polynomials. The quotient map ⊗ ↠ ௌ sends every
summand of (4-25) to the same commutative monomial భ

భ మ
మ … 

 . Thus, this map sends
[భ,మ,…,] to !

భ!మ!⋯! ⋅ భ
భ మ

మ … 
 . Over the ground field of zero characteristic, we

conclude that for every , the factorization through the commutativity relations assigns the iso-
morphism Sym  ⥲ ௌ. The inverse isomorphism is denoted by

pl∶ ௌ ⥲ Sym  ,  ↦ ̃ ,

and called the complete polarization of polynomials. For the dual space ∗, the complete po-
larization map pl∶ ௌ∗ ⥲ Sym ∗ sends every monomial  = ௫భ

భ ௫మ
మ …௫

 to the tensor
̃ = భ!మ!⋯!

! ⋅ ௫[భ,మ,…,] ∈ Sym ∗, which can be viewed as the symmetric multilinear
map ̃∶  × × … × → 𝕜 acting on a collection of vectors ௩భ,௩మ, … ,௩ ∈  × ⋯ × via the
complete contraction with ௩భ ⊗ ௩మ ⊗ ⋯ ⊗ ௩.
Exercise 4.17. Verify that for every ௩ ∈ , the complete contraction of ௩⊗ with

భ! మ! ⋯ !
! ⋅ ௫[భ,మ,…,]

is equal to the result of evaluation of monomial ௫భ
భ ௫మ

మ …௫
 ∈ 𝕜[௫భ,௫మ, … ,௫] on the

coordinates of ௩.
We conclude that the polynomial function ∶ 𝔸() → 𝕜 attached to a homogeneous polynomial
 ∈ ௌ in n∘ 1.1.2 on p. 4 is described in coordinate-free terms as (௩) = ̃(௩, ௩, … , ௩), where
̃ ∈ Sym ∗ ⊂ ∗⊗ is the unique symmetric tensor mapped to  under factorization through the
commutativity relations and considered as a symmetric multilinear map  ×  × ⋯ ×  → 𝕜. For
 = ଶ, we get the polarization of quadratic forms considered in n∘ 2.1.1 on p. 17.

Since the value ̃(௩భ, ௩మ, … , ௩) does not depend on the order of arguments, we write

̃ (௪
ೖభ
భ ,௪ೖమ

మ , … , ௪ೖೞೞ )
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when the collection (௩భ, ௩మ, … , ௩) consists of భ vectors ௪భ, మ vectors ௪మ, … , ೞ vectors ௪ೞ.
Exercise 4.18. For any polynomial  ∈ ௌ∗ and vectors ௩భ,௩మ, … ,௩ೖ ∈ , show that

 (௩భ + ௩మ + ⋯ + ௩ೖ) = ̃ ((௩భ + ௩మ + ⋯ + ௩ೖ)


) =

∑
భమ …ೖ

!
భ!మ! ⋯ ೖ! ⋅ ̃ (௩భ

భ ,௩మ
మ , … , ௩ೖ

ೖ ) ,
(4-27)

where the summation goes over all integerభ,మ, … ,ೖ such thatభ +మ + ⋯ +ೖ = 
and  ⩽ ഌ ⩽  for all ఔ.

Proposition 4.2
The complete polarization of a homogeneous polynomial  ∈ ௌ∗ on a vector space1  over a
field of zero characteristic can be computed by the formula

! ⋅ ̃(௩భ, ௩మ, … , ௩) = ∑
⊊{భ,…,}

(−ଵ)#(�∑
∉

௩) � , (4-28)

where the left summation goes over all proper subsets ூ ⊊ {ଵ, ଶ, … , }, including ூ = ∅, for
which we put #∅ = .

Example 4.6
For homogeneous quadratic and cubic polynomials  ∈ ௌమ∗,  ∈ ௌయ∗, we get

ଶ̃(௨,௪) = (௨ + ௪) − (௨) − (௪) ,
 ̃(௨, ௩,௪) = (௨ + ௩ + ௪) − (௨ + ௩) − (௨ + ௪) − (௩ + ௪) + (௨) + (௩) + (௪) .

Proof of Proposition 4.2. In the expansion (4-27) for

(௩భ + ௩మ + ⋯ + ௩) = ̃ ((௩భ + ௩మ + ⋯ + ௩)) ,

there is just one term containing all the vectors ௩భ,௩మ, … ,௩, namely ! ⋅̃(௩భ, ௩మ, … , ௩). For a
proper subset ூ ⊊ {ଵ, ଶ, … , }, every summand which contains no ௩ with  ∈ ூ appears in (4-27)
with the same coefficient as in the expansion (4-27) written for (∑∉ ௩), because the latter is
obtained from (௩భ + ௩మ + ⋯ + ௩) by setting ௩ =  for all  ∈ ூ. Removal of these summands via
the standard combinatorial inclusion-exclusion procedure leads to the required formula

! ⋅̃(௩భ, ௩మ, … , ௩) = ( �∑
ഌ
௩ഌ) � − ∑

{}
( �∑

ഌ≠
௩ഌ) � + ∑

{,ೕ}
( � ∑

ഌ≠,ೕ
௩ഌ) � − ∑

{,ೕ,ೖ}
( � ∑

ഌ≠,ೕ,ೖ
௩ഌ) � + ⋯ .

�

1Not necessary finite dimensional.
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4.5.1 Duality. For a vector space  of finite dimensuon over a field of zero characteristic,
the complete contraction between ⊗ and ∗⊗ provides the spaces ௌ and ௌ∗ with the
perfect pairing that couples polynomials  ∈ ௌ and  ∈ ௌ∗ to the complete contraction of
their complete polarizations ̃ ∈ ⊗ and ̃ ∈ ∗⊗.
Exercise 4.19. For a pair of dual bases భ, మ, … ,  ∈ , ௫భ,௫మ, … ,௫ ∈ ∗, verify that all the
non-zero couplings between the basis monomials are exhausted by

⟨ భ
భ మ

మ … 
 , ௫భ

భ ௫మ
మ …௫

 ⟩ = భ!మ! ⋯ !
! . (4-29)

Note that the monomials constructed from the dual basis vectors become the dual bases of the
polynomial rings only after rescaling by appropriate combinatorial factors.

4.5.2 Derivative of a polynomial along a vector. Associated with every vector ௩ ∈  is the
linear map ೡ ∶ ∗⊗ → ∗⊗(−భ), ఝ ↦ ೡఝ, provided by the inner multiplication1 of -linear
forms on  by ௩, which takes an -linear form ఝ ∈ ∗⊗ to the ( − ଵ)-linear form

ೡఝ(௩భ, ௩మ, … , ௩−భ) = ఝ(௩, ௩భ, ௩మ, … , ௩−భ) .

Composing this map with preceded complete polarizationௌ∗ ⥲ Sym ∗ ⊂ ∗⊗ and subsequent
factorization ఙ∶ ∗⊗(−భ) ↠ ௌ−భ∗ through the commutativity relations2, assigns the linear map

plೡ ∶ ௌ∗ → ௌ−భ∗ , (௫) ↦ plೡ(௫) ≝ ̃(௩, ௫, ௫, … , ௫) , (4-30)

which depends linearly on ௩ ∈ . This map fits in the commutative diagram

∗⊗ ⊃ Sym ∗ ೡ / / ∗⊗(−భ)


����

ௌ∗ plೡ //

pl ∼

OO

ௌ−భ∗ .

(4-31)

The polynomial plೡ(௫)̃(௩,௫, … ௫) ∈ ௌ−భ(∗) is called the polar of ௩ with respect to . For
 = ଶ, the polar of a vector ௩ with respect to a quadratic worm  ∈ ௌమ∗ is the linear form
௪ ↦ ̃(௩,௪) considered3 in n∘ 2.2.1 on p. 19.

In terms of dual bases భ, మ, … ,  ∈ , ௫భ,௫మ, … ,௫ ∈ ∗, the contraction of the first tensor
factor in ∗⊗ with the basis vector  ∈  maps the complete symmetric tensor ௫[భ,మ,…,]
either to the complete symmetric tensor containing the ( − ଵ) factors ௫ or to zero for  = .
Hence, ௫

భ
భ ௫మ

మ …௫
 = 

 ௫భ
భ …௫−భ

−భ ௫−భ
 ௫+భ

+భ …௫
 = భ


ങ
ങೣ ௫

భ
భ ௫మ

మ …௫
 . Since

plೡ is linear in both ௩, , we conclude that for every ௩ = ∑ఈ, the polar polynomial of ௩ with
respect to  is nothing but the derivative of the polynomial  along the vector ௩ divided by deg,
i.e.,

plೡ = ଵ
deg() డೡ = ଵ

deg()



∑
=భ

ఈ
డ
డ௫

.

1See Example 4.2 on p. 43.
2Which is the linear map corresponding to the commutative multiplication of covectors from for-

mula (4-16) on p. 44 by the universal property of tensor product.
3Recall that the zero set of this form in ℙ() is the hyperplane intersecting the quadric () ⊂ ℙ() along

its apparent contour viewed from ௩.
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Note that this forces the right hand side to be independent on the choice of dual bases in  and ∗. It
follows from the definition of polar map that the derivatives along vectors commute, డೠడೢ = డೢడೠ,
and for all ௨,௪ ∈ ,  ∈ ௌ∗,  ⩽  ⩽ , the following relation holds:

! డ


డ௨ (௪) = ! ̃ (௨,௪) = ( − )! డ−
డ௪− (௨) , (4-32)

Exercise 4.20. Prove the Leibniz rule డೡ() = డೡ() ⋅  +  ⋅ డೡ() and show that

̃(௩భ, ௩మ, … , ௩) = ଵ
!డೡభడೡమ … డೡ .

Example 4.7 (Ta൰lor’s expansion)
For  = ଶ, the expansion (4-27) from Exercise 4.18 turns to the identity

(௨ + ௪) = ̃(௨ + ௪, ௨ + ௪, … , ௨ + ௪) =


∑
=బ

(

) ⋅ ̃(௨,௪−) ,

where  = deg. It holds for any polynomial  ∈ ௌ∗ and all vectors ௨,௪ ∈ . The relations
(4-32) allow us to rewrite this identity as the Taylor expansion for  at ௨:

(௨ + ௪) =
deg

∑
=బ

ଵ
! డ


ೢ(௨) , (4-33)

which is an exact equality in the polynomial ring ௌ∗.
4.5.3 Polars and tangents. Given a hypersurface ௌ = () ⊂ ℙ() of degree  and a line

ℓ = () ⊂ ℙ(), the intersection ℓ∩ௌ consists of all points ఒ+ఓ such that (ఒ ∶ ఓ) ∈ ℙభ = ℙ(𝕜మ)
is a root of the homogeneous polynomial (ఒ,ఓ) ≝ (ఒ + ఓ) ∈ 𝕜[ఒ,ఓ]. Over an algebraically
closed field 𝕜, this polynomial is either zero or a product of  non-zero homogeneous linear forms
in ఒ, ఓ, possibly coinciding:

(ఒ,ఓ) = ∏


(ఈ″
 ఒ − ఈ′

ఓ)ೞ = ∏


detೞ (
ఒ ఈ′


ఓ ఈ″

 ) , (4-34)

where  = (ఈ′
 ∶ ఈ″

 ) are some mutually distinct points on ℙభ and ∑ ௦ = . If  = , then
ℓ ⊂ ௌ. If  ≠ , then the intersection ℓ ∩ ௌ consists of the points  = ఈ′

 + ఈ″
 . The exponent

௦ of the linear form ఈ″
 ఓ − ఈ′

ఒ in the factorization (4-34) is called the intersection multiplicity of
the hypersurface ௌ with the line ℓ at the point , and is denoted by (ௌ, ℓ)ೌ . If (ௌ, ℓ)ೌ = ଵ, the
intersection point  is called simple or transversal. Otherwise, the intersection of ℓ and ௌ at 
is called a multiple. The total number of intersections counted with their multiplicities equals the
degree of ௌ.

A line ℓ = () passing through  ∈ ௌ is called tangent to ௌ at  if either ℓ ⊂ ௌ or (ௌ, ℓ) ⩾ ଶ.
In other words, the line ℓ is tangent to ௌ at  if the polynomial ( + ௧) ∈ 𝕜[௧] either is the zero
polynomial or has a multiple root at zero. The Taylor expansion1 for ( + ௧) at  starts with

( + ௧) = ௧ (
ௗ
ଵ) ̃(−భ,) + ௧మ(

ௗ
ଶ) ̃(−మ,మ) + ⋯ .

1See 4-33 on p. 52.
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Therefore the line ℓ = () is tangent to ௌ at  if and only if ̃(−భ,) = . This is the straight-
forward generalization of Proposition 2.2 on p. 18.

If (−భ,௫) does not vanish identically as a linear form in ௫, the point  is called a smooth
point of ௌ. The hypersurface ௌ ⊂ ℙ() is called smooth if every point  ∈ ௌ is smooth. For a smooth
 ∈ ௌ the linear equation ி(−భ,௫) =  on ௫ ∈  defines a hyperplane in ℙ() filled by the
lines () tangent to ௌ at . This hyperplane is called the tangent space to ௌ at  and denoted by
் = {௫ ∈ ℙ() | ̃(−భ,௫) = }.

If (−భ,௫) is the zero linear form in ௫, the hypersurface ௌ is called singular at , and the
point  is called a singular point of ௌ. Since the coefficients of polynomial ̃(−భ,௫) = డೣ(),
considered as a linear form in ௫, are equal to the partial derivatives of  evaluated at the point 
by (4-32), the singularity of  ∈ ௌ = () is expressed by the equations

డ
డ௫

() =  for all  ,

in which case any line ℓ passing through  has (ௌ, ℓ) ⩾ ଶ, i.e., is tangent to ௌ at . Thus, the
tangent lines to ௌ at a singular point of ௌ fill the whole ambient space ℙ().

If  is either a smooth point on ௌ or a point outside ௌ, then the polar polynomial
pl(௫) = ̃(,௫−భ)

does not vanish identically as a homogeneous polynomial of degree  − ଵ in ௫, because otherwise,
all partial derivatives of pl(௫) = ̃(,௫−భ) in ௫ would also vanish, and in particular,

̃(−భ,௫) = డ−మ

డ−మ pl(௫) = 

identically in ௫, meaning that  is a singular point of ௌ, in contradiction with our choice of . The
zero set of the polar polynomial pl ∈ ௌ−భ∗ is denoted by

plௌ ≝ (pl) = {௫ ∈ ℙ() | ̃(,௫−భ) = } (4-35)
and called the polar hypersurface of the point  with respect to ௌ. If ௌ is a quadric, then plௌ is
exactly the polar hyperplane of  considered in n∘ 2.3.1 on p. 20. As in Corollary 2.2 on p. 18, for
a hypersurface ௌ of arbitrary degree, the intersection ௌ ∩ plௌ coincides with the apparent contour
of ௌ viewed from the point , that is, with the locus of all points  ∈ ௌ such that the line () is
tangent to ௌ at .

More generally, for an arbitrary point  ∈ ℙ() the locus of points
pl−ೝ
 ௌ ≝ {௫ ∈ ℙ() | ̃(−ೝ,௫ೝ) = }

is called the th degree polar of the point  with respect to ௌ or the th degree polar of ௌ at  for
 ∈ ௌ. If the polynomial ̃(−ೝ,௫ೝ) vanishes identically in ௫, we say that the th degree polar is
degenerate. Otherwise, the th degree polar is a projective hypersurface of degree . The linear1
polar of ௌ at a smooth point  ∈ ௌ is simply the tangent hyperplane to ௌ at : pl−భ

 ௌ = ்ௌ. The
quadratic polar pl−మ

 ௌ is the quadric passing through  and having the same tangent hyperplane
at  as ௌ. The cubic polar pl−య

 ௌ is the cubic hypersurface passing through  and having the same
quadratic polar at  as ௌ, etc. The th degree polar pl−మ

 ௌ at a smooth point  ∈ ௌ passes through 
and has plೝ−ೖ

 pl−ೝ
 ௌ = pl−ೖ

 ௌ for all ଵ ⩽  ⩽  − ଵ, because

plೝ−ೖ
 pl−ೝ

 (௫) = p̃l−ೝ
 (ೝ−ೖ,௫ೖ) = ̃(−ೝ,ೝ−ೖ,௫ೖ) = ̃(−ೖ,௫ೖ) = pl−ೖ

 (௫) .
1That is, of the first degree.
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4.5.4 Linear support of a homogeneous polynomial. For a polynomial  ∈ ௌ∗, we write
Supp for the minimal1 vector subspaceௐ ⊂ ∗ such that  ∈ ௌௐ, and call it the linear support of
. Over a field of zero characteristic, Supp = Supp ̃, where ̃ ∈ Sym ∗ ⊂ ∗⊗ is the complete
polarization of . By Theorem 4.1, Supp ̃ is linearly generated by the images of the ( − ଵ)-tuple
contraction maps

 ∶ ⊗(−భ) → ∗ , ௧ ↦ భ, మ, … , (−భ)
ೕభ,ೕమ,…,ೕ−భ

(௧ ⊗ ̃) ,

coupling all the ( − ଵ) factors of ⊗(−భ) with some  − ଵ factors of ̃௧ ∈ ∗⊗ in order indicated
by the sequence  = (భ, మ, … , −భ). For the symmetric tensor ̃, such a contraction does not
depend on  and maps every decomposable tensor ௩భ ⊗ ௩మ ⊗ ⋯ ⊗ ௩−భ to the linear form on 
proportional to the derivative డೡభడೡమ … డೡ−భ ∈ ∗. Thus, Supp() is linearly generated by all
( − ଵ)-tuple partial derivatives

డభ

డ௫భ
భ

డమ

డ௫మ
మ

⋯ డ

డ௫


(௫) , where ∑ഌ =  − ଵ . (4-36)

The coefficient of ௫ in the linear form (4-36) depends only on the coefficients of monomial

௫భ
భ …௫−భ

−భ ௫+భ
 ௫+భ

+భ …௫


in . If we write the polynomial  as

 = ∑
ഌభ+⋯+ഌ=

!
ఔభ! ఔమ! ⋯ ఔ! ഌభഌమ …ഌ ௫

ഌభ
భ ௫ഌమమ …௫ഌ , (4-37)

the linear form (4-36) turns to

! ⋅


∑
=భ

భ…−భ(+భ)+భ…௫ . (4-38)

Totally, we get (+−మ
−భ ) such the linear forms staying in bijection with the nonnegative integer

solutions భ,మ, … , of the equation భ +మ + ⋯ + =  − ଵ.
Proposition 4.3
Let 𝕜 be a field of zero characteristic,  a finite dimensional vector space over 𝕜, and  ∈ ௌ∗ a
polynomial written in the form (4-37) in some basis of ∗. If  = ఝ for some linear form ఝ ∈ ∗,
then the ௗ×(+−మ

−భ ) matrix built from the coefficients of linear forms (4-38) has rank ଵ. In this case,
there are at most  linear forms ఝ ∈ ∗ such that ఝ = , and they differ from one another by
multiplications by the th roots of unity laying in 𝕜. For algebraically closed field 𝕜, the converse
is also true: if all the linear forms (4-38) are proportional, then  = ఝ for some linear form ఝ
proportional to the forms (4-38).

Proof. The equality  = ఝ means that Supp() ⊂ ∗ is the 1-dimensional subspace spanned
by ఝ. In this case, all linear forms (4-38) are proportional to ఝ. Such a form ట = ఒఝ has ట = 
if and only if ఒ = ଵ in 𝕜. Conversely, let all the linear forms (4-38) be proportional, and ట ≠  be
one of them. Then, Supp() = 𝕜 ⋅ట is the 1-dimensional subspace spanned by ట. Hence,  = ఒట

for some ఒ ∈ 𝕜, and therefore,  = ఝ for2 ఝ = √ఒ ⋅ట. �
1With respect to inclusions.
2Here we use that 𝕜 is algebraically closed.
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4.5.5 The Veronese varieties 𝑽(𝒏,𝒌). The Veronese map

௩ೖ,∶ ℙ(∗) ↪ ℙ(ௌ∗) , ట ↦ ట , (4-39)

for dim =  + ଵ embeds ℙೖ into ℙಿ, where ே = (+ೖ
ೖ ) − ଵ. The image of map (4-39) is called

the Veronese variety and denoted by (,) ⊂ ℙ(ௌ∗). It consists of perfect  th powers ఝ of
linear forms ఝ ∈ ∗ considered up to proportionality. It follows from Proposition 4.3 that (,)
is indeed an algebraic projective variety described by a system of quadratic equations asserting the
vanishing of all ଶ × ଶ-minors in ௗ × (+−మ

−భ ) matrix formed by the coefficients of the linear forms
(4-38). For example, a homogeneous polynomial in two variables (௫బ,௫భ) = ∑

ೖ=బ ೖ(ೖ)௫−ೖ
బ ௫ೖభ

has
డ−భ

డ௫−−భ
బ డ௫భ

= ! ⋅ (௫బ + +భ௫భ) .

Hence, the image of the Veronese embedding ௩భ, ∶ ℙభ ↪ ℙ is described by the condition

rk (
బ భ … −భ
భ మ …  ) = ଵ ,

which agrees with Example 1.4 on p. 12 and is equivalent to a system of quadratic equations

det (
 ೕ
+భ ೕ+భ) = 

on the coefficients  of the polynomial . A polynomial  satisfies these equations if and only if
 = ఝ for some linear form ఝ = ఈబ௫బ + ఈభ௫భ, and in this case (ఈబ ∶ ఈభ) = ( ∶ +భ) for all .
4.6 Polarization of grassmannian polynomials. The quotient map ⊗ ↠ ௸ sends every
summand of the basis alternating tensor (4-26)

⟨భ,మ,…,⟩ ≝ ∑
∈ೄ

sgn() ⋅ (భ) ⊗ (మ) ⊗ ⋯ ⊗ ()

to the same grassmannianmonomial  = భ∧మ∧…∧ . Thus, this map sends ⟨భ,మ,…,⟩ to! ,
and therefore, over a field of zero characteristic, the factorization through the alternating relations
assigns the isomorphism Alt  ⥲ ௸. By analogy with the usual commutative polynomials, the
inverse isomorphism is denoted by pl∶ ௸ ⥲ Alt , ఠ ↦ ఠ̃, and called the complete polarization
of grassmannian polynomials.

4.6.1 Duality. For a finite dimensional vector space  over a field of zero characteristic, there
is the perfect pairing between the spaces ௸ and ௸∗ coupling ఛ ∈ ௸ and ఠ ∈ ௸∗ to the
complete contraction of their complete polarizations ఛ̃ ∈ ⊗ and ఠ̃ ∈ ∗⊗.
Exercise 4.21. Convince yourself that the non zero couplings between the basis monomials
 ∈ ௸ and ௫ ∈ ௸∗ are exhausted by ⟨  , ௫ ⟩ = ଵ∕!.
4.6.2 Partial derivatives in the exterior algebra. Given a covector ట ∈ ∗, we write

plഗ∶ ௸ → ௸−భ

for the composition of inner multiplication ഗ∶ ⊗ → ⊗(−భ) by ట with preceding complete
polarization pl∶ ௸ ⥲ Alt  and subsequent factorization ఈ∶ ⊗(−భ) ↠ ௸−భ through the
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alternating relations1. Thus, plೡ fits in the commutative diagram

∗⊗ ⊃ Skew ∗ ഗ // ∗⊗(−భ)

ഀ
����

௸∗ plഗ //

pl ∼

OO

௸−భ∗

(4-40)

similar to the diagram from formula (4-31) on p. 51. By analogy with n∘ 4.5.2, the polynomial
డഗఠ ≝ degఠ ⋅ plഗఠ

is called the derivative of homogeneous grassmannian polynomial ఠ ∈ ௸ in direction of covector
ట ∈ ∗. Since plഗఠ is linear in ట, the derivation along ట = ∑ఈ௫ splits as డഗ = ∑ఈడೣ . If ఠ
does not depend on , then డೣఠ = . Therefore, a nonzero contribution to డഗ is given only by
the derivations డೣ for  ∈ ூ.
Exercise 4.22. Check that డೣభభ ∧ మ ∧ … ∧  = మ ∧ య ∧ … ∧  for every collection of
indexes భ, మ, … , , not necessary increasing.

It follows from Exercise 4.22 that
డೣೖభ ∧ మ ∧ … ∧  = డೣೖ (−ଵ)ೖ−భೖ ∧ భ ∧ … ∧ ೖ−భ ∧ ೖ+భ … 

= (−ଵ)ೖ−భడೣೖೖ ∧ భ ∧ … ∧ ೖ−భ ∧ ೖ+భ … 
= (−ଵ)ೖ−భభ ∧ … ∧ ೖ−భ ∧ ೖ+భ …  .

In other words, the derivation of a monomial along the basis covector dual to the th variable from
the left in the monomial behaves as (−ଵ)ೖ−భడ∕డೖ , where the grassmannian partial derivative డ∕డ
takes  to ଵ and annihilates all ೕ with  ≠ , exactly as in the symmetric case. However, the sign
(−ଵ)ೖ in the previous formula forces the grassmannian partial derivatives to satisfy the grassmannian
Leibniz rule, which differs from the usual one by an extra sign.
Exercise 4.23 (the grassmannian Leibniඋ rule). For any homogeneous grassmannian poly-
nomials ఠ, ఛ ∈ ௸ and a covector ట ∈ , prove that

డഗ(ఠ ∧ ఛ) = డഗ(ఠ) ∧ ఛ + (−ଵ)degഘఠ ∧ డഗ(ఛ) . (4-41)

Since the grassmannian polynomials are linear in each variable, డమഗఠ =  for all ట ∈ , ఠ ∈ ௸.
The relation డమഗ =  forces the grassmannian derivatives to be super-commutative, that is,

∀ట, క ∈ ∗ డഗడ = −డడഗ .

4.6.3 Linear support of a homogeneous grassmannian polynomial. The linear support
Suppఠ of a homogeneous grassmannian polynomial ఠ of degree  is defined to be the minimal2
vector subspace ௐ ⊂  such that ఠ ∈ ௸ௐ. It coincides with the linear support of the complete
polarization ఠ̃ ∈ Skew , and is linearly generated by all ( − ଵ)-tuple partial derivatives3

డఠ ≝ డೣೕభడೣೕమ …డೣೕ−భ
ఠ = డ

డೕభ
డ

డೕమ
… డ

డೕ−భ
ఠ ,

1Which is the linear map corresponding to the alternating multiplication of covectors from formula (4-17)
on p. 44 by the universal property of tensor product.

2With respect to inclusions.
3Compare with n∘ 4.5.4 on p. 54.
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where  = భమ … −భ runs through all sequences of  − ଵ different indexes taken from the set
{ଵ, ଶ, … , ௗ}, ௗ = dim. Up to a sign, the order of indexes in  is not essential, and we will not
assume the indexes to be increasing, because this simplifies the notations in what follows.

Let us expand ఠ as a sum of basis monomials
ఠ = ∑


 = ∑

భమ … 
ఈభమ … భ ∧ మ ∧ … ∧  , (4-42)

where ூ = భమ …  also runs through the -tuples of different but non necessary increasing in-
dexes, and the coefficients ఈభమ …  ∈ 𝕜 are alternating in భమ … . Nonzero contributions to డఠ
are given only by the monomials  with ூ ⊃ . Therefore, up to a common sign,

డఠ = ± ∑
∉

ఈೕభೕమ …ೕ−భ  . (4-43)

Proposition 4.4
The following conditions on a grassmannian polynomial ఠ ∈ ௸ written in the form (4-42) are
equivalent:

1) ఠ = ௨భ ∧ ௨మ ∧ … ∧ ௨ for some ௨భ,௨మ, … ,௨ ∈ 

2) ௨ ∧ఠ =  for all ௨ ∈ Supp(ఠ)

3) for any two collections భమ … +భ and భమ … −భ consisting of +ଵ and −ଵ different
indexes, the following Plücker relation holds

+భ

∑
ഌ=భ

(−ଵ)ഌ−భೕభ…ೕ−భഌభ… ̂ഌ…+భ
=  , (4-44)

where the hat in భ… ̂ഌ…+భ
means that the index ഌ should be removed.

Proof. Condition (1) holds if and only ifఠ belongs to the top homogeneous component of its linear
span, ఠ ∈ ௸dim Supp(ഘ) Supp(ఠ). Condition (2) means the same because of the following exercise.
Exercise 4.24. Show that ఠ ∈ ௸ is homogeneous of degree dim if and only if ௨ ∧ఠ =  for
௨ ∈ .

The Plücker relation (4-44) asserts the vanishing of the coefficient of భ ∧ మ ∧ … ∧ +భ in the
product (డೕభ…ೕ−భఠ)∧ఠ. In other words, (4-44) is the coordinate form of condition (2) written for
vector ௨ = డೕభ…ೕ−భఠ from the formula (4-43). Since these vectors linearly generate the subspace
Supp(ఠ), the whole set of the Plücker relations is equivalent to the condition (2). �

Example 4.8 (the Plücker quadric)
Let  = ଶ, dim = ସ, and భ, మ, య, ర be a basis of . Then the expansion (4-42) for ఠ ∈ ௸మ
looks like ఠ = ∑,ೕ ೕ ∧ ೕ, where the coefficients ೕ form the alternating ସ × ସ matrix. The
Plücker relation corresponding to (భ, మ, య) = (ଶ,ଷ,ସ) and భ = ଵ is

భమయర − భయమర + భరమయ =  . (4-45)
All other choices of (భ, మ, య) and భ ∉ {భ, మ, య} lead to exactly the same relation.
Exercise 4.25. Check this.

For భ ∈ {భ, మ, య} we get the trivial equality  = . Thus, for dim = ସ, the set of decomposable
grassmannian quadratic forms ఠ ∈ ௸మ is described by just one quadratic equation (4-45).
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Exercise 4.26. Convince yourself that the equation (4-45) on ఠ = ∑,ೕ ೕ ∧ ೕ is equivalent
to the condition ఠ ∧ఠ = .
4.6.4 The Grassmannian varieties and Plücker embeddins. For a vector space  of dimen-

sion ௗ, the set of all vector subspaces  ⊂  of dimension  is denoted by Gr(,) and called
the grassmannian. When the origin of  is not essential or  = 𝕜, we write Gr(,ௗ) instead
of Gr(,). Thus, Gr(ଵ,) = ℙ(), Gr(dim − ଵ,) = ℙ(∗). The grassmannian Gr(,) is
embedded into the projective space ℙℙ(௸) by means of the Plücker map

 ∶ Gr(,) → ℙ(௸) ,  ↦ ௸ ⊂ ௸ (4-46)

sending every subspace  ⊂  of dimension  to its highest exterior power ௸, which is a sub-
space of dimension ଵ in ௸. If  is spanned by vectors ௨భ,௨మ, … ,௨, then up to proportionality,
() = ௨భ ∧ ௨మ ∧ … ∧ ௨.
Exercise 4.27. Check that the Plücker map is injective.

The image of map (4-46) consists of all grassmannian polynomialsఠ ∈ ௸ completely factorisable
into a product of  vectors. Such polynomials are called decomposable. By Proposition 4.4 they
form a projective algebraic variety described by the system of quadratic equations (4-44) on the
coefficients of expansion (4-42).

Remark 4.1. From the algebraic viewpoint, the grassmannian variety Gr(,) ⊂ ℙ(௸) is a
super-commutative version of the Veronese variety (,) ⊂ ℙ(ௌ). Both consist of most de-
generated non-zero homogeneous polynomials of degree  in the sense that the linear support of
polynomial has the minimal possible dimension which equals ଵ for a commutative polynomial, and
equals  for a grassmannian polynomial of degree .

Example 4.9 (the grassmannians Gr(ଶ,))
The Plücker embedding identifies the grassmannian Gr(ଶ,) with the set of decomposable grass-
mannian quadratic forms ఠ ∈ ௸మ, that is, ఠ = ௨ ∧௪ for some ௨,௪ ∈ . Note that every such ఠ
has ఠ ∧ఠ = ௨ ∧௪ ∧ ௨ ∧௪ = . For an arbitrary ఠ ∈ ௸మ, there exists a basis కభ, కమ, … , క in 
such that1 ఠ = కభ ∧కమ +కయ ∧కర + ⋯ . If this sum contains more than one term, then the monomial
కభ ∧ కమ ∧ కయ ∧ కర appears in ఠ ∧ఠ with the coefficient ଶ and therefore, ఠ ∧ఠ ≠ . Thus, such ఠ
is not decomposable. We conclude that ఠ ∈ ௸మ is decomposable if and only if ఠ ∧ఠ = .

For dim = ସ, the squares of forms ఠ ∈ ௸మ lie in the space ௸ర of dimension ଵ. In this case,
the condition ఠ ∧ఠ =  for ఠ = ∑,ೕ ೕ ∧ ೕ is expressed by just one quadratic equation

భమయర − భయమర + భరమయ =  , (4-47)

which agrees with the equation (4-45) from Example 4.8 on p. 57. We conclude that the Plücker
embedding identifies the grassmannianGr(ଶ,ସ) = Gr(ଶ,)with the quadric (4-47) inℙఱ = ℙ(௸మ).
This quadric is called the Plücker quadric.

Example 4.10 (The Segre varieties revisited2)
Let ௐ = భ ⊕ మ ⊕ ⋯ ⊕  be a direct sum of finite dimensional vector spaces . For every
collection of non-negative integers భ,మ, … , such that  ⩽ dim, put  = ∑ഌഌ and

1See Example 4.5 on p. 48.
2See n∘ 4.1.2 on p. 40.
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denote by ௐభ,మ,…, ⊂ ௸ೖௐ the linear span of all products ௪భ ∧ ௪మ ∧ … ∧ ௪ೖ formed by భ
vectors taken from భ, మ vectors taken from మ, etc.
Exercise 4.28. Show that the well defined isomorphism of vector spaces

௸భభ ⊗ ௸మమ ⊗ ⋯ ⊗ ௸ ⥲ ௐభ,మ,…,

is assigned by prescription ఠభ ⊗ఠమ ⊗ ⋯ ⊗ఠ ↦ ఠభ ∧ఠమ ∧ … ∧ఠ, and verify that

௸ೖௐ = ⨁
భ,మ,…,

ௐభ,మ,…, ≃ ⨁
భ,మ,…,

௸భభ ⊗ ௸మమ ⊗ ⋯ ⊗ ௸ .

We conclude that the tensor product భ ⊗ మ ⊗ ⋯ ⊗  can be identified with the component
ௐభ,భ,…,భ ⊂ ௸ௐ. Under this identification, the decomposable tensors ௩భ ⊗ ௩మ ⊗ ⋯ ⊗ ௩ go to the
decomposable grassmannian monomials ௩భ∧௩మ∧…∧௩. Therefore, the Segre variety from n∘ 4.1.2
on p. 40 is the intersection of the grassmannian variety Gr(,ௐ) ⊂ ℙ(௸ௐ) with the projective
subspace ℙ (ௐభ,భ,…,భ) ⊂ ℙ(௸ௐ). In particular, the Segre variety is indeed an algebraic variety
described by the system of quadratic equations from Proposition 4.4 on p. 57 restricted onto the
linear subspaceௐభ,భ,…,భ ⊂ ௸ௐ.



§5 Grassmannian varieties in more details

5.1 The Plücker quadric and grassmannianGr(2,4). Let us fix a vector space  of dimension ସ.
The grassmannian Gr(ଶ,) = Gr(ଶ,ସ) parameterizes the vector subspaces  ⊂  of dimension ଶ,
or equivalently, the lines ℓ ⊂ ℙయ = ℙ(). The Plücker embedding

𝔲 ∶ Gr(ଶ,ସ) ↪ ℙఱ = ℙ(௸మ) ,  ↦ ௸మ , () ↦  ∧  (5-1)

sends every ଶ-dimensional subspace  ⊂  to the ଵ-dimensional subspace ௸మ ⊂ ௸మ, or equiva-
lently, every line () ⊂ ℙ() to the point  ∧  ∈ ℙ(௸మ). It assigns the bijection between the
grassmannian Gr(ଶ,ସ) and the Plücker quadric1

 ≝ {ఠ ∈ ௸మ |ఠ ∧ ఠ = }

which consists of all decomposable grassmannian quadratic forms ఠ =  ∧ , , ∈ , see Exam-
ple 4.9 on p. 58.

Let us fix a basis బ, భ, మ, య in , the monomial basis ೕ ≝  ∧ ೕ in ௸మ, and write ௫ೕ for
the homogeneous coordinates in ℙఱ = ℙ(௸మ) with respect to the latter basis. The computation

(�∑
<ೕ

௫ೕ ⋅  ∧ ೕ) � ∧ (�∑
<ೕ

௫ೕ ⋅  ∧ ೕ)� = ଶ (௫బభ௫మయ − ௫బమ௫భయ + ௫బయ௫భమ) ⋅ బ ∧ భ ∧ మ ∧ య

shows that  is described by the non-degenerated quadratic equation ௫బమ௫భయ = ௫బభ௫మయ + ௫బయ௫భమ.
Exercise 5.1. Check that the Plücker embedding (5-1) takes the subspace spanned by vectors
 = ∑ఈ,  = ∑ఉೕೕ to the point with coordinates ௫ೕ = ఈఉೕ−ఈೕఉ, that is, sends a matrix

(
ఈబ ఈభ ఈమ ఈయ
ఉబ ఉభ ఉమ ఉయ) to the collection of its six ଶ × ଶ-minors ௫ೕ = det (

ఈ ఈೕ
ఉ ఉೕ)

.
In coordinate-free terms, the Plücker quadric is described as follows. There exists a unique up

to proportionality bilinear form ̃ on ௸మ defined by prescription

∀ఠభ,ఠమ ∈ ௸మ ఠభ ∧ ఠమ = ̃(ఠభ,ఠమ) ⋅ ఋ , (5-2)

where ఋ ∈ ௸ర ≃ 𝕜 is an arbitrary non zero vector2. This form is symmetric, because ఠభ ∧ ఠమ =
= ఠమ ∧ ఠభ for even grassmannian polynomials. Obviously,  = () for the quadratic form
(ఠ) = ̃(ఠ,ఠ) corresponding to ̃.
Lemma 5.1
Two lines ℓభ, ℓమ ⊂ ℙయ are intersecting if and only if ̃(𝔲(ℓభ), 𝔲(ℓమ)) =  in ℙఱ.

Proof. Let ℓభ = ℙ(భ), ℓమ = ℙ(మ). If భ ∩ మ = , then  = భ ⊕ మ and we can choose a basis
బ, భ, మ, య ∈  such that ℓభ = (బభ), ℓమ = (మయ). Then 𝔲(ℓభ) ∧ 𝔲(ℓమ) = బ ∧ భ ∧ మ ∧ య ≠ .
If ℓభ = (), ℓమ = () are intersecting in , then 𝔲(ℓభ) ∧ 𝔲(ℓమ) =  ∧  ∧  ∧  = . �

Remark 5.1. The injectivity of (5-1) becomes obvious3 after Lemma 5.1. Indeed, for any two lines
ℓభ ≠ ℓమ on ℙయ there exists a third line ℓ which intersects ℓభ and does not intersect ℓమ. Then
𝔲(ℓభ) ∧ 𝔲(ℓ) =  and 𝔲(ℓమ) ∧ 𝔲(ℓ) ≠ . This forces 𝔲(ℓభ) ≠ 𝔲(ℓమ).

1See formula (4-47) on p. 58.
2Since dim௸ర = ଵ, such a vector is unique up to proportionality.
3Compare with Exercise 4.27 on p. 58.
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Corollar൰ 5.1
For every point  = 𝔲(ℓ) ∈ , the intersection  ∩ ் in ℙఱ consists of all points 𝔲(ℓ′) such that
ℓ ∩ ℓ′ ≠ ∅ in ℙయ.

Proof. This follows from Lemma 5.1 and Proposition 2.2 on p. 18. �

5.1.1 Nets and pencils of lines in ℙయ. A family of lines on ℙయ is called a net if the Plücker
embedding sends it to a plane గ ⊂  ⊂ ℙఱ. Every plane గ ⊂  is spanned by a triple of non
collinear points  = 𝔲(ℓ),  = ଵ,ଶ,ଷ, and lies in the intersection of tangent spaces to  at these
points: గ ⊂  ∩ ்భ ∩ ்మ ∩ ்య. It follows from the Lemma 5.1 and Corollary 5.1 that the
corresponding net of lines in ℙయ consists of all lines intersecting three given pairwise intersecting
lines ℓభ, ℓమ, ℓయ. Since three mutually intersecting lines have to be either concurrent or coplanar,
there are exactly two different types of line nets in ℙయ:

ఈ-net consists of lines passing through a given point  ∈ ℙయ and corresponds to ఈ-plane గഀ() ⊂ 
spanned by Plücker’s images of three non-coplanar lines passing through 

ఉ-net consists of lines laying in a given plane  ∈ ℙయ and corresponds to ఉ-plane గഁ() ⊂ 
spanned by Plücker’s images of three non-concurrent lines laying in .

Any two planes of the same type have exactly one intersection point:

గഁ (భ) ∩ గഁ (మ) = 𝔲 (భ ∩మ ) , గഀ (భ) ∩ గഀ (మ) = 𝔲 ( (భைమ) ) .

Two planes of different types గഁ(), గഀ() are either not intersecting (if  ∉ ) or intersecting
along a line (if  ∈ ). In the latter case the intersection line depicts the pencil of lines in ℙయ
passing through  and laying in .
Exercise 5.2. Show that there are no other pencils of lines in ℙయ, i.e., every line laying on  ⊂ ℙఱ
has the form గഁ() ∩ గഀ() for some  ∈  ⊂ ℙయ.

Exercise 5.3. Convince yourself that the assignment  ↦ Ann establishes the bijection
Gr(ଶ,) ⥲ Gr(ଶ,∗) sending ఈ-planes to ఉ-planes and vice versa.
5.1.2 Cell decomposition of 𝑷. Let us fix a point  ∈  and a hyperplane ு ≃ ℙయ laying

inside ் ≃ ℙర and complementary to  within this ℙర. The intersection  =  ∩ ் is the
simple cone with vertex  over a smooth quadric ீ = ு ∩ , which can be thought of as the Segre
quadric in ℙయ = ு. Fix a point ′ ∈ ீ and write గഀ, గഁ for the planes spanned by  and two lines
laying on ீ and passing through ′. Associated with these data is the following stratification of the
Plücker quadric  by closed subvarieties shown on fig. 5⋄1 on p. 62:

గഀ
o�

��
 � � // గഀ ∩ గഁ

-

;;

� q

##

 � � // 

గഁ
/�

?? (5-3)
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For every stratum ఙ of this stratification, the complement to the union of all strata contained in ఙ
is naturally identified with an affine space. This leads to the following decomposition of Gr(ଶ,ସ)
in disjoint union of affine spaces:

Gr(ଶ,ସ) = 𝔸బ ⊔ 𝔸భ ⊔
⎛
⎜
⎜
⎝

𝔸మ
⊔
𝔸మ

⎞
⎟
⎟
⎠

⊔ 𝔸య ⊔ 𝔸ర .

The leftmost 𝔸బ is the point . Then goes 𝔸భ, which is the complement to  within the projective
line (′) = గഀ∩గഁ. Then go two affine planes 𝔸మ, the complements to (′) within the projective
planes గഀ and గഁ respectively. Then goes 𝔸య, which is the complement to గഀ ∪గഁ within the cone
 =  ∩ ், which is the linear join of ீ and . This complement is isomorphic to the direct
product of 𝔸భ, which is the cone generator punctured at the vertex of cone, and 𝔸మ = ீ ∖ ்′ீ.
The rightmost piece 𝔸ర =  ∖ . The identifications ீ ∖்′ீ = 𝔸మ and  ∖்′ = 𝔸ర made on the
last two steps are based on the Lemma 5.2 following below.

p′

p ̸∈ H

G ⊂ H

H ≃ P3

πα

πβ

Fig. 5⋄1. The cone  =  ∩ ் viewed within ℙర = ்.

Lemma 5.2
For every smooth quadric ொ ⊂ ℙ, point  ∈ ொ, and hyperplane  ∌ , the projection ∶ ொ → 
from  to  establishes a bijection between ொ ∖ ்ொ and 𝔸−భ =  ∖ ்ொ.

Proof. Every non-tangent line passing through  intersects ொ in exactly one point other than .
All these lines stay in bijection with the points of  ∖ ்ொ ≃ 𝔸−భ. �
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Exercise 5.4. If you have some experience in CW-topology, show that the integer homology
groups of complex grassmannian Gr(ଶ,ସ) are

ு (Gr(ଶ,ℂర), ℤ) =
⎧⎪
⎨
⎪⎩

 for odd  ⩽  and all  > ଼
ℤ for  = , ଶ, , ଼
ℤ⊕ ℤ for  = ସ

�

Try to compute the integer homologies ு (Gr(ଶ,ℝర), ℤ) of the real grassmannian Gr(ଶ,ସ).
5.1.3 Lagrangian grassmannian LGr(2,4) and lines on a smooth quadric in ℙర. Let a

vector space  of dimension ସ be equipped with a non-degenerated alternating bilinear form ఆ.
A line ℓ = () ⊂ ℙ() is called lagrangian if ఆ(௨,௪) =  for all ௨,௪ ∈ ℓ, or equivalently,
if ఆ(,) = . The set of all lagrangian lines is called the lagrangian grassmannian and denoted
by LGr(ଶ,ସ) ⊂ Gr(ଶ,ସ). Let us show that the Plücker embedding sends LGr(ଶ,ସ) to a smooth
hyperplane section of the Plücker quadric, that is, to a smooth quadric in ℙర.

Associated withఆ is the linear formఆ′ ∶ ௸మ → 𝕜, ∧ ↦ ఆ(,). Let us fix a non-zero vector
ఋ ∈ ௸ర. Since the bilinear form ̃ on ௸మ defined in formula (5-2) on p. 60 is non-degenerate, its
correlation map ̂∶ ௸మ ⥲ (௸మ)

∗ is an isomorphism. Hence, there exists a unique grassmannian
quadratic form ఠ = ̂−భ (ఆ′) ∈ ௸మ such that

∀, ∈  ఠ ∧  ∧  = ఆ(,) ⋅ ఋ . (5-4)

Writeௐ = Annఆ′ ⊂ ௸మ for the orthogonal complement toఠ with respect to the Plücker quadratic
form . The projectivization ௳ = ℙ(ௐ) ≃ ℙర ⊂ ℙఱ is the polar hyperplane of ఠ with respect to the
Plücker quadric  ⊂ ℙ(௸మ).
Exercise 5.5. Verify that ఠ ∉ .

Hence, the intersection ோ = ௳ ∩  is a smooth quadric within ℙర = ௳. The points of this quadric
stay in bijection with the lagrangian lines in ℙ(), because the formulas (5-4), (5-2) say together
that a line () ⊂ ℙయ is lagrangian if and only if ̃(ఠ,  ∧ ) = . Thus, LGr(ଶ,ସ) = ோ is a smooth
quadric in ℙర = ௳.

It follows from the general theory developed in n∘ 2.6 on p. 24 that ோ does not contain planes
but every point  ∈ ோ is the vertex of cone ோ ∩ ்ೝோ, the linear join of  with a smooth conic in a
plane complementary to  within ்ோ ≃ ℙయ.

Definition 5.1 (the Fano variet൰ of a projective variet൰)
The set of lines laying on a projective algebraic variety  is called the Fano variety of  and denoted
by ி().

Proposition 5.1
For every point  ∈ ℙ(), the lagrangian lines ℓ ⊂ ℙ() passing through  form a pencil. Sending
 to this pencil assigns the bijection ℙ() ⥲ ி( �LGr(ଶ,)) �.

Proof. Every pencil of lines in ℙయ = ℙ() is mapped by the Plücker embedding to a line  ⊂ ,
which has the form1  = గ ∩ గ() for some point  and plane  in ℙయ such that  ∈ . In other
words,  consists of all lines passing through  and laying in . For  ⊂ ோ =  ∩ ௳ all these lines

1See n∘ 5.1.1, especially Exercise 5.2 on p. 61.
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are lagrangian. On the other hand, a line (௫) ⊂ ℙ() is lagrangian if and only if ఆ(,௫) = .
Hence, every lagrangian line passing through  lies in the orthogonal plane to  with respect to
the form ఆ and therefore, belongs to the pencil . This proves the first statement. The second is
obvious from the discussion preceding the proposition. �

5.2 The homogeneous, Plücker’s, and affine coordinates on Gr(𝒌,𝒎). The general grassman-
nian Gr(,), which parameterizes the vector subspaces of dimension  in  = 𝕜, is a straightfor-
ward generalization of the projective space ℙ−భ = Gr(ଵ,) attached to . If a basis భ, మ, … , 
in  is fixed, then a vector subspace  ⊂  with a basis ௨ = ௨భ,௨మ, … ,௨ can be described by
the  ×  matrix ೠ formed by the coordinate rows of vectors ௨ in the chosen basis of . Every
other basis ௪భ,௪మ, … ,௪ in  has the form (௪భ,௪మ, … ,௪) = (௨భ,௨మ, … ,௨) ⋅ ೠೢ, where
ೢೠ ∈ GLೖ(𝕜), and leads to the matrix ೢ = ೠೢೠ.
Exercise 5.6. Check this.

Thus, two  ×  matrices ೠ, ೢ of rank  correspond to the same subspace  ⊂  if and only
if ೢ = ீೠ for some  ×  matrix ீ ∈ GLೖ(𝕜). For  = ଵ, this agrees with the description of
ℙ−భ = Gr(ଵ,) as the set of nonzero rows (௫భ,௫మ, … ,௫) ∈ 𝕜 = Matభ× considered up to
multiplication by nonzero constants ఒ ∈ 𝕜∗ = GLభ(𝕜). Thus, the matrix ೠ ∈ Matೖ×, formed by
coordinate rows of some basis vectors௨భ,௨మ, … ,௨ೖ ∈  and considered up to the left multiplication
by matrices ீ ∈ GLೖ, is the direct analog of homogeneous coordinates on the projective space.

The Plücker embedding 𝔲 ∶ Gr(,) ↪ ℙ(௸ೖ) takes a subspace  ⊂  of dimension  to
the subspace ௸ ⊂ ௸ of dimension ଵ. For every basis ௨భ,௨మ, … ,௨ in , the grassmannian
monomial ௨భ ∧ ௨మ ∧ … ∧ ௨ spans 𝔲().
Exercise 5.7 (Plücker coordinates). Verify that for every ூ = (భ, మ, … , ೖ), the coefficient
ఈ in the expansion ௨భ∧௨మ∧…∧௨ = ∑ ఈ equals the × minor situated in the columns
భ, మ, … , ೖ of matrix ೠ.

Thus, the (ೖ ) homogeneous coordinates of the point 𝔲() ∈ ℙ(௸ೖ) with respect to the basis formed
by the grassmannian monomials  are the determinants  = det  of  × submatrices  ⊂ ೠ.
They called the Plücker coordinates of the subspace  ⊂ . Two subspaces ,ௐ ⊂  of dimension 
coincide if and only if their Plücker coordinates are proportional.
Exercise 5.8. Is there a rational ଶ×ସmatrix with minors a) ଶ, ଷ, ସ, ହ, ,  b) ଷ, ସ, ହ, , , ଼ ?
If such matrices exist, write some of them explicitly. If not, explain why.
5.2.1 Affine charts. For every subspace ் ⊂  of codimension , the set

𝒰 ≝ {ௐ ⊂  | dimௐ =  , ௐ ∩ ் = }

is called the affine chart provided by ் on the grassmannian Gr(,). For every  ∈ 𝒰, the set
𝒰 is naturally identified with the affinization 𝔸( �Hom(,்)) � of the vector space of linear maps
ఛ∶  → ் as follows. We have the direct sum decomposition  = ் ⊕  and 𝒰 consists of all
those subspacesௐ ⊂  isomorphically projected onto  along ். Thus, everyௐ ∈ 𝒰 is the graph
of linear map ఛೈ∶  → ் sending a vector ௨ ∈  to the unique vector ௧ ∈ ் such that ௨+ ௧ ∈ ௐ,
and vice versa, for every linear map ఛ∶  → ், its graph ௐഓ = {௨ + ఛ(௨) | ௨ ∈ } is a linear
subspace in  isomorphically projected onto  along ்.

For every  ∈ 𝒰, the projection  ↠ ் along  assigns the isomorphism గ∶ ∕ ⥲ ்.
It provides us with the linear isomorphism ఈ ∶ Hom(,∕) ⥲ Hom(,்), ఛ ↦ గ ∘ ఛ, which
allows to consider all affine charts 𝒰 containing a given point  ∈ Gr(,) as affine spaces over
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the same vector space Hom(,∕) independent on ். Thus, locally, in a neighborhood of every
point , the grassmannian Gr(,) looks as an affine space over the vector space Hom(,∕) of
dimension  × ( − ). This vector space is called the tangent space to the grassmannian Gr(,)
at the point  and is denoted by 𝒯ೆGr(,).

Example 5.1 (affine charts on ℙ−భ = Gr(ଵ,) revisited)
Every codimension ଵ subspace ் ⊂  has the form ் = Ann క for a non-zero covector క ∈ ∗

uniquely up to proportionality determined by ். Defined in n∘ 1.2 on p. 5 were affine charts 
on ℙ−భ = ℙ(). For all క such that Ann క = ், the charts  consist of the same points, the
dimension ଵ subspaces 𝕜 ⋅௨ ⊂  such that ௨ ∉ ். Exactly the same subspaces form the chart 𝒰 on
Gr(ଵ,). This chart is an affine space associated with the vector space Hom(𝕜,்) ≃ ். A particular
choice of dimension ଵ subspace 𝕜 ⋅ ௨ ∈ 𝒰 fixes the origin in this affine space. Under this choice,
every dimension ଵ subspace 𝕜 ⋅௪ laying in 𝒰, i.e., such that క(௪) ≠ , can be identified with the
linear map ఛೢ∶ 𝕜 ⋅ ௨ → Ann క = ், ௨ ↦ ௪ ⋅ క(௨)∕క(௪) − ௨. Note that this map depends only on
the subspaces 𝕜 ⋅௨, 𝕜 ⋅௪, and ் in  but not on the choice of ௨ ∈ 𝕜 ⋅௨, ௪ ∈ 𝕜 ⋅௪, and క ∈ Ann்.

5.2.2 The standard affine charts on Gr(𝒌,𝒎). For every collection ூ of increasing indexes
ଵ ⩽ భ < మ < ⋯ < ೖ ⩽ , write ா,ா ̂ ⊂ 𝕜 for the complementary subspaces spanned by
the basis vectors ,  ∈ ூ, and ೕ,  ∉ ூ, respectively. The affine chart 𝒰ಶ ̂ , which consists of all
dimension  subspaces  ⊂ 𝕜 isomorphically projected onto ா along ா ̂, is called the standard
ூ-chart on grassmannian Gr(,) and denoted by 𝒰.

For every subspace  ⊂  laying in the chart 𝒰, write ௨() = ௨()
భ ,௨()

మ , … ,௨()
ೖ for the basis

of  projected along ா ̂ to the basis భ , మ , … , ೖ of ா. The matrix () ≝ ೠ() , formed by the
coordinate rows of these vectors, has the identity  ×  submatrix in the columns భ, మ, … , ೖ. We
conclude that among the matrices ೠ representing a subspace  ∈ 𝒰, there exists the unique
matrix having the identity submatrix in ூ-columns. We write ()() for this matrix and use the
( − ) elements staying outside the ூ-columns of ()() as the standard affine coordinates of 
in the chart 𝒰.

Clearly, a point  ∈ Gr(,) represented by a matrix  = ೠ ∈ Matೖ×(𝕜) lies in 𝒰 if
and only if the  ×  submatrix  ⊂  situated in ூ-columns of  is invertible. In this case,
()() = −భ

 . Thus, the standard chart 𝒰 consists of those  whose ூth Plücker coordinate is
not zero. The matrices () = ()() and () = ()() producing the local affine coordinates of
a point  ∈ 𝒰 ∩ 𝒰 in the standard charts 𝒰, 𝒰 are related as () = (()

 )−భ(). Hence, the
standard affine coordinates of the same subspace  ⊂  in different charts are rational functions of
each other.
Exercise 5.9. Make it sure that the standard affine charts and local affine coordinates on

Gr(ଵ,) = ℙ−భ are exactly those introduced in Example 1.2 on p. 8.

Exercise 5.10. If you had deal with differential (respectively, analytic1) geometry, check that
real (respectively complex) grassmannians are smooth (respectively holomorphic) manifolds.

5.3 The cell decomposition for Gr(𝒌,𝒎). The Gaussian elimination method shows that every
subspace  ⊂  admits a unique basis ௨ = ௨భ,௨మ, … ,௨ with the reduced echelon matrix ೠ, i.e.,
the leftmost nonzero element in every row of ೠ stays strictly to the right of such element in the

1Also known as holomorphic.
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previous row, equals ଵ, and is the only nonzero element of its column.
Exercise 5.11. Convince yourself that the rows of different reduced echelon × matrices span
different subspaces in 𝕜.

Thus, there exist a bijection between Gr(,) and the set of reduced echelon  ×  matrices of
rank . The latter splits in disjoint union of affine spaces as follows. Write  = భ, మ, … , ೖ for
successive numbers of those columns containing the starting units of rows in a reduced echelon
matrix , and call this increasing sequence of integers the shape of . Every reduced echelon ×
matrix  of shape ூ contains the identity submatrix in the -columns, and has exactly

( − ) − (భ − ଵ) − (మ − ଶ) − ⋯ − ( − ) = dim Gr(,) −


∑
ഌ=భ

(ഌ − ఔ)

free cells which may contain arbitrary elements of 𝕜. Thus, these matrices form an affine space of
codimension ∑

ഌ=భ(ഌ − ఔ) in Gr(,). It is denoted by ఈ and called an affine Schubert cell. The
whole grassmannian splits in disjoint union of (ೖ ) such cells: Gr(,) = ⨆ ఈ.

5.3.1 Young diagram notations. Besides the strictly increasing sequences of integers, the
partitions are also commonly used for indexing the Schubert cells. A partition ఒ is a non-increasing
sequence of non-negative integers ఒభ ⩾ ఒమ ⩾ ⋯ ⩾ ఒೖ ⩾  visualized as the Young diagram, the
pile of horizontal cellular strips of lengths ఒభ,ఒమ, … ,ఒ aligned to the left in the non-increasing
top-down order. For example, the partition (ସ,ସ,ଶ,ଵ) has the Young diagram

(5-5)

The total number of cells in a diagram ఒ is denoted by |ఒ| ≝ ∑ఒ and called the weight of ఒ. Thus,
the partitions of weight  enumerate the ways to break a set of  mutually elements in a union of
disjoint subsets. The total number of non-empty parts is called the height of partition and denoted
by (ఒ) = max( | ఒೖ > ). The cardinality ఒభ of biggest part is called the width of the partition.
For example, the diagram (5-5) has weight ଵଵ, height ସ, and width ସ.

We say that a reduced echelon matrix  has the shape ఒ for some partition ఒ = ఒభ,ఒమ, … ,ఒೖ
if for every  = ଵ, ଶ, … , , the starting unit in the th from the bottom row of  stays in the
ఒth cell to the right of the leftmost possible position. This means that ఒೖ+భ−ഌ = ഌ − ఔ for every
ఔ =  + ଵ −  = ଵ, ଶ, … , . Note that the codimension of the affine Schubert cell ఈഊ equals the
weight |ఒ| of Young diagram ఒ.
Exercise 5.12. Convince yourself that the prescription భ, మ, … , ೖ ↦ ఒభ,ఒమ, … ,ఒೖ such that
ఒೖ+భ−ഌ = ഌ − ఔ for all ଵ ⩽ ఔ ⩽  establishes a bijection between the sequences of  strictly
increasing integers in range [,] and the Young diagrams ot height ⩽  and width ⩽ − .

For example, the affine Schubert cell ఈరరమభ ⊂ Gr(ସ,ଵ) corresponding to the diagram (5-5) consists
of subspaces  ⊂ 𝕜భబ represented by reduced echelon matrices of the shape

⎛
⎜
⎜
⎜
⎝

 ଵ ∗  ∗ ∗   ∗ ∗
   ଵ ∗ ∗   ∗ ∗
      ଵ  ∗ ∗
       ଵ ∗ ∗

⎞
⎟
⎟
⎟
⎠

.

Colored in red are the leftmost possible positions for the starting units of reduced echelon ସ × ଵ
matrix. Colored in blue are the actual starting units. Being read bottom-up, they are sifted by ସ, ସ,
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ଶ, and ଵ cell to the right of red cell. The grassmannian Gr(ସ,ଵ) has dimension ଶସ, the codimension
of ఈరరమభ ≃ 𝔸భయ equals ଵଵ = ସ + ସ + ଶ + ଵ.

The zero partition (,,,) has empty Young diagram meaning that the starting units stay
in the leftmost possible positions. It describes the largest Schubert cell ఈబ of dimension ଶସ which
consists of subspaces  ⊂ 𝕜భబ represented by matrices of the shape

⎛
⎜
⎜
⎜
⎝

ଵ    ∗ ∗ ∗ ∗ ∗ ∗
 ଵ   ∗ ∗ ∗ ∗ ∗ ∗
  ଵ  ∗ ∗ ∗ ∗ ∗ ∗
   ଵ ∗ ∗ ∗ ∗ ∗ ∗

⎞
⎟
⎟
⎟
⎠

Thus, the cell ఈబ coincides with the standard affine chart 𝒰భమయర ⊂ Gr(ସ,ଵ).
The maximal possible for Gr(ସ,ଵ) Young diagram (,,,) exhausts the whole rectangle

and describes one point cell, the coordinate subspace ாళ,ఴ,వ,భబ ⊂ 𝕜భబ spanned by the rows of matrix

⎛
⎜
⎜
⎜
⎝

      ଵ   
       ଵ  
        ଵ 
         ଵ

⎞
⎟
⎟
⎟
⎠

5.3.2 The closed Schubert cycles. We write ఒ ⊆ ఓ if the diagram ఒ is contained in the
diagram ఓ sharing the same upper left corner. Consider a pair of such diagrams and a subspace
ௐ ⊂ 𝕜 such thatௐ ∈ ఈഋ in Gr(,). Let  be the reduced echelon matrix ofௐ,  the reduced
echelon matrix of shape ఒ corresponding to the origin of affine cell ఈഊ, i.e., all element of  but
the starting units of rows equal zero. For every ௧ = (௧బ ∶ ௧భ) ∈ ℙభ = ℙ(𝕜మ) except for ௧ = (ଵ ∶ ),
the reduced echelon form of matrix  = ௧బ + ௧భ has the shape ఒ but ∞ =  is of shape ఓ.
The subspace  ⊂ 𝕜 spanned by the rows of matrix  draws a rationally parameterized curve
in Gr(,) ⊂ ℙ(௸ೖ𝕜) as ௧ runs through ℙభ. All points of this curve but ∞ = ௐ ∈ ఈഋ belong
to the affine Schubert cell ఈഊ. We conclude that the affine cell ఈഋ lies in the closure of ఈഊ for all
ఓ ⊇ ఒ. For every Young diagram ఒ contained in the rectangle ×(−), the union ఙഊ = ⨆ഋ⊇ഊ ఈഋ
is called the (closed) Schubert cycle of grassmannian Gr(,).

Write ா⩾ ⊂ 𝕜 for the coordinate subspace spanned by , +భ, … , , and ா< for the
complementary coordinate subspace. Then, in -notations, ఙ consists of those subspaces  ⊂ 𝕜
mapped by the projection గഌ∶ 𝕜 ↠ ா<ೕഌ along ா⩾ೕഌ to a subspace of dimension ⩽ ఔ−ଵ for every
ଵ ⩽ ఔ ⩽ , or equivalently, of those  intersecting ker గഌ = ா⩾ೕഌ in a subspace of dimension at
least +ଵ−ఔ. Thus, ఙ = { ⊂ 𝕜 | dim(∩ா⩾ೕഌ) ⩾ +ଵ−ఔ for ఔ = ଵ, … ,}. This is translated
in ఒ-notations as ఙഊ = { ⊂ 𝕜 | dim( ∩ ா⩾ೖ+భ−+ഊ) ⩾  for  = ଵ, … ,}.
Exercise 5.13. Convince yourself that for 𝕜 = ℝ,ℂ, the Schubert cycles are closed submanifolds
of the grassmannian Gr(,).

Example 5.2 (the Schubert cells on Gr(ଶ,ସ))
In ℙయ = ℙ(𝕜ర), consider the point  = ( ∶  ∶  ∶ ଵ) and plane  = (௫బ). Then the strata
of stratification from formula (5-3) on p. 61 are the Plücker images of Schubert cycles on Gr(ଶ,ସ).
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Namely, in the notations of n∘ 5.1.2, the ఈ-plane గഀ() on the Plücker quadric  ⊂ ℙఱ = ℙ(௸మ𝕜ర)
is the Plücker image of Schubert cycle ఙమబ, i.e., the closure of affine cell ఈభభ formed by reduced
echelon matrices (భ ∗ ∗ బ

బ బ బ భ). The ఉ-plane గഁ() is the cycle ఙభభ, the closure of affine cell ఈమబ formed
by matrices (బ భ బ ∗

బ బ భ ∗ ). Their intersection గഀ() ∩ గഁ() = (′) equals ఙమభ, the closure ఈమభ ⊔ ఈమమ
of the cell ఈమభ formed by matrices of shape (బ భ ∗ బ

బ బ బ భ). The dimension zero cycle ఙమమ = ఈమమ is the
point  = ( ∶  ∶  ∶  ∶  ∶ ଵ) ∈ ℙఱ = ℙ(௸మ𝕜ర), the Plücker image of matrix (బ బ భ బబ బ బ భ). The
cone ் ∩  = ఙభబ is the closure of ఈభబ, the affine cell formed by matrices (భ ∗ బ ∗

బ బ భ ∗ ). The biggest
cycle ఙబబ is the whole Plücker quadric .

Exercise 5.14. Check all these statements carefully.
5.3.3 The homology of complex grassmannians and Schubert calculus. Write

௸(,) ≝ ⨁

ு( �Gr(,ℂ),ℤ) �

for the total integer homology group of the complex grassmannian considered as a (real) topological
manifold. The (open) affine Schubert cells ఈഊ provide Gr(,) with the cell decomposition which
consists of even dimensional cells only. Hence, all boundary maps in the chain complex constructed
by means of this chain decomposition vanish. Therefore, the closed Schubert cycles ఙഊ = ఈഊ form
a basis of ௸(,) = ⨁ு over ℤ. E.g., for the Plck̈er quadric  = Gr(ଶ,ℂర) ⊂ ℙ(ℂఱ) of real
dimension ଼, we have ுబ = ுమ = ுల = ுఴ = ℤ, ுర = ℤ ⊕ ℤ, and all the homology of odd
dimension vanishes. This agrees with Exercise 5.4 on p. 63.

Topological intersection of cycles provides ௸(,) with the structure of commutative ring
closely connected with the ring ௸ of symmetric polynomials in  variables, which is the poly-
nomial ring ௸ = ℤ[ఌభ, ఌమ, … , ఌ] ⊂ ℤ[௫భ,௫మ, … ,௫] generated by the elementary symmetric
polynomials1 ఌೖ(௫భ,௫మ, … ,௫). Namely, there is the surjective homomorphism of commutative
rings ௸ ↠ ௸(,) sending the Schur polynomial2 ௦ഊ(௫భ,௫మ, … ,௫) to the Schubert cycle ఙഊ. The
kernel ideal of this homomorphism is spanned by complete symmetric polynomials3 ఎ−ೖ+భ, … ,ఎ
of degrees in range [−+ଵ,]. All known4 proofs of these statements are indirect and besides the

1Recall that ఌ is sum of all multilinear monomials of total degree  in ௫భ,௫మ, … ,௫.
2The Schur polynomial ௦ഊ ∈ ℤ[௫భ,௫మ, … ,௫] is defined either as the quotient of determinant

௱ഊ = det(௫ഊ+−
ೕ ) = det

⎛
⎜
⎜
⎜
⎜
⎜
⎝

௫ഊభ+−భ
భ ௫ഊభ+−భ

మ ⋯ ௫ഊభ+−భ


௫ഊమ+−మ
భ ௫ഊమ+−మ

మ ⋯ ௫ഊమ+−మ


⋮ ⋮ ⋯ ⋮
௫ഊ−భ+భ
భ ௫ഊ−భ+భ

మ ⋯ ௫ഊ−భ+భ


௫ഊభ ௫ഊమ ⋯ ௫ഊ

⎞
⎟
⎟
⎟
⎟
⎟
⎠

by the Vandermonde determinant ௱బ,…,బ or as the sum of all monomials in ௫భ,௫మ, … ,௫ obtained as follows:
fill the cells of diagram ఒ by (possibly repeated) variables ௫భ,௫మ, … ,௫ in such a way that indexes strictly
increase top-down in columns and non-strictly increase from left to right in rows, then multiply them alto-
gether to one monomial of total degree |ఒ|. E.g, for the one-column diagram of height , we get ௦భ,భ,…,భ = ఌ.
The coincidence of two descriptions is non-trivial and known as the Jacobi – Trudi identity. For details, see
W. Fulton, Young Tableaux with Applications to Representation Theory and Geometry, CUP, 1997.

3Recall that the complete symmetric polynomial ఎ equals the sum of all degree  monomials in
௫భ,௫మ, … ,௫ at all.

4At least, to me.
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geometry of grassmannians, use sophisticated combinatorics of symmetric functions. The geometric
part of the proof establishes two basic intersection rules:

1) The intersection of cycles ఙഊ, ఙഋ of complementary codimensions |ఒ|+|ఓ| = (−) is not
zero if and only if the diagrams ఒ, ఓ are complementary1, and in this case, the intersection
consists of one point, that is, equals ఙೖ,…,ೖ.

2) The Pieri rules: for any integer  and diagram ఒ, ఙഊఙ(,బ,…,బ) = ∑ఙഋ and ఙഊఙ(భ,…,భ⏟


) = ∑ఙഌ,
where ఓ, ఔ run through the Young diagrams obtained by adding  cells to ఒ in such a way
that all added cells appear in different rows of ఓ and in different columns of ఔ. If there are
no such diagrams, the intersection is zero.

The proofs can be found, e.g., in: P. Griffits, J. Harris, Principles of Algebraic Geometry, I. It follows
from the determinantal definition of Schubert polynomials that they form a basis over ℤ in the
additive group of symmetric polynomials, because the alternating sums

௱ഊ = det(௫ഊ+−
ೕ ) = ∑

∈ೄ
sgn()௫ഊభ+−భ

(భ) ௫ഊమ+−మ
(మ) …௫ഊ()

obviously form a basis in the additive group of alternating polynomials in ௫భ,௫మ, … ,௫, and di-
viding by the Vandermonde determinant maps this group isomorphically to the additive group of
symmetric polynomials.
Exercise 5.15. Show that every alternating polynomial in ௫భ,௫మ, … ,௫ is divisible by the Van-
dermonde determinant in the polynomial ring ℤ[௫భ,௫మ, … ,௫].

The combinatorial part of the proof verifies that the multiplication of Schur polynomials also sat-
isfies the Pieri rules, which are particular cases of the Littlewood –Richardson rule for multiplying
arbitrary Schur polynomials2. It is easy to see that the Pieri rules completely determine the multi-
plicative structure in the both rings ௸, ௸(,). This proves that the map ௸ → ௸(,), ௦ഊ ↦ ఙഊ,
is a well defined surjective homomorphism of rings. The description of its kernel comes from the
intersection rule (ଵ) for the Schubert cycles of complementary dimensions. The details of this story,
known as the Schubert calculus, can be found in the cited book of P. Griffits and J. Harris and in the
Intersection Theory book of W. Fulton.
Example 5.3 (the intersection theor൰ on Gr(ଶ,ସ))
As we have seen in Example 5.2, the Schubert cycles on Gr(ଶ,ସ) can be realized as

ఙభబ(ℓ) = {ℓ′ ⊂ ℙయ | ℓ ∩ ℓ′ ≠ ∅} for a line ℓ ⊂ ℙయ,
ఙమబ() = {ℓ′ ⊂ ℙయ | ℓ′ ∋ } for a point  ∈ ℙయ,
ఙభభ() = {ℓ′ ⊂ ℙయ | ℓ′ ⊂ } for a plane  ⊂ ℙయ,
ఙమభ(,) = ఙమబ() ∩ ఙభభ() for  ∈  ⊂ ℙయ,
ఙమమ(ℓ) = {ℓ}, a line ℓ ⊂ ℙయ considered as a point of Gr(ଶ,ସ).

Certainly, ఙೕఙೖℓ =  for  +  +  + ℓ = codimఙೕ + codimఙೖℓ > ସ. We have seen in Example 5.2
that ఙమబ(భ) ∩ ఙమబ(మ) = ఙమమ((భమ)), ఙభభ(భ) ∩ ఙభభ(మ) = ఙమమ(భ ∩ మ), whereas for  ∉ ,

1That is, can be fitted together without holes and overlaps to assemble  × ( − ) rectangle.
2See already cited W. Fulton’s book on Young diagrams, or Sec. 4.5 in: A.L.Gorodentsev, Algebra II.

Textbook for Students of Mathematics, Springer, 2017. The Pieri rules can be proven independently on the
Littlewood –Richardson rule by formal algebraic manipulations with determinants, see, e.g., Section 3.6 of
loc. cit.
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ఙమబ() ∩ ఙభభ() = ∅. By the same geometric reasons, for a line ℓ and a plane  intersecting at
a point , we have ఙభబ(ℓ) ∩ ఙభభ() = ఙమభ(,). Dually, for a line ℓ and a point  ∉ ℓ, we have
ఙభబ(ℓ) ∩ ఙమబ() = ఙమభ(,), where  is the plane passing trough  and ℓ. Similarly, for a point 
in a plane , and a line ℓ intersecting  in a point  ≠ , we get ఙభబ(ℓ) ∩ ఙమభ(,) = ఙమమ((,)).
For a generic choice of lines ℓభ, ℓమ ⊂ ℙయ the intersection ఙభబ(ℓభ) ∩ ఙభబ(ℓమ), which consists of all
lines intersecting both ℓభ, ℓమ, is the Segre quadric laying in ℙయ = ்𝔲(ℓభ)∩்𝔲(ℓభ) as it was shown in
fig. 5⋄1 on p. 62. However, when the lines ℓభ, ℓమ are intersecting but still different, the intersection
ఙభబ(ℓభ)∩ఙభబ(ℓమ) splits in the union of the ఈ-net ఙమబ() centered at the intersection point  = ℓభ∩ℓమ
and the ఉ-net ఙభభ(), where  is the plane containing ℓభ, ℓమ. Since the integer homology classes of
all cycles just mentioned are not changed under continuous moving of the points, lines, and planes
in ℙయ used to construct the realizations of these cycles within Gr(ଶ,ସ), we conclude that nonzero
products of the Schubert cycles in Gr(ଶ,ସ) are exhausted by

ఙమభబ = ఙమబ + ఙభభ , ఙభబఙమబ = ఙభబఙభభ = ఙమభ , ఙభబఙమభ = ఙమమబ = ఙమభభ = ఙమమ ,

and ఙబబఙೕ = ఙೕ for all Young diagrams () went in the square ଶ × ଶ. As a byproduct, we get a
«topological» solution of Exercise 2.14 on p. 24: for a generic choice of ସmutually non-intersecting
lines inℙయ, the set of lines intersecting them all represents the homology class of topological fourfold
self-intersection ఙరభబ = (ఙమబ + ఙభభ)మ = ఙమమబ + ఙమభభ = ଶఙమమ, that is, consists of two lines.
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Everywhere in §6, the term «ring» means by default a commutative ring with unit. All ring homo-
morphisms are assumed to map the unit to the unit.
6.1 Noetherian rings. Every subset ெ in a commutative ring  generates an ideal (ெ) ⊂ 
formed by all finite sums భభ+మమ+⋯+, where భ,మ, … , ∈ ெ, భ,మ, … , ∈ ,
 ∈ ℕ. Every ideal ூ ⊂  is generated by some subset ெ ⊂ , e.g., by ெ = ூ. An ideal ூ ⊂ ெ
is said to be finitely generated if it admits a finite set of generators, that is, if it can be written as
ூ = (భ,మ, … ,ೖ) = {భభ + మమ + ⋯ + ೖೖ |  ∈ } for some భ,మ, … ,ೖ ∈ ூ.
Lemma 6.1
The following properties of a commutative ring  are equivalent:

1) Every subsetெ ⊂  contains some finite collection of elements భ,మ, … ,ೖ ∈ ெ such that
(ெ) = (భ,మ, … ,ೖ).

2) Every ideal ூ ⊂  is finitely generated.

3) For every infinite chain of increasing ideals ூభ ⊆ ூమ ⊆ ூయ ⊆ ⋯ in  there exists  ∈ ℕ such
that ூഌ = ூ for all ఔ ⩾ .

Proof. Clearly, (1) ⇒ (2). To deduce (3) from (2), write ூ = ⋃ ூഌ for the union of all ideals in
the chain. Then ூ is an ideal as well. By (2), ூ is generated by some finite set of its elements. All
these elements belong to some ூ. Therefore, ூ = ூ = ூഌ for all ఔ ⩾ . To deduce (1) from (3),
we construct inductively a chain of strictly increasing ideals ூ = (భ,మ, … ,) starting from an
arbitrary భ ∈ ெ. While ூೖ ≠ (ெ), we choose any element ೖ+భ ∈ ெ∖ூೖ and put ூೖ+భ = (ೖ+భ∪ூೖ).
Since ூೖ ⊊ ூೖ+భ in each step, by (3) this procedure has to stop after a finite number of steps. At that
moment, we obtain ூ = (భ,మ, … ,) = (ெ). �

Definition 6.1
A commutative ring  is called to be Noetherian if it satisfies the conditions from Lemma 6.1. Note
that every field is Noetherian.

Theorem 6.1 (Hilbert’s basis theorem)
For every Noetherian commutative ring  the polynomial ring [௫] is Noetherian as well.

Proof. Consider an arbitrary ideal ூ ⊂ [௫] and write  ⊂  for the set of leading coefficients
of all polynomials of degree ⩽ ௗ in ூ including the zero polynomial. Also we write ∞ = ∪  for
the set of all leading coefficients of all polynomials in ூ.
Exercise 6.1. Verify that all of the  and ∞ are the ideals in .

Since is Noetherian, all ideals  and ∞ are finitely generated. For all ௗ (including ௗ = ∞), write
()
భ ,()

మ , … ,()
 ∈ [௫] for those polynomials whose leading coefficients span the ideal  ⊂ .

Let = max deg(∞)
 . We claim that polynomials ∞

 and ()
ೕ for ௗ <  generate ூ. Let us show first

that each polynomial  ∈ ூ is congruent modulo (∞)
భ ,(∞)

మ , … ,(∞)
∞ to some polynomial of degree

less than . Since the leading coefficient of  lies in ∞, it can be written as ∑ఒ, where ఒ ∈ 
and  is the leading coefficient of (∞)

 . As long as deg ⩾  all differences = deg− deg(∞)


are nonnegative, and we can form the polynomial  = − ∑ఒ ⋅ (∞)
 (௫) ⋅ ௫

 , which is congruent
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to modulo ூ and has deg < deg. We replace  by  and repeat the procedure while deg ⩾ .
When we come to a polynomial  ≡  (mod ூ) such that deg < , the leading coefficient of 
falls into some  with ௗ < , and we can cancel the leading terms of  by subtracting appropriate
combinations of polynomials ()

ೕ for  ⩽ ௗ <  until we get  = . �

Corollar൰ 6.1
For every Noetherian commutative ring , the ring [௫భ,௫మ, … ,௫] is Noetherian. �

Exercise 6.2. For every Noetherian commutative ring  show that the ring ⟦௫భ,௫మ, … ,௫⟧ of
formal power series in ௫భ,௫మ, … ,௫ with coefficients in  is Noetherian as well.

Corollar൰ 6.2
Every infinite system of polynomial equations with coefficients in a Noetherian commutative ring
 is equivalent to some finite subsystem.

Proof. Since [௫భ,௫మ, … ,௫] is Noetherian, among the right hand sides of a polynomial equa-
tion system ഌ(௫భ,௫మ, … ,௫) =  there is some finite collection భ,మ, … , that generates
the same ideal as all the ഌ. This means that every ഌ = భభ + మమ + ⋯ +  for some
 ∈ [௫భ,௫మ, … ,௫]. Hence, every equation ഌ =  follows from భ = మ = ⋯ =  = . �

Exercise 6.3. Show that all quotient rings of a Noetherian ring are Noetherian.

Caution 6.1. A subring of a Noetherian ring is not necessary Noetherian. For example, the ring
ℂ⟦௭⟧ is Noetherian by Exercise 6.2. However, the subring ℋ ⊂ ℂ⟦௭⟧ of holomorphic functions1
∶ ℂ → ℂ is not Noetherian, because there exist a sequence of holomorphic functions ∶ ℂ → ℂ
such that for all  ∈ ℕ, (௭) =  exactly for ௭ ∈ ℤ ∖ [−,] and therefore, ூ = (భ,మ, … ,)
form an infinite chain of strictly increasing ideals.

Exercise 6.4. Construct such a sequence ()∈ℕ explicitly.

6.2 Integral elements. An extension of rings is a pair  ⊂ , where  is a subring of a ring 
and both rings have common unit. Given such a ring extension  ⊂ , an element  ∈  is called
integral over  if it satisfies the conditions of the following lemma.

Lemma 6.2 (characteriඋation of integral elements)
The following properties of an element  ∈  in a ring extension  ⊂  are equivalent:

(1)  = భ−భ + ⋯ + −భ +  for some  ∈ ℕ and భ,మ, … , ∈ .

(2) The -linear span of all nonnegative integer powers  is a finitely generated -module.

(3) There exists a finitely generated -module ெ ⊂  such that ெ ⊂ ெ and ′ெ ≠  for all
nonzero ′ ∈ .

Proof. The implications (1) ⇒ (2) ⇒ (3) are obvious. Let us show that (3) ⇒ (1). Fix some
భ, మ, … ,  spanning ெ over . Then (భ,మ, … ,) = (భ, మ, … , ) ⋅  for some matrix

1That is, power series converging everywhere in ℂ.
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 ∈ Mat() and therefore, (భ, మ, … , ) ⋅ (ா − ) = . It follows from the matrix identity1
det  ⋅ ா =  ⋅ ∨, where  is a square matrix over a commutative ring, ா is the identity matrix
of the same size, and ∨ is the adjunct matrix2 of , that the image of multiplication by det  lies
in the linear span of the columns of the matrix . For  = (ா − ) ∈ Mat(), this means that
det(ா−) ⋅ெ is contained in the -linear span of vectors (భ, మ, … , ) ⋅ (ா−), which is zero.
The last property in (3) forces det(ா − ) = . Since all elements of  lie in , the latter equality
can be rewritten in the form appearing in (1). �

Definition 6.2
Let  ⊂  be an extension of rings. The set of all elements  ∈  integral over  is called the
integral closure of  in . If it coincides with , then  is said to be integrally closed in . If all
elements of  are integral over , then the extension  ⊂  is called an integral ring extension, and
we say that  is integral over .

Example 6.1 (ℤ is integrall൰ closed in ℚ)
Let  = ℤ,  = ℚ. If a fraction ∕ ∈ ℚ with coprime , ∈ ℤ satisfies a monic polynomial
equation


 = భ

−భ

−భ + ⋯ + −భ

 + 

with  ∈ ℤ, then  = భ−భ + ⋯ + −భ−భ +  is divisible by . Since ,  are
coprime, we conclude that  = ±ଵ. Hence, ℤ is integrally closed in ℚ.

Example 6.2 (invariants of a finite group)
Let a finite group ீ act on a ring  by ring automorphisms, and ಸ ≝ { ∈  |  =  ∀∈ீ } be
the subring of ீ-invariants. Then  is integral over ಸ. Indeed, write భ,మ, … , for the ீ-orbit
of an arbitrary element  = భ ∈ . Then  is a root of the monic polynomial

(௧) = ∏(௧ − ) ∈ ಸ[௧]

as required in the first property of Lemma 6.2.

Proposition 6.1
Let  ⊂  be an extension of rings, and ಳ ⊂  the integral closure of  in . Then ಳ is a subring
of , and for any ring extension  ⊃ , every element  ∈  integral over ಳ is integral over  as
well.

Proof. If elements , ∈  satisfy the monic polynomial equations

 = ௫భ−భ + ⋯ + ௫−భ + ௫
 = ௬భ−భ + ⋯ + ௬−భ + ௬

for some ௫ഌ,௬ഋ ∈ , then the products ೕ with  ⩽  <  − ଵ,  ⩽  <  − ଵ span a finitely
generated -module, containing the unit and mapped to itself by the multiplication by  and by .

1This is  = ଵ case of the Laplace identity 𝒳 ⋅𝒳∨
 = det  ⋅ ா from the Example 4.4 on p. 47.

2That is, transposed to the matrix of algebraic complements (−ଵ)+ೕ௫ ̂ೕ̂ to the elements ௫ೕ of matrix ,
see Example 4.4 on p. 47.



74 §6Commutative algebra draught

Therefore, it satisfies the condition (3) from Lemma 6.2 for both  =  +  and  = . Similarly,
if the monic polynomial equations

ೝ = ௭భ ೝ−భ + ⋯ + ௭ೝ−భ  + ௭ೝ
௭ೖ
ೖ = ೖ,భ ௭ೖ−భ + ⋯ + ೖ,ೖ−భ ௭ೖ + ೖ,ೖ ଵ ⩽  ⩽  ,

hold for some  ∈ , ௭భ, ௭మ, … , ௭ೝ ∈ ಳ, and ೖ,ℓ ∈ , then the -linear span of products

௭ೕభభ ௭ೕమమ ⋯ ௭ೕೝೝ ,  ⩽  <  − ଵ ,  ⩽ ೖ < ೖ − ଵ ,

contains the unit and goes to itself under the multiplication by . Thus,  is integral over . �

Proposition 6.2 (Gauss –Kronecker –Dedekind lemma)
Let  ⊂  be an extension of rings, and , ∈ [௫] monic polynomials of positive degree. Then all
coefficients of the product  are integral over  if and only if all coefficients of the polynomials
,  are integral .

Proof. Let  ⊃  be an extension of rings such that the polynomials ,  are completely factoris-
able in [௫] as (௫) = ∏(௫ − ఈഌ) and (௫) = ∏(௫ − ఉഋ) for some ఈഌ,ఉഋ ∈ . Then their product
(௫) = (௫)(௫) = ∏(௫ − ఈഌ) ∏(௫ − ఉഋ) is also completely factorisable.
Exercise 6.5. Given a finite set of monic polynomials of positive degree in [௫], prove that
there is an extension of rings  ⊂  such that all polynomials become completely factorisable
in [௫].

If all coefficients of  are integral over , then all the roots ఈഌ,ఉഋ ∈  are integral over  and
therefore integral over  by Proposition 6.1. Since integral elements form a ring, all coefficients
of both , , which are the symmetric functions of ఈഌ, ఉഋ, are also integral over . The same
arguments work in the opposite direction as well. �

Proposition 6.3
Let  ⊂  be an integral extension of rings. If  is a field, then  is a field too. Conversely, if  is
a field and  has no zero divisors, then  is a field.

Proof. Let  be an integral field over . Then, for any nonzero  ∈ , the inverse element −భ ∈ 
satisfies a monic polynomial equation − = ఈభభ− + ⋯ + ఈ−భ−భ + ఈ for some ఈഌ ∈ .
Multiplication of the both sides by −భ shows that −భ = ఈభ + ఈమ + ⋯ + ఈ−భ ∈ .

Conversely, if  is an integral algebra over a field , then for every  ∈ , the -linear span
of all nonnegative integer powers  is a vector space  of finite dimension over . If  ≠ , the
linear endomorphism  ∶  → , ௫ ↦ ௫, is injective, because  has no zero divisors. This forces
it to be bijective. The preimage of the unit ଵ ∈  is −భ. �

6.3 Normal rings. A commutative ring  without zero divisors is called normal if  is integrally
closed in its field of fractions ொಲ. In particular, every field is normal. The same arguments as
in Example 6.1 show that every unique factorization domain  is normal. Indeed, a polynomial
బ௧ + భ௧−భ + ⋯ + −భ௧ +  ∈ [௧] annihilates a fraction ∕ ∈ ொಲ with (,) = ଵ only
if  ∣ బ and  ∣ . Therefore, బ = ଵ forces  = ଵ. As a consequence, the polynomial rings over
a unique factorization domain are normal. For normal rings, Proposition 6.2 leads to the following
classical claim going back to Gauss.



6.4. Algebraic elements 75

Corollar൰ 6.3 (Gauss lemma II)
Let  be a normal ring, ொಲ its field of fractions, and  ∈ [௫] a monic polynomial. If  =  in
ொಲ[௫] for some monic polynomials , , then , ∈ [௫]. �

Corollar൰ 6.4
Under the conditions of Corollary 6.3, let  ⊃ ொಲ be a ring extending ொಲ. If an element  ∈  is
integral over , then the minimal polynomial1 of  over ொಲ lies in [௫].

Proof. Since  is integral over , there exists a monic polynomial  ∈ [௫] such that () = .
The minimal polynomial of  over ொಲ divides  in ொಲ[௫], and the quotient is also monic. It remains
to apply Corollary 6.3. �

6.4 Algebraic elements. Let  be a commutative algebra with unit over an arbitrary field 𝕜.
Given an element  ∈ , we write 𝕜[] ⊂  for the smallest 𝕜-subalgebra containing ଵ and . It
coincides with the image of evaluation map

ev್ ∶ 𝕜[௫] →  ,  ↦ () . (6-1)

Recall that  is said to be transcendental over 𝕜 if ker ev್ = . In this case, 𝕜[] ≃ 𝕜[௫] is infinite-
dimensional as a vector space over 𝕜 and is not a field. If ker ev್ ≠ , that is, () =  for some
nonzero polynomial  ∈ 𝕜[௫], the element  is algebraic. In this case, ker(ev್) = (ఓ್) is the
principal ideal in 𝕜[௫] generated by the minimal polynomial of  over 𝕜, and 𝕜[] = 𝕜[௫]∕(ఓ್)
has dimension degఓ್ as a vector space over 𝕜. This dimension is called the degree of  over 𝕜 and
denoted by deg𝕜(). Note that the algebraicity of  over 𝕜 means the same as the integrality, and
in this case, every element in 𝕜[] is algebraic, and the algebra 𝕜[] is a field if and only if it has
no zero divisors. This certainly holds if  has no zero divisors. On the other side, 𝕜[] has no zero
divisors if and only if the minimal polynomial ఓ್ is irreducible in 𝕜[௫].
6.5 Finitely generated algebras over a field. A commutative 𝕜-algebra  with unit is said to
be finitely generated if there are some elements భ,మ, … , ∈  such that the evaluation map
ev್భ,್మ,…,್ ∶ 𝕜[௫భ,௫మ, … ,௫] → , ௫ ↦  for  = ଵ, ଶ, … , , is surjective. In this case,  =
𝕜[௫భ,௫మ, … ,௫]∕ூ, where the ideal ூ = ker ev್భ,್మ,…,್ consist of all polynomial relations between
the generators2 భ,మ, … , of the algebra . It follows from the Corollary 6.1 and Exercise 6.3 on
p. 72 that all finitely generated commutative 𝕜-algebras are Noetherian, and the ideal of polynomial
relations between any set of generators for such an algebra is finitely generated.
Theorem 6.2
If a finitely generated commutative 𝕜-algebra  is a field, then every element of  is algebraic
over 𝕜.

Proof. Let elements భ,మ, … , generate  as an algebra over 𝕜. We proceed by induction
on . The case  = ଵ,  = 𝕜[], was already considered in n∘ 6.4. Let  > ଵ. If  is algebraic
over 𝕜, then 𝕜[] is a field. By induction,  is algebraic over 𝕜[], and Proposition 6.1 forces
 to be algebraic over 𝕜 as well. Thus, it is enough to check that  actually is algebraic over 𝕜.

1That is, the monic polynomial ఓ್ ∈ ொಲ[௫] of minimal positive degree such that ఓ್() = .
2Generators of an algebra should be not confused with generators of a module. If elements భ, మ, … , 

span a ring  over a subring  ⊂  as a module, this means that  consists of finite -liner combinations
of these elements , whereas if భ,మ, … , span  as an -algebra, then  is formed by finite linear
combinations of various monomials ೞభభ ೞమమ …ೞ .
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Assume the contrary. Then the evaluation map (6-1) is injective for  = , and is uniquely
extended to an embedding of fields 𝕜(௫) ↪  by the universal property of the quotient field. Write
𝕜() ⊂  for the image of this embedding. This is the smallest subfield in  containing . By
induction,  is algebraic over 𝕜(). Therefore, every generator , ଵ ⩽  ⩽  − ଵ, is a root
of some polynomial with coefficients in 𝕜(). Multiplying this polynomial by an appropriate
polynomial in  allows us to assume that all ( − ଵ) polynomials annihilating the generators
భ,మ, … ,−భ have coefficients in 𝕜[] and share the same leading coefficient, which we denote
by () ∈ 𝕜[]. Thus, the field  is integral over the subalgebra ி = 𝕜[ , ଵ∕()] ⊂ 
spanned over 𝕜 by the elements  and ଵ∕(). By the Proposition 6.3, ி is a field. This forces 
to be of positive degree, because otherwise ி = 𝕜[] is not a field. Now we claim that the element
ଵ+() has no inverse in ி. Indeed, in the contrary case, there exists a polynomial  ∈ 𝕜[௫భ,௫మ]
such that  ( , ଵ∕() ) ⋅ (ଵ + ()) = ଵ. Write the rational function  (௫ , ଵ∕(௫) ) as
(௫)∕ೖ(௫), where  ∈ 𝕜[௫] is not divisible by  in 𝕜[௫]. Then we get the polynomial relation
() ⋅ (() +ଵ) = ೖ() on . It is nontrivial, because the left hand side has positive degree
and is not divisible by (௫) in 𝕜[௫]. Contradiction. �

Corollar൰ 6.5
Let a field 𝔽 be finitely generated as an algebra over a subfield 𝕜 ⊂ 𝔽. Then 𝔽 has finite dimension
as a vector space over 𝕜.

Proof. If 𝔽 is generated as a 𝕜-algebra by algebraic elements భ,మ, … ,, then the monomials
ೞభభ ೞమమ …ೞ with  ⩽ ௦ < deg𝕜  linearly span 𝔽 over 𝕜. �

6.6 Transcendence generators. Everywhere in this section we write  for a finitely generated
𝕜-algebra without zero divisors, and ொಲ for its field of fractions. Given a collection of elements
భ,మ, … , ∈ , we write 𝕜(భ,మ, … ,) ⊂ ொಲ for the smallest subfield containing all these
elements.

Elements భ,మ, … , ∈  are called algebraically independent if the evaluation map
ev(ೌభ,ೌమ,…,ೌ) ∶ 𝕜[௫భ,௫మ, … ,௫] →  , ௫ ↦ , ଵ ⩽  ⩽  ,

is injective, that is, there are no polynomial relations between భ,మ, … ,. In this case the
evaluation map is uniquely extended to the isomorphism of fields

𝕜(௫భ,௫మ, … ,௫) ⥲ 𝕜(భ,మ, … ,) ⊂ ொಲ ,

which maps a rational function of (௫భ,௫మ, … ,௫) to its value at (భ,మ, … ,).
Elements భ,మ, … , ∈  are called transcendence generators of  over 𝕜, if any element

of  is algebraic over 𝕜(భ,మ, … ,). In this case the whole field ொಲ is also algebraic over
𝕜(భ,మ, … ,), because the integer closure of 𝕜(భ,మ, … ,) in ொಲ is a field by Proposi-
tion 6.3, and ொಲ is contained in any field containing  by the universal property of the field of
fractions.

An algebraically independent collection భ,మ, … , of transcendence generators of  over
𝕜 is called a transcendence basis of  over 𝕜. Since any proper subset of a transcendence basis is al-
gebraically independent, the transcendence bases can be equivalently characterized as the minimal
with respect to inclusions collections of transcendence generators, or as the maximal algebraically
independent collections.

Similarly to the bases of vector spaces, any two transcendence bases of  have the same cardi-
nality, and the proof is based on the same Exchange Lemma.
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Lemma 6.3 (exchange lemma)
Let elements భ,మ, … , be transcendence generators of  over 𝕜, and let భ,మ, … , ∈  be
algebraically independent over 𝕜. Then  ⩽ , and after appropriate renumbering of the  and
replacing the first  of them by భ,మ, … ,, the resulting elements భ,మ, … ,, +భ, … , 
are transcendence generators of  as well.

Proof. Since భ is algebraic over 𝕜(భ,మ, … ,), there is a polynomial relation

(భ, భ,మ, … ,) =  ,  ∈ 𝕜[௫భ,௫మ, … ,௫+భ] .

Since భ is transcendental over 𝕜, this relation contains some . After appropriate renumbering,
we can assume that  = ଵ. Then భ and therefore all of ொಲ is algebraic over 𝕜(భ, మ, … , ).
Assume by induction that భ, … , ೖ, ೖ+భ, … ,  are transcendence generators of  over 𝕜 for
 < . Since ೖ+భ is algebraic over 𝕜 (భ, … , ೖ, ೖ+భ, … , ), there is a polynomial relation

 (భ, … , ೖ, ೖ+భ, ೖ+భ, … , ) =  ,  ∈ 𝕜[௫భ,௫మ, … ,௫+భ] .

It must contain some ೖ+, because of algebraic independence of భ,మ, … , over 𝕜. Hence,
 >  and after renumbering of the remaining elements , we can assume that ೖ+భ is algebraic
over 𝕜 (భ, … , ೖ+భ, ೖ+మ, … , ). Therefore, all of the ொಲ is algebraic over this field too. This
completes the induction step. �

Corollar൰ 6.6
Let  be a finitely generated commutative 𝕜-algebra without zero divisors. Then all transcendence
bases of  over 𝕜 have the same cardinality, any system of transcendence generators of  over 𝕜
contains some transcendence basis, and every algebraically independent collection of elements in
 can be included in a transcendence basis. �
Definition 6.3
The cardinality of a transcendence basis of a finitely generated commutative 𝕜-algebra  without
zero divisors is called the transcendence degree of  and denoted tr deg𝕜 .

Example 6.3
Let  ⊂ 𝕜(௧) be a 𝕜-subalgebra different from 𝕜. Then tr deg𝕜  = ଵ. Indeed, for every

ట = (௧)∕(௧) ∈  ∖ 𝕜 ,

the element ௧ satisfies the algebraic equation ట ⋅ (௫) − (௫) =  with the coefficients in 𝕜(ట).
This forces the whole of 𝕜(௧) to be algebraic over 𝕜(ట) ⊂ ℚಲ and ట to be transcendental over 𝕜,
because otherwise, ௧ would be algebraic over 𝕜. Thus, any ట ∈  ∖ 𝕜 is a transcendence basis for
both  and 𝕜(௧).
6.7 Systems of polynomial equations. Any system of polynomial equations

ഌ(௫భ,௫మ, … ,௫) =  , ഌ ∈ 𝕜[௫భ,௫మ, … ,௫] , (6-2)

can be extended to a system whose left hand sides form the ideal  ⊂ 𝕜[௫భ,௫మ, … ,௫] spanned
by the polynomials ഌ from (6-2). The extended infinite system has the same set of solutions in
the affine space 𝔸 = Aff(𝕜) as the original system, because the equalities ഌ =  imply the
equalities ∑ഌ ഌഌ =  for all ഌ ∈ 𝕜[௫భ,௫మ, … ,௫]. Since the polynomial ring is Noetherian, the
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system  = ,  ∈ , is equivalent to a finite subsystem consisting of equations whose left hand
sides generate . Moreover, by the Lemma 6.1 on p. 71, this finite set of generators can be chosen
among the original polynomials ഌ from (6-2). Thus, every (even infinite) system of polynomial
equations is always equivalent, on the one hand, to some finite subsystem, and on the other hand,
to a system of equations  = , where  runs through some ideal in 𝕜[௫భ,௫మ, … ,௫].

Given an ideal  ⊂ 𝕜[௫భ,௫మ, … ,௫], its zero set () ≝ { ∈ 𝔸 | () =  ∀ ∈  } is
called an affine algebraic variety determined by . Note that () may be empty. This happens, for
example, if  = (ଵ) = 𝕜[௫భ,௫మ, … ,௫] contains the equation ଵ = .

Associated with an arbitrary subset ః ⊂ 𝔸 is the ideal

ூ(ః) ≝ { ∈ 𝕜[௫భ,௫మ, … ,௫] |() =  for all  ∈ ః} ,

called the ideal of ః. Its zero set (ூ(ః)) is the smallest affine algebraic variety containing ః. For
every ideal  ⊂ 𝕜[௫భ,௫మ, … ,௫] there is the tautological inclusion  ⊂ ூ(()). In general, it is
proper. Say, for  = ଵ, the ideal  = (௫మ) ⊂ 𝕜[௫] determines the variety (௫మ) = {} ⊂ 𝔸భ whose
ideal is ூ((௫మ)) = (௫) ! (௫మ).

Theorem 6.3 (Hilbert’s Nullstellensatඋ)
Let 𝕜 be an algebraically closed field,  ⊂ 𝕜[௫భ,௫మ, … ,௫] an ideal, √ ≝ { | ∃ ∈ ℕ ∶  ∈ }
the radical of . Then ூ(()) = √ (the strong Nullstellensatz). In particular, () = ∅ if and only
if ଵ∈ (the week Nullstellensatz).

Proof. Let us prove the week Nullstellensatz first. It is enough to show that for any proper ideal
 ⊂ 𝕜[௫భ,௫మ, … ,௫], there exists a point  ∈ 𝔸 such that () =  for all  ∈ . Without loss of
generality the ideal  can replaced by a maximal proper ideal 𝔪 ⊃ .
Exercise 6.6. Convince yourself that an ideal 𝔪 in a commutative ring  is maximal among the
proper ideals of  partially ordered by inclusions if and only if the quotient ring ∕𝔪 is a field.

Thus, we can assume that the quotient ring𝕜[௫భ,௫మ, … ,௫]∕𝔪 is a field. Since it is finitely generated
as a 𝕜-algebra, the Theorem 6.2 forces every elementణ ∈ 𝕜[௫భ,௫మ, … ,௫]∕𝔪 to be algebraic over 𝕜,
that is, to satisfy an equation ఓ(ణ) =  for a monic irreducible polynomial ఓ ∈ 𝕜[௧]. Since 𝕜 is
algebraically closed, the polynomial ఓ has to be linear, and therefore, ణ ∈ 𝕜. In other words, every
polynomial is congruent modulo 𝔪 to a constant. Write  ∈ 𝕜 for the constant congruent to ௫.
Then the factorization homomorphism 𝕜[௫భ,௫మ, … ,௫] → 𝕜[௫భ,௫మ, … ,௫] ∕𝔪 ≃ 𝕜 maps every
polynomial (௫భ,௫మ, … ,௫) to the class of constant (భ,మ, … ,) ∈ 𝕜. Since all  ∈ 𝔪 are
mapped to zero, they all vanish at  = (భ,మ, … ,) ∈ 𝔸, as desired.

The strong Nullstellensatz is trivial for () = ∅. Assume that () ≠ ∅, that is,  ≠ (ଵ).
Consider 𝔸 as the hyperplane ௧ =  in the affine space 𝔸+భ with the coordinates

(௧, ௫భ,௫మ, … ,௫) .

If a polynomial  ∈ 𝕜[௫భ,௫మ, … ,௫] ⊂ 𝕜[௧, ௫భ,௫మ, … ,௫] vanishes everywhere on the cylinder
() ⊂ 𝔸+భ, then the polynomial (௧,௫) = ଵ − ௧ (௫) equals ଵ at every point of (). Therefore,
the ideal spanned in 𝕜[௧, ௫భ,௫మ, … ,௫] by  and (௧,௫) has the empty zero set in 𝔸+భ. By the
week Nullstellensatz, this ideal contains ଵ, i.e., there exist బ,భ, … ,ೞ ∈ 𝕜[௧, ௫భ,௫మ, … ,௫] and
భ,మ, … ,ೞ ∈  such that బ(௫, ௧) ⋅ ( �ଵ − ௧(௫)) � + భ(௧,௫) ⋅ భ(௫) + ⋯ + ೞ(௫, ௧) ⋅ ೞ(௫) = ଵ. The
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homomorphism 𝕜[௧, ௫భ,௫మ, … ,௫] → 𝕜(௫భ,௫మ, … ,௫) acting on the variables as ௧ ↦ ଵ∕(௫),
௫ഌ ↦ ௫ഌ for ଵ ⩽ ఔ ⩽ , maps this equality to the equality

భ( �ଵ∕(௫) , ௫) � ⋅ భ(௫) + ⋯ + ೞ(�ଵ∕(௫) , ௫) � ⋅ ೞ(௫) = ଵ . (6-3)

in the field 𝕜(௫భ,௫మ, … ,௫). Since ଵ ∉ , some ഌ( �ଵ ∕ (௫),௫)� have nontrivial denominators.
All these denominators are canceled via multiplication by  for some  ∈ ℕ. Multiplying both
sides by this  leads to the required equality (௫) = ̃భ(௫) ⋅ భ(௫) + ⋯ + ̃ೞ(௫) ⋅ ೞ(௫) with
̃ഌ ∈ 𝕜[௫భ,௫మ, … ,௫]. �

6.8 Resultants. Given a system of homogeneous polynomial equations

⎧⎪
⎪
⎨
⎪
⎪⎩

భ(௫బ,௫భ, … , ௫) = 
మ(௫బ,௫భ, … , ௫) = 

⋯ ⋯ ⋯ ⋯ ⋯ ⋯
(௫బ,௫భ, … , ௫) =  ,

� (6-4)

where every  ∈ 𝕜[௫బ,௫భ, … ,௫] is homogeneous of degree ௗ, the set of its solutions, considered
up to proportionality, is the intersection of  projective hypersurfaces ௌ = () ⊂ ℙ(), where
 = 𝕜+భ. The projective hypersurfaces of degree ௗ inℙ() can be viewed as points of the projective
spaceℙ(ௌ∗). All collections of hypersurfaces (ௌభ, ௌమ, … , ௌ) of given degrees ௗభ,ௗమ, … ,ௗ with
nonempty intersection ⋂ ௌ ≠ ∅ form the figure

ℛ( + ଵ; ௗభ,ௗమ, … ,ௗ) ⊂ ℙ(ௌభ∗) × ℙ(ௌమ∗) × ⋯ × ℙ(ௌ∗) , (6-5)

called the resultant variety of the homogeneous system (6-4). When  =  + ଵ and all ௗ = ଵ, the
system (6-4) becomes the system of linear equations ௫ =  with the square matrix  = (ೕ). It
has a nonzero solution if and only if det (ೕ) = . Thus, in this simplest case, the resultant variety is
a projective variety determined by one multilinear equation of total degree +ଵ on the coefficients
,ೕ. We are going to check that the resultant variety (6-5) can always be described by a system
of polynomial equations in the coefficients of the polynomials . This system is called a resultant
system. It depends only on the number of variables and the collection of degrees ௗభ,ௗమ, … ,ௗ.
Every resultant equation is homogeneous in the coefficients of each polynomial.

Write  = (భ,మ, … ,) ⊂ 𝕜[௫బ,௫భ, … ,௫] for the ideal spanned by the polynomials (6-4).
If () is exhausted by the origin, then every coordinate linear form ௫ vanishes on (), and
therefore, all ௫ ∈  for some  ∈ ℕ by the strong Nullstellensatz. This forces  to contain all
homogeneous polynomials of degree ௗ > ( − ଵ)( + ଵ). Conversely, if  ⊃ ௌ∗ for all ௗ ≫ ,
then the system (6-4) implies the equations ௫బ = ௫భ = ⋯ = ௫ = , and therefore, has only the
zero solution. For any ௗ ∈ ℕ, the intersection  ∩ ௌ∗ coincides with the image of 𝕜-linear map

ఓ ∶ ௌ−భ∗ ⊕ ௌ−మ∗ ⊕ ⋯ ⊕ ௌ−∗ (బ,భ,…,)↦∑ഌ ഌ−−−−−−−−−−−−−−−−−→ ௌ . (6-6)

The matrix of this map in the standard monomial bases consists of zeros and the coefficients of
polynomials ഌ. For ௗ ≫ , the dimension of the left hand side in (6-6) grows as



∑
ഌ=భ

(
 + ௗ − ௗഌ

 ) ∼ 
! ௗ
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and becomes greater that the dimension of the right hand side, which grows as

(
 + ௗ
 ) ∼ ଵ

! ௗ
 .

Thus, for every ௗ ≫ , the condition ௌ∗ ⊄ , that is, the non-surjectivity of the map (6-6), means
that the rank of the matrix of ఓ is not maximal. This is equivalent to the vanishing of all minors
of the maximal degree in the matrix. Thus, the resultant variety is the zero set of all these minors
written for all ௗ such that the dimension of the left hand side of (6-6) is not less than that of the
right han side. Since the polynomial ring is Noetherian, this huge system of equations is equivalent
to some finite subsystem. If the ideal of the resultant variety (6-5) is not principal, such a system
of resultants is not unique in general.

Example 6.4 (resultant of two binar൰ forms)
Let the ground field 𝕜 be algebraically closed. Then every homogeneous binary form of degree ௗ

(௧బ, ௧భ) = బ ௧భ + భ ௧బ ௧−భ
భ + మ ௧మబ ௧−మ

భ + ⋯ + −భ ௧−భ
బ ௧భ +  ௧బ

has ௗ roots ఈభ,ఈమ, … ,ఈ, ఈ = (ఈ′
 ∶ ఈ″

 ), on ℙభ = ℙ(𝕜మ) and is factorized as

(௧బ, ௧భ) =


∏
=బ

(ఈ″
 ௧బ − ఈ′

௧భ) =


∏
=బ

det (
௧బ ௧భ
ఈ′
 ఈ″

 )

The coefficients of  are expressed as the homogeneous polynomials in the roots by means of the
homogeneous Viète’s formulas: ೖ = (−ଵ)−ೖఙೖ(ఈ′,ఈ″), where

ఙೖ(ఈ′,ఈ″) = ∑
#=ೖ

(�∏
∈

ఈ′
 ⋅ ∏

ೕ∉
ఈ″
ೕ ) �

and ூ runs through the strictly increasing sequences of  indexes. In particular, ೖ is bihomogeneous
of bidegree (,ௗ − ) in (ఈ′,ఈ″). Let us fix two degrees , ௦ ∈ ℕ and consider the polynomial ring
𝕜[ఈ′,ఈ″,ఉ′,ఉ″] in four collections of variables

ఈ′ = (ఈ′
భ,ఈ′

మ, … ,ఈ′
ೞ) ఈ″ = (ఈ″

భ ,ఈ″
మ , … ,ఈ″

ೞ )
ఉ′ = (ఉ′

భ,ఉ′
మ, … ,ఉ′

ೝ) ఉ″ = (ఉ″
భ ,ఉ″

మ , … ,ఉ″
ೝ ) .

Within this ring, consider the product

ோ ≝ ∏
,ೕ

(ఈ′
ఉ″

ೕ − ఈ″
 ఉ′

ೕ) =
ೞ

∏
ೕ=భ

(ఉೕ) = (−ଵ)ೝೞ
ೝ

∏
=భ

(ఈ) .

The polynomial ோ is bihomogeneous of bidigree (௦, ௦) in (ఈ,ఉ). It is evaluated to zero at the
roots ఈ, ఉ of binary forms (௧బ, ௧భ) = ∑ೞ

=బ  ௧బ ௧−
భ , (௧బ, ௧భ) = ∑ೝ

ೕ=బ ೕ ௧
ೕ
బ ௧−ೕ

భ if and only if
these forms have a common root in ℙభ. Let us show that ோ is expressed as a polynomial ோ in
the coefficients  = (−ଵ)−ఙ(ఈ′,ఈ″), ೕ = (−ଵ)−ೕఙೕ(ఉ′,ఉ″) of ,  by the following Sylvester
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formula

ோ = det

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

బ భ ⋯ ⋯ ೞ
బ భ ⋯ ⋯ ೞ

⋱ ⋱ ⋱ ⋱ ⋱
బ భ ⋯ ⋯ ೞ

బ భ ⋯ ⋯ ೝ
బ భ ⋯ ⋯ ೝ

⋱ ⋱ ⋱ ⋱ ⋱
బ భ ⋯ ⋯ ೝ

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

ೝ+ೞ

�
⎫
⎪
⎬
⎪
⎭

ೝ

�
⎫
⎪
⎬
⎪
⎭

ೞ

(6-7)

where the matrix in the right hand side is transposed to the matrix of the linear map (6-6) written
for  = ଵ,  = ଶ, and ௗ = ௦ +  − ଵ in the standard monomial bases, when it turns to

ఓೞ+ೝ−భ ∶ ௌೝ−భ∗ ⊕ ௌೞ−భ∗ → ௌೞ+ೝ−భ∗ , (భ,మ) ↦ భ + మ , dim = ଶ ,

and the both sides are of equal dimension  + ௦.
Exercise 6.7. Verify this carefully.
Write ௌ = ௌ(ఈ′,ఈ″,ఉ′,ఉ″) ∈ 𝕜[ఈ′,ఈ″,ఉ′,ఉ″] for the Sylvester determinant from the right

hand side of (6-7), and put ೕ = ఈ′
ఉ″

ೕ − ఈ″
 ఉ′

ೕ . For every point (ఈ,ఉ) ∈ (ೕ), we have the
equality (ఈ″

 ௧బ − ఈ′
௧భ) = (ఉ″

 ௧బ − ఉ′
௧భ) up to a constant factor, and this linear form divides (௧),

(௧), and all polynomials (௧)భ(௧) + (௧)మ(௧) in 𝕜[௧బ, ௧భ]. Hence, imఓೝ+ೞ−భ ≠ ௌೝ+ೞ−భ∗, and
therefore, ௌ(ఈ,ఉ) = . Thus, ௌ vanishes identically on (ೕ). By the strong Nullstellensatz, some
power of ௌ is divisible by ೕ. Since ೕ is irreducible and the polynomial ring 𝕜[ఈ′,ఈ″,ఉ′,ఉ″] is
factorial, ೕ divides ௌ, and therefore, ௌ is divisible by the product ோ of all ೕ. Comparison of
the degrees and coefficients of the lexicographically maximal monomials in ௌ and ோ shows that
these two polynomials must be equal.

We conclude that the resultant variety (6-5) for a pair of binary forms ,  of degrees ௦,  is
the hypersurface1 in ℙೞ × ℙೝ determined by one equation ோ =  on the coefficients of , . The
polynomial ோ, is called the resultant of , . For ௧బ = ଵ, ௧భ = ௫, it is specialized to the resultant
ோaff,aff of two non-homogeneous polynomials aff(௫) = (ଵ,௫), aff(௫) = (ଵ,௫) in one variable ௫.
Under the assumption that2 బబ ≠ , the resultant ோaff,aff vanishes if and only if the polynomials
aff, aff have a common root in 𝕜.

1In Example 9.1 on p. 112, we will see that the same holds for any system of homogeneous polynomial
equations in which the number of equations equals the number of unknowns.

2It says that both binary forms ,  do not vanish at the point ( ∶ ଵ), the infinity of the affine chart బ
in which the coordinate ௫ is defined.
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We assume on default in §7 that the ground field 𝕜 is algebraically closed.
7.1 Affine Algebraic –Geometric dictionary. A map ఝ∶  →  between affine algebraic vari-
eties  ⊂ 𝔸 and  ⊂ 𝔸 is called regular or polynomial if its action is described in coordinates by
the rule (௫భ,௫మ, … ,௫) ↦ (ఝభ(௫), ఝమ(௫), … , ఝ(௫)), where ఝ(௫) ∈ 𝕜[௫భ,௫మ, … ,௫]. We write
𝒜ff 𝕜 for the category1 of affine algebraic varieties and regular maps between them.

7.1.1 Coordinate algebra. A function  ∶  → 𝕜 on an affine algebraic variety  ⊂ 𝔸
is called regular if it provides  with a regular map  ∶  → 𝔸భ, that is, if there exists some
polynomial in the coordinates ௫భ,௫మ, … ,௫ on 𝔸 whose restriction on  coincides with . Two
polynomials determine the same regular function if and only if they are congruent modulo the
ideal ூ() = { ∈ 𝕜[௫భ,௫మ, … ,௫] | | ≡ }. The regular functions  → 𝕜 form a 𝕜-algebra with
respect to the usual addition and multiplication of functions taking values in a field. This algebra
is called the coordinate algebra of  and denoted by

𝕜[] ≝ Hom𝒜ff 𝕜
(,𝔸భ) ≃ 𝕜[௫భ,௫మ, … ,௫]∕ூ() . (7-1)

Since for a function  ∶  → 𝕜, the equality  =  implies  = , the coordinate algebra 𝕜[]
has no nilpotent elements. This forces the ideal ூ() to be radical, that is, coinciding with √ூ().
Algebras without nilpotent elements are said to be reduced. We write 𝒜ℓg𝕜 for the category of
finitely generated reduced 𝕜-algebras and 𝕜-algebra homomorphisms respecting units.
Proposition 7.1
Every reduced finitely generated algebra  over an algebraically closed field 𝕜 is isomorphic to the
coordinate algebra 𝕜[] of some affine algebraic variety  over 𝕜.

Proof. Write  as a quotient  = 𝕜[௫భ,௫మ, … ,௫] ∕ . Since  is reduced, √ = . By the
strong Nullstellensatz, this forces  to coincide with the ideal ூ(()) of the affine algebraic variety
() ⊂ 𝔸. Thus,  = 𝕜[] for  = (). �

7.1.2 Maximal spectrum. Associated with every point  ∈  on an affine algebraic variety 
is the evaluation homomorphism ev ∶ 𝕜[] → 𝕜,  ↦ (). It is obviously surjective and therefore,
its kernel

𝔪 ≝ ker ev = { ∈ 𝕜[] | () = }

is a maximal ideal in 𝕜[], called themaximal ideal of the point  ∈ . Note that for every  ∈ 𝕜[],
the residue class  (mod𝔪) coincides in 𝕜[]∕𝔪 ≃ 𝕜 with the class of constant (), i.e., the
evaluation at  can be thought as the factorization modulo the ideal 𝔪 ⊂ 𝕜[].

Given an arbitrary commutative 𝕜-algebra , the set of all maximal ideals 𝔪 ⊂  is called the
maximal spectrum of  and denoted by Specm(). For every 𝔪 ∈ Specm , the quotient ∕𝔪 ⊃ 𝕜

1A category 𝒞 is a class of objects, where for every ordered pair of objects , , a set Hom𝒞(,) of
morphisms  →  is given and for every ordered triple of objects , ,  the composition map

Hom𝒞(,) × Hom𝒞(,) → Hom𝒞(,) , (ఝ,ట) ↦ ఝ ∘ ట ,

is defined such that (ఎ ∘ ఝ) ∘ ట = ఎ ∘ (ఝ ∘ ట) for any composable morphisms ఎ, ఝ, ట, and every object 
possesses the identity endomorphism Id ∈ Hom𝒞(,) satisfying the relations ఝ ∘ Id = ఝ and Id ∘ ట = ట
for all morphisms ఝ∶  → , ట ∶  → .

82
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is a field. If  is finitely generated, then this quotient is finitely generated as well and therefore,
is an algebraic extension of 𝕜 by Theorem 6.2 on p. 75. For algebraically closed 𝕜, this forces
∕𝔪 = 𝕜. Thus, for such  and 𝕜, every factorization homomorphism  ↠ ∕𝔪 = 𝕜 takes values
in 𝕜. Vice versa, every homomorphism of 𝕜-algebras ఝ∶  → 𝕜 sends ଵ to ଵ and therefore, is
surjective. Thus, its kernel ker ఝ is a maximal ideal in . We conclude that for an arbitrary finitely
generated algebra over an algebraically closed field 𝕜, the 𝕜-algebra homomorphisms  → 𝕜 stay in
canonical bijection with the points of Specm . In what follows, we make no difference between the
points 𝔪 ⊂ Specm  and the homomorphisms  → 𝕜, and write ev𝔪∶  → 𝕜 for the factorization
homomorphism modulo 𝔪. There is a natural homomorphism from  to the algebra  → 𝕜Specm ಲ

of functions Specm  → 𝕜. It sends an element  ∈  to the function

 ∶ Specm  → 𝕜 , 𝔪 ↦ ev𝔪() =  (mod 𝔪) ∈ ∕𝔪 = 𝕜 . (7-2)

The kernel of this homomorphism, that is, the set of all elements  ∈  vanishing at every point of
the spectrum, coincides with the intersection of all maximal ideals in . It is called the Jackobson
radical of  and denoted 𝔯().

Proposition 7.2
For a finitely generated algebra  over an algebraically closed field 𝕜, the Jackobson radical 𝔯()
coincides with the set of all nilpotent elements in , that is, with the nilradical

𝔫() ≝ √ = { ∈  |  =  for some  ∈ ℕ} .

Exercise 7.1. Check that 𝔫() is an ideal in .
Proof of Proposition 7.2. Since the algebra of functions Specm  → 𝕜 is reduced, every
nilpotent element of  produces the zero function. Thus, 𝔫() ⊂ 𝔯(). To prove the converse
inclusion, let red ≝  ∕𝔫(). Since red is finitely generated and reduced, there exists an affine
algebraic variety  ⊂ 𝔸 with the coordinate algebra 𝕜[] = red. If  lies in the kernel of every
homomorphism  → 𝕜, then the image of  in 𝕜[] also lies in the kernel of every homomorphism
𝕜[] → 𝕜. In particular, () =  for all  ∈ , that is,  =  in 𝕜[] = ∕𝔫(). Hence,  ∈ 𝔫().

�

Exercise 7.2. For an arbitrary commutative ring  with unit, show that the nilradical 𝔫()
coincides with the intersection of all prime1 ideals in .

Proposition 7.3
For an affine algebraic variety  over an algebraically closed field 𝕜, the map

 → Specm 𝕜[] ,  ↦ 𝔪 = ker ev ,

is bijective.

Proof. This map is injective regardless of whether 𝕜 is algebraically closed, because for  ≠ ,
there exists, for example, an affine linear function  ∶ 𝔸 → 𝕜 such that () =  and () = ଵ.
Let us show that over algebraically closed field 𝕜, every maximal ideal 𝔪 ⊂ 𝕜[] coincides with

1An ideal 𝔭 ⊂  is called prime, if the quotient ring ∕𝔭 has no zero divisors.
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𝔪 = ker ev for some  ∈ . Write �̃� ⊂ 𝕜[௫భ,௫మ, … ,௫] for the full preimage of 𝔪 under the
factorization homomorphism 𝕜[௫భ,௫మ, … ,௫] ↠ 𝕜[] = 𝕜[௫భ,௫మ, … ,௫]∕ூ(). Since

𝕜[௫భ,௫మ, … ,௫]∕�̃� = 𝕜[]∕𝔪 = 𝕜 ,

�̃� is a proper maximal ideal containing ூ(). By the week Nullstellensatz, (�̃�) is a non-empty
subset of . Pick a point  ∈ (�̃�). Since 𝔪 ⊂ 𝔪 and 𝔪 is maximal, 𝔪 = 𝔪. �

Example 7.1 (the affine space)
Since a homomorphism of algebras ఝ∶ 𝕜[௫భ,௫మ, … ,௫] → 𝕜 is uniquely determined by the images
of generators ఝ(௫) ∈ 𝕜, a bijection Specm 𝕜[௫భ,௫మ, … ,௫] ⥲ 𝔸 is given by sending ఝ to the
point  = ( �ఝ(௫భ), … ,ఝ(௫)) � ∈ 𝔸. As a consequence, we conclude that every maximal ideal in
𝕜[௫భ,௫మ, … ,௫] is generated by an -tuple of linear forms ௫ − , where  ∈ 𝕜, ଵ ⩽  ⩽ ,
and the equality of ideals (௫భ − భ, … , ௫ − ) = (௫భ − భ, … , ௫ − ) is equivalent to the
equality of points (భ,మ, … ,) = (భ,మ, … ,) in 𝔸.

7.1.3 Pullback homomorphisms. Associated with an arbitrary map of sets ఝ∶  →  is the
pullback homomorphism ఝ∗ ∶ 𝕜ೊ → 𝕜, which maps a function  ∶  → 𝕜 to the composition

 ∘ ఝ∶  → 𝕜 .

Let  ⊂ 𝔸,  ⊂ 𝔸 be affine algebraic varieties with the coordinate algebras
𝕜[] = 𝕜[௫భ,௫మ, … ,௫]∕ூ() , 𝕜[] = 𝕜[௬భ,௬మ, … ,௬]∕ூ() ,

and let the map ఝ∶  →  be given in coordinates by the assignment
(௫భ,௫మ, … ,௫) ↦ (ఝభ(௫), ఝమ(௫), … , ఝ(௫)) .

Then the pullbacks of the coordinate functions ௬ ∶  → 𝕜 are ఝ∗(௬) = ఝ. Since the ௬ gen-
erate the coordinate algebra 𝕜[], the regularity of ఝ, meaning that ఝ(௫) ∈ 𝕜[௫భ,௫మ, … ,௫], is
equivalent to the inclusion ఝ∗ (𝕜[]) ⊂ 𝕜[], meaning that the pullback of every regular function
is regular.
Exercise 7.3. Verify that a set-theoretical map of topological spaces  →  is continuous if and
only if the pullback of every continuous function on  is a continuous function on .

Note that the inclusion of sets ఝ() ⊂  implies the inclusion of ideals ఝ∗( �ூ()) � ⊂ ூ(), which
forces the map 𝕜[௬భ,௬మ, … ,௬] → 𝕜[௫భ,௫మ, … ,௫], ௬ ↦ ఝ(௫భ,௫మ, … ,௫), to be correctly
factorized through the map 𝕜[] = 𝕜[௬భ,௬మ, … ,௬] ∕ ூ() → 𝕜[௫భ,௫మ, … ,௫] ∕ ூ() = 𝕜[].
Thus, every regular map of affine algebraic varieties ఝ∶  →  produces the well defined pullback
homomorphism of the coordinate algebras ఝ∗ ∶ 𝕜[] → 𝕜[].

Vice versa, associated with every homomorphism of finitely generated 𝕜-algebras ట∶  →  is
the pullback map of spectra ట∗ ∶ Specm  → Specm  which takes an evaluation ev𝔪∶  → 𝕜 with
the kernel 𝔪 ∈ Specm  to the evaluation ev𝔪 ∘ట = evഗ−భ(𝔪) ∶  → 𝕜 with the kernel ట−భ(𝔪) ∈
Specm .
Proposition 7.4
For any affine algebraic varieties , , the pullback maps

Hom𝒜ff 𝕜
(,)

ക↦ക∗
// Hom𝒜ℓg𝕜(𝕜[],𝕜[])

ഗ∗↤ഗ
oo

are inverse to each other and therefore bijective.
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Proof. Let a regular map from  ⊂ 𝔸 to  ⊂ 𝔸 act by the rule
(௫భ,௫మ, … ,௫) ↦ (ఝభ(௫), ఝమ(௫), … , ఝ(௫))

for someఝ(௫) ∈ 𝕜[௫భ,௫మ, … ,௫]. Then the pullbackఝ∗ ∶ 𝕜[] → 𝕜[] takes ௬ ↦ ఝ (mod ூ()) .
The pullback of ఝ∗, that is, the map ఝ∗∗ ∶ Specm 𝕜[] → Specm 𝕜[], sends the evaluation at a
point  = (భ,మ, … ,) ∈ 

ev ∶ 𝕜[] → 𝕜 , (௫) ↦ () ,

to the composition ev ∘ఝ∗, which sends every generator ௬ ∈ 𝕜[] toఝ() and therefore, coincides
with the evaluation at the point ఝ(). Thus, ఝ∗∗ = ఝ. The equality ట∗∗ = ట for a homomorphism
ట ∶ 𝕜[] → 𝕜[] is checked similarly, and we leave its verification to the reader as an exercise. �

7.1.4 Equivalence of categories. A contravariant functor1 ி ∶ 𝒜ff 𝕜 → 𝒜ℓg𝕜 is assigned by
sending an affine algebraic variety  to the coordinate algebra 𝕜[] and a regular map of affine
algebraic varieties ఝ∶  →  to the pullback homomorphism ఝ∗ ∶ 𝕜[] → 𝕜[].

By the Proposition 7.1, every algebra  in𝒜ℓg𝕜 is isomorphic to the coordinate algebra of some
affine algebraic variety. Let us fix such an isomorphism

ಲ∶  ⥲ 𝕜[ಲ] (7-3)
for each , and for every affine algebraic variety , put 𝕜[] =  and 𝕜[] ∶ 𝕜[] → 𝕜[] to
be the identity map Id𝕜[]. The pullback maps of the isomorphisms (7-3) assign the bijections
∗
ಲ∶ ಲ ⥲ Specm . Write ∶ 𝒜ℓg𝕜 → 𝒜ff 𝕜 for the contravariant functor sending an algebra  to
the affine variety ಲ and a homomorphism of algebras ట∶  →  to the regular map of algebraic
varieties (ట) = ∗

ಲ
−భ ∘ట∗ ∘ ∗

ಳ∶ ಳ → ಲ, which fits in the commutative diagram

ಳ
ು(ഗ) //

∗
ಳ ≀
��

ಲ
∗
ಲ≀

��
Spec() ഗ∗

// Spec() ,

where the bottom row is the pullback of ట.
Exercise 7.4. Convince yourself that (ట) is a regular map of affine algebraic varieties.

By the construction, the composition  ∘ ி ∶ 𝒜ff 𝕜 → 𝒜ff 𝕜 acts identically on the objects and
morphisms, that is, equals the identity functor. The reverse composition ி ∘ sends every algebra 
to the isomorphic algebra 𝕜[ಲ], and the isomorphisms (7-3) assign a natural isomorphism2 between

1A contravariant functor3 ி ∶ 𝒞 → 𝒟 from a category 𝒞 to a category 𝒟 assigns an object ி() in 𝒟 to
every object  in 𝒞, and assigns a map Hom𝒞(,) → Hom𝒟(ி(),ி()), ఝ ↦ ி(ఝ), to every ordered pair
of objects ,  in 𝒞, such that ி(Id) = Idಷ() for all objects  and ி(ఝ ∘ట) = ி(ట) ∘ி(ఝ) for all composable
morphisms ఝ, ట in 𝒞.

2Two functors ி,ீ∶ 𝒞 → 𝒟 are said to be naturally isomorphic if for every object  in 𝒞 there exist an
isomorphism ∶ ி() ⥲ ீ() in 𝒟 such that for every morphism ఝ ∶  →  in 𝒞, the following diagram
in 𝒟 is commutative:

ி()
ಷ(ക) //

ೊ ≀
��

ி()
≀
��

ீ() ಸ(ക)
// ீ()
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the identity functor on𝒜ℓg𝕜 and the composition ி∘. Indeed, for every homomorphism of algebras
ట∶  → , the diagram

 ഗ //

ಲ ≀
��


ಳ≀
��

𝕜[ಲ] ಷು(ഗ)
// 𝕜[ಳ]

is commutative, because ி(ట) = ி(∗
ಲ

−భ ∘ట∗ ∘ ∗
ಳ) = ∗∗

ಳ ∘ట∗∗ ∘ ∗∗
ಲ

−భ = ಳ ∘ట ∘ −భ
ಲ .

In this situation, the functors ி and  are said to be contravariant equivalences between the
categories 𝒜ℓg𝕜 and 𝒜ff 𝕜. Informally, this means that an affine algebraic variety  is recovered
from the coordinate algebra 𝕜[] uniquely up to a regular isomorphism, the regular morphisms
 →  stay in the canonical bijection with the homomorphisms of algebras 𝕜[] → 𝕜[], this
bijection respects the composition of morphisms and is respected by the isomorphisms of algebraic
varieties sharing the same coordinate algebra.

A choice of isomorphisms (7-3) used in the construction of the functor  is equivalent to a
presentation of every algebra  in the form 𝕜[௫భ,௫మ, … ,௫]∕ூ(ಲ), that is, to a choice of algebra
generators for . This is similar to a choice of basis in a vector space , that provides  with an iso-
morphism  ⥲ 𝕜. Thus, the set Specm  can be thought of as an «abstract» affine algebraic variety
which possesses various realizations in the form (ூ) ⊂ 𝔸 provided by a choice of presentation
 ⥲ 𝕜[௫భ,௫మ, … ,௫]∕ூ of the algebra  in terms of generators and relations.
Example 7.2 (punctured line and h൰perbola)
As we have seen in Example 7.1, the spectrum Specm 𝕜[௧] is realized as the affine line 𝔸భ = 𝕜
by sending an evaluation ట∶ 𝕜[௧] → 𝕜 to the point  = ట(௧) ∈ 𝕜. By the same reason, the
spectrum Specm 𝕜[௧, ௧−భ] of the algebra of Laurent polynomials is naturally identified with the
punctured line 𝔸భ ∖ {} = 𝕜∗, because the evaluations ట∶ 𝕜[௧, ௧−భ] → 𝕜 also stay in bijection
with their values  = ట(௧) = ଵ∕ట(௧−భ) ∈ 𝕜∗. A presentation of the algebra 𝕜[௧, ௧−భ] in terms
of generators and relations is provided by the isomorphism ∶ 𝕜[௧, ௧−భ] ⥲ 𝕜[௫,௬] ∕ (௫௬ − ଵ),
௧ ↦ ௫, ௧−భ ↦ ௬. It realizes Specm 𝕜[௧, ௧−భ] as the hyperbola (௫௬ − ଵ) ⊂ 𝔸మ. The pullback map
∶ (௫௬ − ଵ) ⥲ 𝔸భ ∖ {} projects the hyperbola on the punctured ௫-axis along the ௬-axis in 𝔸మ.
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Fig. 7⋄1. The universal property of product. Fig. 7⋄2. The universal property of coproduct.
Example 7.3 (coproduct of affine algebraic varieties)
The direct product of 𝕜-algebras  ×  is uniquely determined by the following universal property
of the projections ಲ∶  ×  →  and ಳ∶  ×  → : for any pair of 𝕜-algebra homomorphisms
ఈ∶  →  and ఉ∶  →  there exists a unique homomorphism of 𝕜-algebras ఈ × ఉ∶  →  × 
such that ಲ ∘ (ఈ × ఉ) = ఈ and ಳ ∘ (ఈ × ఉ) = ఉ, see fig. 7⋄1.
Exercise 7.5. Convince yourself that if a pair of 𝕜-algebra homomorphisms ′

ಲ∶  →  and
′
ಳ∶  →  also possesses this universal property, then the map ′

ಲ × ′
ಳ∶  →  ×  is an

isomorphism.



7.1. Affine Algebraic –Geometric dictionary 87

The direct product of finitely generated reduced 𝕜-algebras  = 𝕜[],  = 𝕜[] is also finitely
generated and reduced. Hence, the spectrum Specm(×) is realized by an affine algebraic variety
equipped with the pullback maps ∗

ಲ∶  → , ∗
ಳ∶  →  possessing the dual1 universal property:

for any pair of regular maps ఝ∶  → ௐ, ట∶  → ௐ of affine algebraic varieties there exists a
unique regular map ఎ∶  → ௐ such that ఎ ∘ ∗

ಲ = ఝ, ఎ ∘ ∗
ಳ = ట, see fig. 7⋄2. This universal

property determines the variety  uniquely up to a unique regular isomorphism commuting with
the maps ∗

ಲ, ∗
ಳ. In an abstract category, the object  possessing this universal property is called

the coproduct of objects , .
Exercise 7.6. Convince yourself that in the category of sets, the coproduct of sets,  is provided
by the disjoint union  ⊔ , and verify that Specm( × ) = Specm  ⊔ Specm  as a set.

Thus, the disjoint union ⊔ of affine algebraic varieties  ⊂ 𝔸,  ⊂ 𝔸, has a structure of affine
algebraic variety whose coordinate algebra is isomorphic to 𝕜[] × 𝕜[].
Example 7.4 (product of affine algebraic varieties)
The direct product of spectra Specm() × Specm() in the category of sets admits a structure of
affine algebraic variety whose coordinate algebra is the tensor product of algebras ⊗, which gives
the direct coproduct in the category 𝒜ℓg𝕜 and is constructed as follows. Let us equip the tensor
product of vector spaces  ⊗  over 𝕜 with the multiplication defined by (భ ⊗ భ) ⋅ (మ ⊗ మ) ≝
(భమ) ⊗ (భమ).
Exercise 7.7. Verify that ⊗  becomes a commutative 𝕜-algebra with the unit ଵ⊗ ଵ, and the
𝕜-algebra homomorphisms  ↪ ⊗ ↩ ,  ↦ ⊗ଵ,  ↦ ଵ⊗, give the coproduct in the
category of commutative 𝕜-algebras with unit.

It follows from the universal property of coproduct that there exists a bijection
Specm() × Specm() ⥲ Specm( ⊗ )

sending a pair of homomorphisms ev ∶  → 𝕜,  ↦ () and ev ∶  → 𝕜,  ↦ (), to the
homomorphism  ⊗  → 𝕜,  ⊗  ↦ ()(). If the algebras ,  are finitely generated, say,
by some elements భ,మ, … , ∈ , భ,మ, … , ∈ , then  ⊗  is certainly generated by
the elements  ⊗ ೕ. Let us verify that the tensor product of reduced algebras ,  is reduced.
By Proposition 7.2 on p. 83, it is enough to check that every element  ∈  ⊗  that is evaluated
to zero at every point of Specm( ⊗ ) must be the zero element. Write such an element as  =
∑ഌ ⊗ഌ, where ഌ ∈  are linearly independent over 𝕜. Since (ev ⊗ ev) =  for all (,) ∈
Specm( ⊗ ), the linear combination ∑ഌ() ⋅ ഌ ∈  is the zero function on Specm  for every
fixed  ∈ Specm . Since  is reduced, this linear combination is the zero element of . Therefore,
all its coefficients ഌ() = , because of the linear independence of ഌ over 𝕜. Since this holds for
all  ∈ Spec, every element ഌ ∈  is the zero function on Specm . This forces ഌ = , because
 is reduced. Hence,  = . We conclude that the tensor product 𝕜[] ⊗ 𝕜[] gives the direct
coproduct in 𝒜ℓg𝕜. Thus, in the category of affine algebraic varieties, the direct product

Specm() × Specm() = Specm( �𝕜[] ⊗ 𝕜[]) � .

For example, 𝔸 × 𝔸 ≃ 𝔸+, because of the isomorphism
𝕜[௫భ,௫మ, … ,௫] ⊗ 𝕜[௬భ,௬మ, … ,௬] ≃ 𝕜[௫భ,௫మ, … ,௫,௬భ,௬మ, … ,௬]

provided by the map ௫ೞభభ ௫ೞమమ …௫ೞ ⊗ ௬ೝభభ ௬ೝమమ …௬ೝ ↦ ௫ೞభభ ௫ೞమమ …௫ೞ ௬ೝభభ ௬ೝమమ …௬ೝ .
1That is, obtained from the original by reversing all arrows.
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Exercise 7.8. Given some polynomial equations ഌ(௫) = , ഋ(௬) = , describing affine alge-
braic varieties  ⊂ 𝔸,  ⊂ 𝔸, write down an explicit system of polynomial equations whose
solution set is  ×  ⊂ 𝔸 × 𝔸.

7.2 Zariski topology. The set  = Specm  possesses the natural topology, called the Zariski
topology, whose closed sets are the subsets of  that can be described by polynomial equations, i.e.,
the sets

(ூ) = {௫ ∈  | (௫) =  for all  ∈ ூ} =
= {𝔪 ∈ Specm  | ூ ⊂ 𝔪} =
= {ఝ∶  → 𝕜 | ఝ(ூ) = }

taken for all ideals ூ ⊂ .
Exercise 7.9. Verify that a) ∅ = ((ଵ)) b)  = (()) c) ⋂ഌ (ூഌ) =  (∑ഌ ூഌ), where the
ideal ∑ഌ ூഌ consists of finite sums of elements ഌ ∈ ூഌ d) (ூ) ∪ () = (ூ ∩ ) = (ூ),
where the ideal ூ ⊂ ூ ∩  consist of finite sums of products  with  ∈ ூ,  ∈ .

The Zariski topology has a purely algebraic nature. It reflects divisibility relations rather than
closeness or remoteness. For this reason some properties of the Zariski topology are discordant
with intuition based on the metric topology. One of the most important differences which should
be always taken in mind is that the Zarisky topology on the product  ×  is strictly finer than the
product of Zariski topologies on the factors , , i.e., the products of closed subsets in ,  do not
form a base for the closed subsets  ⊂  × . For example, for  =  = 𝔸భ, every plane algebraic
curve, e.g., the hyperbola (௫௬ − ଵ), is Zariski closed in 𝔸భ × 𝔸భ = 𝔸మ, whereas the products of
closed subsets in 𝔸భ are exhausted by ∅, 𝔸మ, and finite unions of points and lines parallel to the
coordinate axes.
Proposition 7.5 (base for open sets and compactness)
Every Zariski open subset  of an affine algebraic variety  is a finite union of principal open sets

𝒟() ≝  ∖ () = {௫ ∈  | (௫) ≠ }

for some  ∈ 𝕜[], and is compact in the induced topology, meaning that every open covering of 
contains a finite subcovering.

Proof. Let  =  ∖ (ூ). Since 𝕜[] is Noetherian, ூ = (భ,మ, … ,) for some  ∈ 𝕜[].
Therefore (ூ) = ⋂() and  = ⋃ ( ∖ ()) = ⋃𝒟(). Further, let  be covered by a family
of principal open sets 𝒟(ഌ), and ூ the ideal spanned by the functions ഌ. Then (ூ) ⊂  ∖  and
ூ = (భ,మ, … ,) for some finite collection భ,మ, … , of the functions ഌ. Therefore, the
open sets 𝒟(), ଵ ⩽  ⩽ , cover  as well. �

Proposition 7.6 (continuit൰ of regular maps)
Every regular map of affine algebraic varieties ఝ∶  →  is continuous in the Zariski topology.

Proof. For any closed set (ூ) ⊂ , the preimage ఝ−భ( �(ூ)) � consists of the points ௫ ∈  such
that  = (ఝ(௫)) = ఝ∗(௫) for all  ∈ ூ. Therefore, it coincides with () for the ideal  ⊂ 𝕜[]
generated by the image of ூ under the pullback homomorphism ఝ∗ ∶ 𝕜[] → 𝕜[]. �
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7.2.1 Irreducible components. A topological space  is called reducible if  = భ ∪ మ for
some proper closed subsets భ,మ  . Otherwise  is called irreducible. In the usual metric
topology, almost all spaces are reducible. In the Zariski topology, the irreducible affine algebraic
varieties play the same role as the powers of prime numbers in arithmetic.
Exercise 7.10. Verify that () ⊂  is nonempty and proper for any nonzero non-invertible
element  ∈ 𝕜[].

Proposition 7.7
An affine algebraic variety  is irreducible if and only if its coordinate algebra 𝕜[] has no zero
divisors.

Proof. If  = భ ∪ మ with proper closed భ, మ, then there exist nonzero regular functions
భ,మ ∈ 𝕜[] such that భ ∈ ூ(భ), మ ∈ ூ(మ). Since భమ vanishes at every point of , it equals
zero in 𝕜[]. Conversely, if భమ =  for some nonzero భ,మ ∈ 𝕜[], then  = (భ) ∪ (మ),
where the closed sets (భ), (మ) are proper. �

Corollar൰ 7.1
Given a polynomial  ∈ 𝕜[௫భ,௫మ, … ,௫], the affine hypersurface () ⊂ 𝔸 is irreducible if and
only if  =  for some irreducible  ∈ 𝕜[௫భ,௫మ, … ,௫] and  ∈ ℕ.

Proof. Since the polynomial ring 𝕜[௫భ,௫మ, … ,௫] is a unique factorization domain, a polynomial
 ∈ 𝕜[௫భ,௫మ, … ,௫] is irreducible if and only if the quotient ring 𝕜[௫భ,௫మ, … ,௫] ∕ () has no
zero divisors, and for every  the radical √() is the principal ideal generated by the product of
all pairwise non-associated irreducible divisors of . Therefore, 𝕜[()] = 𝕜[௫భ,௫మ, … ,௫]∕√()
has no zero divisors if and only if  has a unique (up to a constant factor) irreducible divisor. �

Example 7.5 (big open sets)
If  is irreducible, then any two nonempty open sets భ,మ ⊂  have nonempty intersection,
because otherwise  could be decomposed as  = (∖భ)∪(∖మ). In other words, any nonempty
open subset of an irreducible variety  is dense in . Thus, the Zariski topology is quite far from
being Hausdorf.

Exercise 7.11. Let  be an irreducible algebraic variety and , ∈ 𝕜[]. Prove that if () =
= () for all points  from a nonempty open subset  ⊂ , then  =  in 𝕜[].

Theorem 7.1
Any affine algebraic variety  admits a decomposition  = భ ∪ మ ∪ … ∪ ೖ, where all  ⊂ 
are closed irreducible and  ⊄ ೕ for all  ≠ . This decomposition is unique up to renumbering
of components.

Proof. If  is reducible, write it as  = భ∪మ, where భ,మ ⊂  are proper closed, and repeat the
procedure recursively for every component until it stops on some finite decomposition  = ⋃ഌ,
where all ഌ are irreducible. If the procedure newer stoped, we could chose an infinite strictly
decreasing chain of closed sets  ⊋ భ ⊋ మ ⊋ ⋯ , whose ideals form a strictly increasing chain
() ⊊ ூ(భ) ⊊ ூ(మ) ⊊ ⋯ in 𝕜[], which is impossible, because 𝕜[] is Noetherian. Now let
భ ∪ మ ∪ … ∪ ೖ = భ ∪ మ ∪ … ∪  be two decompositions satisfying the conditions of the
theorem. Since భ = ⋃(భ ∩ ) is irreducible, భ ∩  = భ for some , that is, భ ⊂ . By the
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same reason,  ⊂ ೕ for some . Since భ ⊄ ೕ for  ≠ ଵ, we conclude that భ = . Renumber
s in order to have భ = భ.
Exercise 7.12. Let  ⊊  ⊂  be closed, and  irreducible. Prove that  =  ∖  (the closure
within ). Convince yourself that this may fail for reducible .

Now we can remove భ and భ, and proceed by induction on the number of components. �

Definition 7.1
The decomposition  = భ ∪మ ∪ … ∪ೖ from Theorem 7.1 is called the irreducible decomposition
of the algebraic variety , and its components  ⊂  are called the irreducible components of .

Remark 7.1. (Noetherian spaces) Theorem 7.1 and its proof hold for any topological space 
that does not allow strictly decreasing infinite chains of closed subsets  ⊋ భ ⊋ మ ⊋ ⋯ . Every
such topological space is called Noetherian.
Proposition 7.8
A nonzero element  ∈ 𝕜[] is a zero divisor if and only if  has the zero restriction on some
irreducible component of .

Proof. Let  =  for some  ≠ . Write , ∈ 𝕜[] for the restrictions of ,  to the
irreducible component  ⊂ . Since 𝕜[] has no zero divisors, at least one of ,  vanishes for
every . Since  ≠  for some  (otherwise  =  in 𝕜[]), we conclude that  = . Conversely,
if  = , then  =  for every nonzero function  ∈ ூ (⋃ഌ≠ ഌ). �

7.3 Rational functions. For every commutative ring , the set of all non-zero-divisors

∘ ≝ { ∈  |  ≠  for all  ∈  ∖ }

is multiplicative, i.e., contains ଵ, does not contain , and for , ∈ ∘, the product  ∈ ∘. Thus,
one can localize  with respect to ∘, that is, consider the fractions1 ∕ with  ∈ ,  ∈ ∘. The
fractions are added and multiplied by the standard rules and form a ring denoted by ொಲ and called
the ring of fractions of the commutative ring . If  has no zero divisors, i.e., is a domain, then
∘ =  ∖  and ொಲ is a field, called the field of fractions of the domain .

For an affine algebraic variety , the 𝕜-algebra of fractions ொ𝕜[] is traditionally denoted by
𝕜() and called the algebra of rational functions on . Thus, a rational function on  is a fraction
∕, where , ∈ 𝕜[] and  is not a zero divisor, and భ ∕భ = మ ∕మ in 𝕜() if and only if
భమ = మభ in 𝕜[]. If  is irreducible, the algebra 𝕜() becomes a field.

A rational function  ∈ 𝕜() is said to be regular at a point ௫ ∈  if there exist a fraction
∕ =  such that (௫) ≠ . In this case, the number (௫) ≝ (௫)∕(௫) ∈ 𝕜 is referred to as the
value of  at the point ௫ ∈ .
Exercise 7.13. Verify that the value (௫) does not depend on the choice of admissible represen-
tation  = ∕.

1Given a multiplicative set ௌ ⊂ , the fraction ∕௦ with the denominator in ௌ is the class of pair (, ௦) ∈
×ௌ modulo the equivalence relation on ×ௌ generated by the identifications ೌ

ೞ = ೌ
ೞ for all  ∈ , ௦, ௧ ∈ ௌ.

It is a good exercise, to show that భ ∕௦భ = మ ∕௦మ if and only if (భ௦మ − మ௦భ)௧ =  for some ௧ ∈ ௌ. The
fraction can be added and multiplied by the usual rules, and form a commutative ring denoted by ௌ−భ and
called the localization of  with respect to ௌ. See details in: A. L. Gorodentsev. Algebra I. Textbook for
Students of Mathematics. Springer, 2016. Section 4.1.
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If a rational function  = ∕ has (௫) ≠  at some point ௫ ∈ , then  is regular at every
point in the principal open neighborhood 𝒟() of the point ௫. Moreover, by Proposition 7.8, this
neighborhood has nonempty intersection with every irreducible component of , because  is not
a zero divisor in 𝕜[]. Therefore, all points ௫ ∈ , at which  is regular, form an open dense subset
in . It is called the domain of  and denoted Dom().
Exercise 7.14. Verify that భ = మ in 𝕜() if and only if భ(௫) = మ(௫) for all ௫ in some open
dense subset of .

Proposition 7.9
Let  be an affine algebraic variety over an infinite field, and  ∈ 𝕜() a rational function. Then
ூ ≝ { ∈ 𝕜[] |  ∈ 𝕜[]} is an ideal in 𝕜[] with the zero set (ூ) =  ∖ Dom().

Proof. The closed set  ∖Dom() is the set of common zeros of denominators  ∈ 𝕜[]∘ appearing
in various fractional representations  = ∕. The intersection ூ ∩ 𝕜[]∘ consists exactly of these
denominators. It is enough to check that the intersection ூ ∩ 𝕜[]∘ generates the ideal ூ. Let us
show that it spans ூ even as a vector space over 𝕜. By Proposition 7.8, the complement ூ ∖ 𝕜[]∘,
which consists of all zero divisors in ூ, splits in the finite union of vector subspaces ூ ∩ ூ().
Since ூ ∩𝕜[]∘ ≠ ∅, every subspace ூ ∩ ூ() is proper. If the 𝕜-linear span of ூ ∩𝕜[]∘ is proper
too, the vector space ூ becomes a finite union of proper subspaces. The next exercise makes this
impossible. �
Exercise 7.15. Prove that a vector space over an infinite field cannot be decomposed into a finite
union of proper vector subspaces.
7.3.1 The structure sheaf. Given an affine algebraic variety , for every open  ⊂ , we put

𝒪() ≝ { ∈ 𝕜() | Dom() ⊃ } .

The assignment 𝒪∶  ↦ 𝒪() provides the topological space  with a sheaf1 of 𝕜-algebras,
called the structure sheaf of  or the sheaf of regular rational functions on . For an open  ⊂ , the
algebra 𝒪() is often denoted by 𝕜[] and referred to as the algebra of rational functions regular
in . This makes no confusion for  = , because of the following claim.
Proposition 7.10
Let  be an affine algebraic variety over an algebraically closed field and  ∈ 𝕜[]∘. Then

𝒪 (𝒟()) = 𝕜[][−భ] = {∕ |  ∈ 𝕜[],  ∈ ℤ⩾బ}

is the localization of 𝕜[] with respect to the multiplicative system of nonnegative integer pow-
ers .

1A presheaf ி of objects from a category 𝒞 on a topological space  is a contravariant functor from the
category of open subsets in  and inclusions of open sets as the morphisms to the category 𝒞. This means
that attached to every open  ⊂  is an object ி() in 𝒞, called sections of ி over . Depending on 𝒞, the
sections can form a set, a vector space, an algebra, etc Associated with every inclusion  ⊂ ௐ of open sets
is the morphism ி(ௐ) → ி(), called the restriction of sections from ௐ to . The restriction of a section
௦ ∈ ி(ௐ) to  ⊂ ௐ is commonly denoted ௦|ೆ. The functoriality of ி means that for every triple of nestled
open sets  ⊂  ⊂ ௐ and every ௦ ∈ ி(ௐ), the relation ௦|ೆ = �௦|ೇ|ೆ holds. A presheaf ி is called a sheaf ,
if for every set of sections ௦ ∈ ி() such that ௦|ೆ∩ೇ

= ௦ೕ|ೆ∩ೇ
for all , , there exists a unique section

௦ ∈ ி (⋃ ) such that ௦|ೆ
= ௦ for all .
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Proof. A rational function  ∈ 𝕜() is regular in 𝒟() if and only if () contains the closed
subset  ∖ Dom() = (ூ), see Proposition 7.9. By the strong Nullstellensatz1,  ∈ ூ for some
ௗ ∈ ℕ. Thus,  ⋅  ∈ 𝕜[], as required. �

Corollar൰ 7.2
𝒪() = 𝕜[].

Proof. Apply Proposition 7.10 for  = ଵ, 𝒟() = . �

Example 7.6 (principal open sets as affine algebraic varieties)
For every  ∈ 𝕜[]∘, the algebra 𝒪(𝒟()) = 𝕜[][−భ] ≃ 𝕜[][௧]∕ (ଵ − ௧) is finitely generated
and reduced, and the points of the principal open set 𝒟() ⊂  stay in bijection with the points
of the hypersurface (ଵ − ௧) ⊂  × 𝔸భ. The notation 𝕜[ �𝒟()] �, which may be treated either as
the coordinate algebra of the affine algebraic variety 𝒟() ⊂  × 𝔸భ or as the subring in 𝕜()
formed by the rational functions regular in the open set 𝒟() ⊂ , makes actually no confusion:
two interpretations agree by Proposition 7.10. The pullback homomorphism of the projection

గ∶ (ଵ − ௧) →  ,

which maps (ଵ − ௧) ⊂  × 𝔸భ isomorphically to 𝒟() ⊂ , is the canonical map

గ∗ ∶ 𝕜[] ↪ 𝕜[][−భ] ,  ↦ ∕ଵ ,

from a ring to its localization. By the universal property of the ring of fractions, this map is uniquely
extended to the isomorphism

గ̃∗ ∶ 𝕜() ⥲ 𝕜( �𝒟()) � . (7-4)

Caution 7.1. A nonprincipal open set  ⊂  might not be an affine algebraic variety, and the
canonical inclusion  ↪ Specm 𝒪(), sending a point ௨ ∈  to its maximal ideal 𝔪ೠ = ker evೠ ⊂
⊂ 𝒪(), may be nonsurjective.

Exercise 7.16. Let  ⩾ ଶ and  = 𝔸 ∖ை be the complement to the origin. Verify that 𝒪𝔸[] =
𝕜[𝔸] and therefore, Specm 𝒪𝔸[] = 𝔸 ≠ .

Proposition 7.11
Let  = భ ∪మ ∪ … ∪ೖ be the irreducible decomposition of an affine algebraic variety . Then
𝕜() = 𝕜(భ) × 𝕜(మ) × … × 𝕜(ೖ).

Proof. Write ூ = ூ( �⋃≠ೕ( ∩ ೕ)) � ⊂ 𝕜[] for the ideal of all regular functions on  vanishing on
every intersection  ∩ ೕ,  ≠ .
Exercise 7.17. Prove that ூ is linearly spanned over 𝕜 by ூ ∩ 𝕜[]∘.

Let us chose some regular function  ∈ ூ ∩ 𝕜[]∘ and write  =  (mod ூ()) ∈ 𝕜[] for its
restriction to the irreducible component  ⊂ . Then the affine algebraic variety

ௐ = 𝒟() = Specm 𝕜[][−భ]
1See Theorem 6.3 on p. 78.
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splits into a disjoint union of affine algebraic varieties
ௐ = ௐ ∩  = 𝒟() = Specm 𝕜[][−భ

 ] .

By Example 7.3, 𝕜[ௐ] ≃ 𝕜[ௐభ] × 𝕜[ௐమ] × ⋯ × 𝕜[ௐೖ].
Exercise 7.18. For family of commutative rings ഌ, prove that (∏ഌ)

∘ = ∏∘
ഌ as sets, and

deduce from this the isomorphism ொ∏ಲഌ ≃ ∏ொಲഌ for the rings of fractions.
Therefore, 𝕜() ≃ 𝕜(ௐ) ≃ ∏𝕜(ௐ) ≃ ∏𝕜() by formula (7-4). �

7.4 Geometric properties of algebra homomorphisms. Every homomorphism of finitely gen-
erated reduced 𝕜-algebras ఝ∗ ∶ 𝕜[] → 𝕜[] can be canonically factorized into a composition of a
quotient epimorphism followed by a monomorphism:

𝕜[] ക∗
భ // // 𝕜[]∕ker(ఝ∗) = im(ఝ∗) �

� ക∗
మ // 𝕜[] . (7-5)

Since 𝕜[] is finitely generated and 𝕜[] is reduced, the 𝕜-algebra 𝕜[]∕ker(ఝ∗) = im(ఝ∗) ⊂ 𝕜[] is
both finitely generated and reduced. Thus, it is the coordinate algebra of the affine algebraic variety
 = Specm (im(ఝ∗)) ≃  (ker(ఝ∗)) ⊂ . The injectivity of homomorphism ఝ∗

భ∶ 𝕜[] → 𝕜[]
means that there are no nonzero functions  ∈ 𝕜[] vanishing on ఝభ() ⊂ . Therefore, ఝభ()
is Zariski dense in . In other words,  = ఝ() ⊂  is the closure of ఝ() in , situated within
 as the zero set (ker ఝ∗) of the ideal ker ఝ∗ ⊂ 𝕜[]. Thus, the algebraic factorization (7-5)
geometrically corresponds to the factorization of a regular map of algebraic varieties ఝ∶  → 
into the composition

 കమ //  = ఝ() � � കభ // 
of the closed immersion  ↪  preceded by the regular morphism  →  with dense image.

7.4.1 Closed immersions. A regular morphism of affine algebraic varieties ఝ∶  →  is
called a closed immersion if its pullback homomorphism ఝ∗ ∶ 𝕜[] → [] is surjective. In this
case, ఝ establishes the regular isomorphism between  and the closed subset (ker ఝ∗) ⊂ . The
pullback of this isomorphism of algebraic varieties is the canonical isomorphism of 𝕜-algebras

𝕜[]∕ker ఝ∗ ≃ 𝕜[] .

For an irreducible closed subset  ⊂ , the pullback homomorphism ∗ ∶ 𝕜[] ↠ 𝕜[] of the
closed immersion ∶  ↪  takes values in the integral domain 𝕜[], canonically embedded into its
field of fractions 𝕜(). By the universal property of 𝕜(), the epimorphism ∗ is uniquely extended
to the epimorphism

evೋ∶ 𝕜() ↠ 𝕜() , (7-6)
which restricts the rational functions from  onto . Intuitively, the homomorphism (7-6) can be
thought of as the evaluation of rational functions at the «generic point» of . The result of such
evaluation is an element of 𝕜(), which may be further evaluated at particular points of . It follows
from the surjectivity of homomorphism (7-6) that every rational function on  is a restriction of
some rational function on , i.e. can be written as a fraction ∕ whose denominator  ∈ 𝕜[]∘ is
not a zero divisor in 𝕜[]. Note that such a presentation may be not so obvious in the case when
 ⊂  is an irreducible component of .
Exercise 7.19. Let  = (௫௬) = Specm 𝕜[௫,௬]∕(௫௬) be the Cartesian cross on the affine plane
𝔸మ = Specm 𝕜[௫,௬], and  = Specm 𝕜[௫] = (௬) be its horizontal component. Write the
rational function ଵ∕௫ ∈ 𝕜() as a fraction ∕ ∈ 𝕜(), where  ∈ 𝕜[]∘.
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7.4.2 Dominant morphisms. For an irreducible variety , a regular morphism of algebraic
varietiesఝ∶  →  is called dominant if its pullback homomorphismఝ∗ ∶ 𝕜[] → [] is injective.
As we have seen above, this means that ఝ() = . For reducible , a regular map ఝ∶  →  is
called dominant if its restriction ఝ = ఝ| onto every irreducible component  ⊂  assigns the
dominant map ఝ ∶  → . In this case the pullback ఝ∗

 ∶ 𝕜[] ↪ 𝕜[] ⊂ 𝕜() embeds 𝕜[]
in the field 𝕜(). In particular, this forces  to be irreducible. By the universal property of 𝕜(),
the previous inclusion is uniquely extended to the inclusion of fields 𝕜() ↪ 𝕜(). Thus, every
dominant morphism  = ⋃ →  leads to the inclusion 𝕜() ↪ ∏𝕜() = 𝕜().
Exercise 7.20. Prove that any dominant morphism of irreducible affine algebraic varieties
ఝ∶  →  can be factorized as

 �
� ഗ //  × 𝔸 ഏ // //  , (7-7)

where ట is a closed immersion, and గ is the projection along 𝔸.
7.4.3 Finite morphisms. Every regular map of affine algebraic varieties ఝ∶  →  equips

𝕜[] with the structure of a finitely generated algebra over the subringఝ∗(𝕜[]) = 𝕜[ఝ()] ⊂ 𝕜[].
The map ఝ is called finite if 𝕜[] is finitely generated as a module1 over ఝ∗([]), or equivalently,
if the extension of rings ఝ∗(𝕜[]) ⊂ 𝕜[] is an integral extension.

Proposition 7.12 (closeness of finite morphisms)
Let ఝ∶  →  be a finite morphism of affine algebraic varieties, and  ⊂  a closed subset. Then
ఝ() ⊂  is also closed, and the restriction ఝ|ೋ∶  → ఝ() is a finite morphism. For irreducible 
and proper  ⊊ , the image ఝ() ⊊  is also proper.

Proof. Write ூ = ூ() ⊂ 𝕜[] for the ideal of . The pullback homomorphism of the restricted map
ఝ|ೋ∶  →  is factorized asఝ|∗

ೋ∶ 𝕜[] ക∗
−→ 𝕜[] ↠ 𝕜[]∕ூ, where the second arrow is the quotient

homomorphism. Since 𝕜[] is finitely generated as ఝ∗(𝕜[])-module, the quotient 𝕜[] = 𝕜[]∕ூ
is finitely generated as a module over ఝ|∗

ೋ(𝕜[]) = ఝ∗(𝕜[]) ∕ ( �ூ ∩ ఝ∗(𝕜[])) �. Therefore, the
restricted map ఝ|ೋ∶  → ఝ() is finite. The equality ఝ() = ఝ() can be proved separately for
each irreducible component of . Thus, we can assume that  =  is irreducible, and  = . In this
case, ఝ∗ embeds  = 𝕜[] in  = 𝕜[] as a subalgebra  ⊂ , this extension of algebras is integral,
 has no zero divisors, and the map ఝ from  = Specm  to  = Specm  sends a maximal ideal
𝔪 ⊂  to the intersection 𝔪 ∩  ∈ Specm . We have to show that for every maximal ideal 𝔪 ⊂ ,
there exists a maximal ideal �̃� ⊂  such that �̃� ∩  = 𝔪. If the ideal 𝔪, spanned by 𝔪 in , is
proper, then every maximal ideal �̃� ⊂  containing𝔪 solves the problem. It remains to check that
𝔪 ≠  for every proper ideal 𝔪 ⊂ . Assume the contrary. Let 𝔪 =  for some maximal ideal
𝔪 ⊂ , and భ,మ, … , ∈  span  as a -module. Then (భ,మ, … ,) = (భ,మ, … ,) ⋅ெ
for some  ×  matrix with elements in 𝔪. Hence, (భ,మ, … ,) ⋅ (ா − ெ) = . Similarly to
the prove of Lemma 6.2 on p. 72, this implies that the multiplication by det(ா − ெ) annihilates ,
because it acts on the generators as

(భ,మ, … ,) ↦ (భ,మ, … ,) ⋅ (det(ா − ெ) ⋅ ா) = (భ,మ, … ,) ⋅ (ா − ெ)(ா − ெ)∨ ,
1That is, there are some భ,మ, … , ∈ 𝕜[] such that any  ∈ 𝕜[] can be written as  = ∑ఝ∗()

for appropriate  ∈ 𝕜[].
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where (ா − ெ)∨ is the adjunct matrix for (ா − ெ). Since  has no zero divisors, det(ா − ெ) = .
Expanding the determinant shows that ଵ ∈ 𝔪, i.e., the ideal 𝔪 ⊂  is not proper. Contradiction.

To prove the last statement of the Proposition, consider a nonzero function  ∈ 𝕜[] whose
restriction to  ⊊  is zero. It satisfies some polynomial equation with coefficients in ఝ∗([]). Let

ఝ∗(బ) +ఝ∗(భ)−భ + ⋯ +ఝ∗(−భ) +ఝ∗() = 

be such an equation of the minimal possible degree. Then  ≠ , because otherwise the degree
could be decremented by canceling1 one . Evaluation of the left hand side at all points ௭ ∈ 
shows that ఝ∗()|ೋ = |ക(ೋ) = . Hence, ఝ() ⊂ ()   is proper. �

7.4.4 Normal varieties. An irreducible affine algebraic variety  is called normal if its coor-
dinate algebra 𝕜[] is a normal ring in the sense of n∘ 6.3. This means that 𝕜[] is integrally closed
in the field of rational functions 𝕜(). Since every factorial ring is normal, every irreducible affine
variety with the factorial coordinate algebra is normal. For example, the affine space 𝔸 is normal
for every .
Proposition 7.13 (openness of finite surjection onto normal variet൰)
Let  be a normal affine algebraic variety. Then every finite regular surjection ఝ∶  ↠  is
open2 Moreover, for all closed irreducible subsets  ⊂ , every irreducible component of ఝ−భ() is
surjectively mapped onto .

Proof. Since ఝ∗ ∶ 𝕜[] ↪ 𝕜[] is injective, we can consider 𝕜[] as a subalgebra in 𝕜[]. It is
enough to show thatఝmaps any principal open set𝒟() ⊂  to an open subset of . This means that
for every point  ∈ 𝒟(), there exists a regular function  ∈ 𝕜[] such thatఝ() ∈ 𝒟() ⊂ ఝ(𝒟())
in . To construct such a function, consider the map

ట = ఝ ×  ∶  →  × 𝔸భ ,  ↦ ( �ఝ(),()) � .

Its pullback homomorphism ట∗ ∶ 𝕜[ × 𝔸భ] = 𝕜[][௧] → [] evaluates polynomials in ௧ with
coefficients in 𝕜[] at the element  ∈ 𝕜[]. Write ఓ for the minimal polynomial of  over
𝕜(). By Corollary 6.4, the coefficients of ఓ belong to 𝕜[]. This forces ట∗ to be the factorization
homomorphism modulo the principal ideal (ఓ) = ker ట∗ ⊂ 𝕜[ × 𝔸భ]. Thus, ట is the finite
surjection of  onto the hypersurface in  × 𝔸భ defined by the equation ఓ = . Let us write
ఓ = ఓ(௬; ௧) as the polynomial in the coordinate ௧ on 𝔸భ with the coefficients  ∈ 𝕜[]:

ఓ = ௧ + భ(௬)௧−భ + ⋯ + (௬) ∈ 𝕜[][௧] = 𝕜[ × 𝔸భ] .

The restriction of ఓ onto the line ௬×𝔸భ over a point ௬ ∈  is the polynomial in ௧ whose roots are
equal to the values of  at all points of  mapped to ௬ by ఝ. In particular, ఝ(𝒟()) consists of those
௬ ∈  over which the polynomial ఓ(௬; ௧) has a non-zero root. Since the polynomial ఓ(ఝ(); ௧)
that appears for ௬ = ఝ() has the root () ≠ , at least one of the coefficients of ఓ, say ೖ(௬),
does not vanish at ௬ = ఝ(). This forces the polynomial ఓ(; ௧) to have a nonzero root for all
 ∈ 𝒟(ೖ). Hence, 𝒟(ೖ) ⊂ ఝ(𝒟()) as required.

To prove the second statement, consider the irreducible decomposition గ−భ() = భ ∪ … ∪ 
and let  =  ∖ ⋃

ഌ≠
ഌ,ௐ =  ∩ =  ∖ ⋃

ഌ≠
ഌ. Since  is open in , its image ఝ() is open in

1This can be done, because 𝕜[] has no zero divisors.
2That is, ఝ() is open in  for any open  ⊂ .



96 §7Affine algebraic geometry

, and therefore  ∩ ఝ() = ఝ(ௐ) is open and dense within , because  is irreducible. By the
same reason,ௐ is dense in . Therefore, ఝ() = ఝ(ௐ) = ఝ(ௐ) =  ∩ ఝ() = . �



§8 Algebraic manifolds

Everywhere in §8 we assume on default that the ground field 𝕜 is algebraically closed.
8.1 Definitions and examples. The definition of an algebraic manifold follows the same template
as the definitions of manifold in topology and differential geometry. It can be outlined as follows.
A manifold is a topological space  such that every point ௫ ∈  possesses an open neighborhood
 ∋ ௫, called a local chart, which is equipped with the homeomorphism ఝೆ∶ ೆ ⥲  identifying
some standard local model ೆ with , and any two local charts ఝೆ∶ ೆ ⥲ , ఝೈ∶ ೈ ⥲ ௐ
are compatible, meaning that the homeomorphism between open subsets ఝ−భ

ೆ ( ∩ ௐ) ⊂ ೆ and
ఝ−భ
ೈ ( ∩ ௐ) ⊂ ೈ provided by the composition ఝ−భ

ೈ ∘ ఝೆ is a regular isomorphism. In topology
and differential geometry, the local model ೆ = ℝ does not depend on , and the regularity of
the transition homeomorphism

ఝೈೆ ≝ �ఝ−భ
ೈ ∘ఝೆ|ക−భ

ೆ (ೆ∩ೈ) ∶ ఝ−భ
ೆ ( ∩ ௐ) ⥲ ఝ−భ

ೈ ( ∩ ௐ) , (8-1)

means that it will be a diffeomorphism of open subsets inℝ in the differential geometry, and means
nothing besides to be a homeomorphism in the topology. In algebraic geometry, the local model
ೆ is an arbitrary algebraic variety that may depend on  ⊂  and an a affine algebraic variety.
Thus, an algebraic manifold may look locally, say, as a union of a line and a plane in 𝔸య, crossing
or parallel, and this picture may vary from chart to chart. The regularity of homeomorphism (8-1),
in algebraic geometry, means that the maps ఝೈೆ, ఝೆೈ = ఝ−భ

ೈೆ are described in affine coordinates
by some rational functions, which are regular within both open sets −భ

ೆ ( ∩ ௐ), ఝ−భ
ೈ ( ∩ ௐ).

This provides every algebraic manifold  with a well defined sheaf 𝒪 of regular rational functions
with values in the ground field 𝕜, in the same manner as the smooth functions on a manifold are
introduced in differential geometry.

Let us now give precise definitions. Given a topological space , an affine chart on  is a
homeomorphism ఝೆ∶ ೆ ⥲  between an affine algebraic variety ೆ over 𝕜, considered with
the Zariski topology, and an open subset  ⊂ , considered with the topology induced from .
Two affine charts ఝೆ∶ ೆ ⥲ , ఝೈ∶ ೈ ⥲ ௐ on  are called compatible if the pullback map
ఝ∗
ೈೆ∶  ↦  ∘ఝೈೆ, provided by the transition homeomorphism (8-1), establishes a well defined

isomorphism of 𝕜-algebras1

ఝ∗
ೈೆ∶ 𝒪ೈ (ఝ−భ

ೈ ( ∩ ௐ)) ⥲ 𝒪ೆ (ఝ−భ
ೆ ( ∩ ௐ)) .

An open covering  = ⋃ഌ by mutually compatible affine charts ഌ ⊂  is called an algebraic
atlas on . Two algebraic atlases are declared to be equivalent if their union is an algebraic atlas
as well. A topological space  equipped with an equivalence class of algebraic atlases is called an
algebraic manifold or algebraic variety2. An algebraic manifold is said to be of finite type if it allows
a finite algebraic atlas.
Exercise 8.1. Verify that any algebraic manifold of finite type is a Noetherian topological space
in the sense of Remark 7.1. on p. 90 and therefore admits a unique decomposition into a finite
union of the irreducible components.

1Recall that for an open set ௐ in an affine algebraic variety , we write 𝒪ೋ(ௐ) = { ∈ 𝕜() | ௐ ⊂
Dom()} for the 𝕜-algebra of rational functions on  regular everywhere in ௐ, see n∘ 7.3.1 on p. 91 for
details.

2without the epithet «affine»

97



98 §8Algebraic manifolds

Example 8.1 (projective spaces)
The projective space ℙ = ℙ (𝕜+భ) with homogeneous coordinates ௫ = (௫బ∶ ௫భ∶ … ∶ ௫) is
covered by the (+ଵ) standard affine charts  = {(௫బ∶ ௫భ∶ … ∶ ௫) | ௫ ≠ },  ⩽  ⩽ . Write
 = 𝔸(𝕜) for the affine space with coordinates1 ௧ = (௧,బ, … , ௧,−భ, ௧,+భ, … , ௧,). For each
, there exists a bijection

ఝ ∶  ⥲  , ௧ ↦ (௧,బ ∶ … ∶ ௧,−భ ∶ ଵ ∶ ௧,+భ ∶ … ∶ ௧,) . (8-2)

Preimage of the intersection  ∩ ೕ under this bijection is the principal open set 𝒟 (௧,ೕ) ⊂ .
Exercise 8.2. Verify that the transition map ఝೕ = ఝ−భ

ೕ ఝ ∶ 𝒟 (௧,ೕ) ⥲ 𝒟 (௧ೕ,), ௧ ↦ ௧−భ
,ೕ ⋅ ௧ೕ,

establishes the regular isomorphism between affine algebraic varieties

𝒟 (௧,ೕ) = Specm 𝕜[�௧−భ
,ೕ , ௧,బ, … , ௧,−భ, ௧,+భ, … , ௧,] � , (8-3)

𝒟 (௧ೕ,) = Specm 𝕜[ �௧−భ
ೕ, , ௧ೕ,బ, … , ௧ೕ,ೕ−భ, ௧ೕ,ೕ+భ, … , ௧ೕ,] � . (8-4)

Therefore, transferring the Zariski topology from  ≃ 𝔸 to  by means of the bijection (8-2)
provides ℙ with a well defined topology whose restriction on  ∩ ೕ does not depend on what
source,  or ೕ, it comes from. In this topology, all bijections (8-2) certainly are homeomorphisms.
Thus, ℙ is an algebraic manifold of finite type locally isomorphic to the affine space 𝔸.

Example 8.2 (Grassmannians)
Recall2 that the set of all -dimensional vector subspaces in a given vector space  over 𝕜 is called
the Grassmannian Gr(,), and for the coordinate space  = 𝕜 we write Gr(,) instead of
Gr(,𝕜). We have seen in n∘ 5.2 on p. 64 that the points of Gr(,) can be viewed as the orbits
of  × matrices of rank  under the natural action of GLೖ(𝕜) by left multiplication. The orbit of
the matrix ௫ corresponds to the subspace ೣ ⊂ 𝕜 spanned by the rows of ௫, and ௫ is recovered
from ೣ up to the action GLೖ(𝕜) as the matrix whose rows are the coordinates of some linearly
independent vectors ௨భ,௨మ, … ,௨ೖ ∈ ೣ in the standard basis of 𝕜. This leads to the following
covering of Gr(,) by (ೖ ) affine charts ≃ 𝔸ೖ(−ೖ), called standard and numbered by increasing
collections of indexes ூ = (భ, మ, … , ೖ) , ଵ ⩽ భ < మ < ⋯ < ೖ ⩽ . Write ௦(௫) for the  × 
submatrix of  × matrix ௫ formed by the columns with numbers భ, మ, … , ೖ, and  for the set
of GLೖ(𝕜)-orbits of all matrices ௫ with det ௦(௫) ≠ . Every such an orbit contains a unique matrix
௭ with ௦(௭) = ா, namely, ௭ = ௦(௫)−భ ⋅ ௫.
Exercise 8.3. Convince yourself that  consists of those -dimensional subspaces ௐ ⊂ 𝕜
which are isomorphically projected onto the coordinate -plane spanned by the standard basis
vectors భ , మ , … , ೖ along the transversal coordinate (−)-plane spanned by the remain-
ing standard basis vectors.

Write  = Matೖ×(−ೖ)(𝕜) ≃ 𝔸ೖ(−ೖ) for the affine space of ×(−) matrices whose columns are
numbered in order by the collection of indexes ூ = {ଵ, ଶ, … , } ∖ ூ, complementary to ூ. There
is a bijection ఝ ∶  ⥲ , ௧ ↦ GLೖ(𝕜) ⋅ ఝ(௧), where the  ×  matrix ఝ(௧) has ௦ (ఝ(௧)) = ா,
and ௦ (ఝ(௧)) = ௧, i.e., it is obtained from ௧ by the order-preserving insertion of the columns

1The first index  is the order number of the chat, the second index numbers the coordinates within the
th chart and takes  values  ⩽ ఔ ⩽ , ఔ ≠ .

2See n∘ 4.6.4 on p. 58.
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of ா between the columns of ௧ in such the way that the columns of ா are assigned the numbers
భ, మ, … , ೖ in the resulting  × matrix.
Exercise 8.4. Verify that the inverse bijection maps ௫ ↦ ௦ (௦(௫)−భ ⋅ ௫), and the result does
not depend on the choice of ௫ in the orbit GLೖ(𝕜) ⋅ ௫.

Therefore, ఝ−భ
 ( ∩ ) = 𝒟(�det ௦(�ఝ(௧)) �) � is the principal open set in . The transition

map ఝ = ఝ−భ
 ఝ sends 𝒟(�det ௦( �ఝ(௧)) �)� ⊂  to 𝒟(�det ௦( �ఝ(௧)) �) � ⊂  by the rule ௧ ↦

௦(�௦−భ
 (�ఝ(௧)) � ⋅ ఝ(௧)) � and gives a regular isomorphism of affine algebraic varieties. The inverse

isomorphism takes ௧ ↦ ௦ (௦−భ
 (ఝ(௧)) ⋅ ఝ(௧)).

Exercise 8.5. Check this.
The same arguments as in the previous example show that Gr(,) is an algebraic variety of finite
type locally isomorphic to the affine space 𝔸ೖ(−ೖ) = 𝔸 (Matೖ×(−ೖ)(𝕜)). Note that for  = ଵ,
 =  + ଵ, the standard algebraic atlas {} on Gr(,) is precisely the standard atlas {} on
ℙ described in Example 8.1.

Example 8.3 (direct product of algebraic manifolds)
The set-theoretical direct product of algebraic manifolds ,  is canonically equipped with the
algebraic atlas formed by the mutual direct products  × ௐ of affine charts  ⊂ , ௐ ⊂ . Thus,
 ×  is an algebraic manifold.
8.2 Regular and rational maps. Given an algebraic manifold , a function  ∶  → 𝕜 is called
regular at a point ௫ ∈  if there exist an affine chart ఝೈ∶ ೈ ⥲ ௐ with ௫ ∈ ௐ and a rational
function ̃ ∈ 𝕜(ೈ) such that ఝ−భ

ೈ (௫) ∈ Dom(̃) and ఝ∗
ೈ(௭) = ̃(௭) for all ௭ ∈ Dom ̃. For an

open subset  ⊂ , the regular everywhere in  functions  → 𝕜 form a 𝕜-algebra denoted by
𝒪() and called the algebra of regular functions on . The assignment  ↦ 𝒪() provides the
topological space  with the sheaf of 𝕜-algebras, called the structure sheaf1 or the sheaf of regular
functions on .
Exercise 8.6. For any affine chart ఝೆ∶ ೆ ⥲  on , verify that the pullback of the regular
functions along ఝೆ assigns the isomorphism ఝ∗

ೆ∶ 𝒪() ⥲ 𝕜[ೆ].
A map of algebraic manifolds  ∶  →  is called a regular morphism if  is continuous and for any
open  ⊂ , the pullback of regular functions along |−భ(ೆ) gives a well defined homomorphism
of 𝕜-algebras |∗

ೆ∶ 𝒪ೊ() → 𝒪 (ఝ−భ()),  ↦  ∘ .
Exercise 8.7. Identify 𝒪() with the set of regular morphisms  → 𝔸భ.
8.2.1 Closed submanifolds. Let  be an algebraic manifold. Any closed subset  ⊂  pos-

sesses the natural structure of algebraic manifold. Namely, for any affine chart ఝೆ∶ ೆ ⥲ , the
set ఝ−భ

ೆ ( ∩ ) is closed in the affine algebraic variety ೆ and therefore, has the natural structure
of affine algebraic variety with the coordinate algebra

𝕜[ೆ]∕ఝ∗
ೆூ( ∩ ) ≃ 𝒪()∕ூ( ∩ ) ,

where ூ( ∩ ) = { ∈ 𝒪() | (௭) =  for all ௭ ∈  ∩ }. The affine charts

ఝ−భ
ೆ ( ∩ ) ⥲  ∩  ⊂ 

1See n∘ 7.3.1 on p. 91.
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certainly form an algebraic atlas on . The assignment  ↦ ூ( ∩) defines a sheaf of ideals on 
denoted by ℐೋ ⊂ 𝒪 and called the ideal sheaf of the closed submanifold  ⊂ .

Every sheaf of ideals 𝒥 ⊂ 𝒪 determines a closed submanifold (𝒥) ⊂  whose intersection
with any affine chart  ⊂  is the zero set of the ideal 𝒥() ⊂ 𝒪() ≃ 𝕜[ೆ] in the affine
algebraic variety ೆ. Note that the ideal sheaf ℐ((𝒥)) = √𝒥 has not to coincide with the sheaf 𝒥
of equations describing the submanifold (𝒥).

A regular morphism  ∶  →  is called a closed immersion if () ⊂  is a closed submanifold
of  and  establishes an isomorphism between  and ().
Exercise 8.8. Convince yourself that an algebraic manifold  admits a closed immersion in affine
space if and only if  is an affine algebraic variety in the sense of n∘ 6.7 on p. 77.
8.2.2 Families of manifolds. Any regular morphism గ ∶  →  can be viewed as a family of

closed submanifolds  = గ−భ(௬) ⊂  parametrized by the points ௬ ∈ . In this case  is referred
to as the base of family గ. Given two families గ ∶  → , గ′ ∶ ′ →  over the same base , a
regular morphism ఝ∶  → ′ is called a morphism of families or morphism over  if గ = గ′ ∘ఝ, i.e.,
if ఝ maps  to ′

 for all ௬ ∈ . A family గ ∶  →  is called constant or trivial if it is isomorphic
over  to the canonical projection గೊ ∶ బ ×  →  from the direct product of the base and some
fixed manifold బ.

8.2.3 Rational maps. Let  be an algebraic manifold and  ⊂  an open dense subset. A
regular morphism ఝ∶  →  is called a rational map from  to . Given such a map, we write
ఝ∶  99K  although this discards the information about . A regular morphism ట∶ ௐ →  is
called an extension of ఝ ifௐ ⊃  and ట|ೆ = ఝ. The union of all open setsௐ ⊃  on which ఝ can
be extended, is called the domain of rational map ఝ∶  99K  and denoted Dom(ఝ).
Exercise 8.9 (Cremona’s quadratic involution). Verify that the prescription

(௫బ ∶ ௫భ ∶ ௫మ) ↦ (௫−భ
బ ∶ ௫−భ

భ ∶ ௫−భ
మ )

determines a rational map త ∶ ℙమ 99K ℙమ whose domain is the whole of ℙమ except three points.
Find these points and describe the image of త.

Despite its name, a rational map ఝ∶  99K  is not a map «from » in the set-theoretical sense,
because ఝ may be undefined at some points. In particular, the composition of rational maps may be
undefined, e.g., if the image of the first map falls outside the domain of the second. However, the
rational maps often appear in various applications and play an important role within the algebraic
geometry itself. For example, the tautological projection 𝔸() 99K ℙ(), which sends a point of
𝔸() provided by a vector ௩ ∈  to the point of ℙ() provided by the same vector, is a surjective
rational map regular everywhere outside the origin.
8.3 Separated manifolds. The standard atlas on ℙభ consists of two charts

ఝ ∶ 𝔸భ ⥲  ⊂ ℙభ ,  = ,ଵ .

Their intersection is visible within each chart as the complement to origin

ఝ−భ
బ (బ ∩ భ) = ఝ−భ

భ (బ ∩ భ) = 𝔸భ ∖ {ை} = {௧ ∈ 𝔸భ | ௧ ≠ } .

The charts are glued together along this intersection by means of the transition map

ఝబభ ∶ ௧ ↦ ଵ∕௧ . (8-5)
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If, instead of rational map (8-5), we use much simpler gluing rule

ఝ̃బభ ∶ ௧ ↦ ௧ , (8-6)

we get another manifold looking as an affine line with the double origin: -----------------------------------∶---------------------------------- .
Such kind of pathology is called non-separateness. It has appeared because the gluing rule (8-6)
considered as the binary relation on 𝔸భ, i.e., as the subset of 𝔸భ × 𝔸భ = 𝔸మ, is not closed. Namely,
it is provided by the line ௫ = ௬ without the point ௫ = ௬ = . This gluing rule can be completed by
continuity up to the whole line ௫ = ௬, whereupon the double point disappears.

In general situation, the separateness phenomenon is formalized as follows. By the universal
property of the direct product, for any two affine charts బ, భ on an algebraic manifold , the
inclusions బ ↩ బ ∩ భ ↪ భ produce the inclusion బ ∩ భ ↪ బ × భ whose image is the
intersection of the affine chart బ ×భ on  ×  with the diagonal ௱ = {(௫,௫) ∈  ×  | ௫ ∈ }.
In other words, the gluing rule for charts బ, భ, considered as a subset of బ ×భ, is ௱∩బ ×భ.
For example, the gluing rule (8-5) corresponds to the immersion (𝔸భ ∖ ை) ↪ 𝔸మ, ௧ ↦ (௧ , ௧−భ),
whose image ௱ℙభ ∩ బ × భ is a closed subset of బ × భ ≃ 𝔸మ, namely, the hyperbola ௫௬ = ଵ. In
contrast, the trivial transition map (8-6) produces the immersion (𝔸భ ∖ை) ↪ 𝔸మ, ௧ ↦ (௧ , ௧), whose
image is not closed in 𝔸మ. An algebraic manifold  is called separated if the diagonal ௱ ⊂ × is
closed in  × . In more expanded form, this means that for every pair of affine charts ,ௐ ⊂ ,
the canonical map  ∩ௐ ↪  ×ௐ is a closed immersion.

For example, both 𝔸 and ℙ are separated, because the diagonals in 𝔸 × 𝔸 and ℙ × ℙ
are described by the polynomial equations ௫ = ௬ and ௫௬ೕ = ௫ೕ௬ respectively1. Every closed
submanifold  ⊂  in a separated manifold  is separated as well, because the diagonal of  × 
is the preimage of the diagonal ௱ೊ ⊂  ×  under the regular map  ×  ↪  ×  provided by
the inclusion  ↪ . In particular, all affine and projective varieties are separated and have finite
type.

8.3.1 Closeness of the graph of a regular map Let ఝ∶  →  be a regular morphism of
algebraic manifolds. The preimage of the diagonal ௱ೊ ⊂ × under the mapఝ×Idೊ ∶ × → ×
is called the graph of ఝ and denoted ௰ക. As a set, ௰ക = {(௫,(௫)) ∈  ×  | ௫ ∈ }. If  is
separated, the graph of any regular morphism ఝ∶  →  is closed. For example, the graph of a
regular morphism of affine algebraic varieties ఝ∶ Specm() → Specm() is described by a system
of equations ଵ⊗  = ఝ∗() ⊗ ଵ in  ⊗ , where  runs through .
8.4 Projective varieties. An algebraic manifold  is called projective if it admits a closed immer-
sion into projective space, i.e., is isomorphic to a closed submanifold of ℙ for some  ∈ ℕ.
Exercise 8.10. Verify that the solution set of every system of homogeneous polynomial equations
in the homogeneous coordinates in ℙ is a closed submanifold of ℙ.

Example 8.4 (Plücker coordinates)
The Plücker embedding from n∘ 4.6.4 on p. 58

ೖ,ೇ ∶ Gr(,) ↪ ℙ(௸ೖ) ,  ↦ ௸ೖ , (8-7)
1The first formula relates ଶ affine coordinates (௫భ, … , , ௫, ௬భ, … , ௬) in 𝔸 ×𝔸 = 𝔸మ, whereas the

second deals with two collections of homogeneous coordinates (௫బ∶ ௫భ∶ … ∶ ௫), (௬బ∶ ௬భ∶ … ∶ ௬) on
ℙ × ℙ (note that they cannot be combined together in one collection). We will see in Exercise 8.12 on
p. 102 that the latter equations actually determine a closed submanifold of ℙ × ℙ in the sense of n∘ 8.2.1.
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maps the Grassmannian Gr(,) isomorphically onto projective algebraic variety determined in
ℙ(௸ೖ) by the quadratic Plücker’s relations from formula (4-44) on p. 57. In the matrix notations
from Example 8.2 on p. 98, the Plücker embedding maps ×matrix ௫ೆ, formed by the coordinate
rows of some basis vectors in  ⊂ 𝕜 expanded through the standard basis vectors  ∈ 𝕜, to the
point of ℙ(௸ೖ𝕜) whose ூth homogeneous coordinate in the basis formed by the monomials

 = భ ∧ మ ∧ … ∧ ೖ

equals det ௦(௫ೆ), the degree- minor of ௫ೆ situated in the columns with numbers from ூ.
Exercise 8.11. Check this and convince yourself that the Plücker embedding is regular.

The collection of (ೖ) minors det ௦(௫ೆ) is called the Plücker coordinates of the subspace  ⊂ 𝕜.
Since the pullbacks of the coordinate functions on ℙ(௸ೖ𝕜) are the polynomials in the affine co-
ordinates on the Grassmannian, the map (8-7) is a regular closed immersion of the Grassmannian
into projective space. Therefore, the Grassmannians, as well as all their closed submanifolds, are
projective algebraic varieties.

Exercise 8.12. Show that the direct product of projective manifolds is projective, and use this to
prove that every subset in ℙభ ×ℙమ ×⋯×ℙ defined by a system of polynomial equations in
homogeneous coordinates such that every equation is homogeneous in every set of coordinates
is a projective algebraic variety.

Example 8.5 (blowup of point on ℙ)
Write ா ≃ ℙ−భ for the projective space formed by all lines in ℙ passing through a given point
 ∈ ℙ. The incidence graph ℬ = {(, ℓ) ∈ ℙ × ா |  ∈ ℓ} is called the blowup of the point
 ∈ ℙ. The projection ఙ∶ ℬ ↠ ℙ is one-to-one over ℙ ∖ , whereas the preimage of 

ఙ−భ
 () = {} × ா ⊂ ℙ × ா

coincides with the whole space ா. This fiber is called the exceptional divisor1 of the blowup. The
second projection దಶ ∶ ℬ ↠ ா represents ℬ as a line bundle over ா, i.e., the family of projective
lines () ⊂ ℙ parametrized by the points  ∈ ா. This line bundle is called the tautological line
bundle over the projective space ா. It follows from Exercise 8.12 that ℬ is a projective algebraic
manifold. Indeed, choose some homogeneous coordinates in ℙ such that  = (ଵ ∶  ∶ … ∶ ),
and identify ா with the projective hyperplane  (௫బ) = {( ∶ ௧భ ∶ … ∶ ௧)} ⊂ ℙ by mapping a
line ℓ ∋  to the point ௧ = ℓ ∩ (௫బ). Then the collinearity of points , , ௧ is equivalent to the
following system of homogeneous quadratic equations on the pair (,ఒ) ∈ ℙ × ா:

rk
⎛
⎜
⎜
⎝

ଵ  ⋯ 
బ భ ⋯ 
 ௧భ ⋯ ௧

⎞
⎟
⎟
⎠

= ଶ or ௧ೕ = ೕ௧ , ଵ ⩽  <  ⩽  .

Geometrically, the blowup of  ∈ ℙ can be imagined as the replacement of the point  by the
projective space ா glued to the space ℙ, punctured at , in such a way that every line ℓ ⊂ ℙ
approaching  passes through the point ℓ ∈ ா.

1Given an irreducible algebraic manifold , a (Weil) divisor on  is an element of the free abelian group
generated by all closed irreducible submanifolds of codimension ଵ in  (the dimensions of algebraic varieties
will be discussed in §9)
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Lemma 8.1
Every closed submanifold  ⊂ ℙ can be described as a set of solutions to some system of homoge-
neous polynomial equations in homogeneous coordinates in ℙ.

Proof. We write (௫బ∶ ௫భ∶ … ∶ ௫) for the homogeneous coordinates in ℙ and use the nota-
tions from Example 8.1 on p. 98 for the standard affine charts  ⊂ ℙ and the standard affine
coordinates ௧,ೕ therein. For each , the intersection  ∩  is the zero set (ூ) of some ideal ூ
in the polynomial ring in  variables ௧,ഌ = ௫ഌ ∕௫,  ⩽ ఔ ⩽ , ఔ ≠ . Every polynomial  in
this ring can be rewritten as (௫బ,௫భ, … , ௫)∕௫ , where ௗ = deg and  ∈ 𝕜[௫బ,௫భ, … ,௫] is
homogeneous of degree ௗ and turns to  for ௫ = ଵ, ௫ೕ = ௧,ೕ,  ≠ :

 (௧,బ, … , ௧,−భ,ଵ, ௧,+భ, … , ௧,) =  (௧,బ, … , ௧,−భ, ௧,+భ, … , ௧,) .

Let us fix generators ,ഀ of the ideal ூ and write ,ഀ ∈ 𝕜[௫బ,௫భ, … ,௫] for their homogenizations
just described. Then  coincides with the solution set  of the system of polynomial equations
௫ ⋅ ,ഀ(௫బ,௫భ, … , ௫) = , where  ⩽  ⩽  and for each , the index ఈ numbers the chosen
generators ,ഀ of the ideal ூ. To check this, it is enough to establish the coincidence ∩ = ∩
for every . In terms of the affine coordinates ௧,ೕ on , the intersection ∩ (௫ ⋅ ) is described
by the equation

 (௧,బ, … , ௧,−భ,ଵ, ௧,+భ, … , ௧,) =  (௧,బ, … , ௧,−భ, ௧,+భ, … , ௧,) =  .

Hence,  intersects the set of common zeros of the polynomials ௫ ⋅ ,ഀ, whose  coincides with
 of the chart, exactly along the set  ∩ . Therefore,  ∩  ⊂  ∩ . It remains to check that
every homogeneous polynomial ௫ೕ ⋅ ೕ,ഁ with  ≠  vanishes on  ∩  as well. The first factor ௫ೕ
vanishes along the hyperplane (௧,ೕ) ⊂ . The principal open set in  ∩  complementary to
this hyperplane lies within  ∩  ∩ ೕ ⊂  ∩ ೕ. As we have already seen, the second factor ೕ,ഁ
vanishes on  ∩ ೕ. �

Example 8.6 (an illustration to the proof of Lemma 8.1)
The zero set of the homogeneous polynomial ௫బ௫భ௫మ on ℙమ is the union of three lines complemen-
tary to the standard affine charts. The affine equations of this set in the charts బ, భ, మ are,
respectively, ௧బ,భ௧బ,మ = , ௧భ,బ௧భ,మ = , ௧మ,బ௧మ,భ = . Let  ⊂ ℙమ be the closed submanifold locally
described by these equations. Being applied to this , the previous proof transforms the left hand
sides of the local affine equations to the homogeneous polynomials బ,భ = ௫భ௫మ, భ,భ = ௫బ௫మ,
మ,భ = ௫బ௫భ, and then serves ௫బ ⋅ బ,భ = , ௫భ ⋅ భ,భ = , ௫మ ⋅ మ,భ =  as the global homogeneous
equations for . They all coincide with the initial equation ௫బ௫భ௫మ =  in our case.
8.5 Closeness of projective morphisms. Projective varieties behave similarly to the compact
manifolds in the differential geometry in the sense that every regular map from a projective manifold
 to an arbitrary separated algebraic manifold  is closed meaning that the image of every closed
subset  ⊂  is closed in . The proof is based on the following lemma.
Lemma 8.2
The projection గ ∶ ℙ×𝔸 ↠ 𝔸 is closed, i.e., గ() ⊂ 𝔸 is closed for every closed  ⊂ ℙ×𝔸.

Proof. Write ௫ = (௫బ∶ ௫భ∶ … ∶ ௫) and ௧ = (௧భ, ௧మ, … , ௧) for the homogeneous and affine
coordinates on ℙ and 𝔸 respectively. Let a closed subset  ⊂ ℙ ×𝔸 be described by a system
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of polynomial equations ഌ(௫, ௧) = , homogeneous in ௫. Then గ() ⊂ 𝔸 consists of all  ∈ 𝔸
such that the system of homogeneous equations ഌ(௫,) =  in ௫ has a non zero solution. The
latter holds if and only if the coefficients of the homogeneous forms ഌ(௫,) satisfy the system
of resultant polynomial equations defined in n∘ 6.8 on p. 79. Since the coefficients of the forms
ഌ(௫,) are polynomials in , we conclude that గ() is described by polynomial equations. �

Corollar൰ 8.1
Let  be a projective algebraic variety. Then for all algebraic manifolds , the projection × ↠ 
is closed.

Proof. It is enough to prove this statement separately for every affine chart of  instead of the
whole . Thus, we may assume that  is affine. In this case,  × is the closed subset in ℙ ×𝔸,
and the projection in question is the restriction of the projection ℙ × 𝔸 ↠ 𝔸, which is closed,
on this closed subset. Therefore, it closed as well. �

Theorem 8.1
Every regular morphism ఝ∶  →  from a projective variety  to a separated manifold  is closed.

Proof. Write ௰ക ⊂  ×  for the graph1 of the regular map ఝ∶  → . It is closed, because 
is separated2. For every  ⊂ , the image ఝ() ⊂  coincides with the image of the intersection
௰ക ∩ (×) ⊂ × under the projection × ↠ . If  is closed in , the product × is closed
in  × . Since  is projective, the projection  ×  ↠  maps the closed set ௰ക ∩ ( × ) ⊂  × 
to the closed set ఝ() ⊂ . �

Corollar൰ 8.2
Every regular map from a connected3 projective variety  to an affine algebraic variety  contracts
 to one point of . In particular, 𝒪() = 𝕜 is exhausted by constants.

Proof. Let  ⊂ 𝔸 and ఝ∶  →  be such a regular map. Composing it with the projections of 
to the  coordinate axes of 𝔸 reduces the statement to the case  = 𝔸భ. Composing a regular map
 → 𝔸భ with the inclusion 𝔸భ ↪ ℙభ as the standard affine chart బ gives a nonsurjective regular
map  → ℙభ, whose image must be a proper connected Zariski closed subset, that is, one point. �

8.6 Finite projections. A regular morphism of algebraic manifolds ఝ∶  →  is called finite if
for every affine chart  ⊂ , the preimage ௐ = ఝ−భ() is an affine chart on , and the restricted
map ఝೈ∶ ௐ →  is a finite morphism of affine algebraic varieties in the sense of n∘ 7.4.3 on p. 94.
It follows from Proposition 7.12 on p. 94 that every finite morphism ఝ∶  →  is closed, and
the restriction of ఝ to a closed submanifold  ⊂  remains a finite morphism. Moreover, if  is
irreducible and  ⊊  is a proper closed subset, then ఝ() ⊊  is a proper closed subset of  as
well.
Exercise 8.13. Prove that the composition of finite morphisms is finite.

1See n∘ 8.3.1 on p. 101.
2See the same n∘ 8.3.1 on p. 101.
3That is, indecomposable into disjoint union of two nonempty closed subsets.
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Proposition 8.1
For a proper closed subset   ℙ, a point  ∉ , and a hyperplane ு ∌ , a finite regular
morphism గ∶  → ு is provided by the projection from  to ு.

Proof. Let  ⊂ ு be an affine chart. Fix some homogeneous coordinates (௫బ∶ ௫భ∶ … ∶ ௫) on
ℙ such that the hyperplane ு = (௫బ) is formed by the points  = ( ∶ భ ∶ … ∶ ) ∈ ℙ,
the chart  ⊂ ு is formed by the points ௨ = ( ∶ ௨భ ∶ … ∶ ௨−భ ∶ ଵ) ∈ ℙ, and the point
 = (ଵ ∶  ∶ … ∶ ). Let  be described by homogeneous equations ഌ(௫) =  in these
coordinates. Since  ∉ , the preimage గ−భ

 () is cut out of  by the punctured cone  ruled by
the projective lines (௨), ௨ ∈ , with the punctured point . Every such line is described by the
parametric equation ௨ + ௧, ௧ ∈ 𝕜, and the cone  is an affine algebraic variety isomorphic to
𝔸 =  × 𝔸భ. The isomorphism maps a point (௨, ௧) ∈  × 𝔸భ to the point ௫ = ௨ + ௧ ∈ ℙ laying
on the cone . The intersection  ∩  = గ−భ

 () is described in the coordinates (௨, ௧) on  by the
equations

ഌ(௧ + ௨) = ఈ(ഌ)
బ (௨)௧ + ఈ(ഌ)

భ (௨)௧−భ + ⋯ + ఈ(ഌ)
 (௨) =  (8-8)

and therefore, it is an affine algebraic variety, i.e., an affine chart on . It remains to show that
the coordinate algebra 𝕜[ ∩ ] is integral over 𝕜[] = 𝕜[௨భ,௨మ, … ,௨−భ]. By the construction,
𝕜[ ∩] = 𝕜[௧, ௨భ,௨మ, … ,௨−భ]∕ூ, where ூ is generated by the polynomials (8-8). This algebra is
generated over 𝕜[] by one element ௧. It is enough to check that ௧ is integral over 𝕜[], i.e., that
the ideal ூ contains a monic polynomial in ௧. Such a polynomial exists if and only if the leading
coefficients ఈ(ഌ)

బ (௨) of the polynomials (8-8) generate the nonproper ideal in 𝕜[]. By the weak
Nullstellensatz, the latter means that the coefficients ఈ(ഌ)

బ (௨) have no common zeros in . But this
is guaranteed by the condition  ∉ . Indeed, if all the coefficients ఈ(ഌ)

బ (௨) simultaneously vanish
at some point ௨బ, then the homogenizations of equations (8-8)

ഌ(ణబ + ణభ௨బ) = ఈ(ഌ)
బ (௨బ)ణబ + ఈ(ഌ)

భ (௨బ)ణ−భ
బ ణభ + ⋯ + ఈ(ഌ)

 (௨బ)ణభ =  ,

which describe the intersection of  with the whole unpunctured projective line (,௨బ), have the
common root (ణబ ∶ ణభ) = (ଵ ∶ ) on this line. This means that  ∈  despite the assumption made
in the Proposition. �

Corollar൰ 8.3
Every projective variety admits a regular finite surjection onto projective space.

Proof. Let  ⊂ ℙ be a projective variety. Make a finite projection గభ ∶  → ுభ from some
point భ ∈ ℙ ∖  to some hyperplane ுభ ⊂ ℙ. If గభ() ≠ ுభ, make the second finite projection
గమ ∶ గభ() → ுమ from some point మ ∈ ுభ ∖ గభ() to some hyperplane ுమ ⊂ ுభ, etc. �

Corollar൰ 8.4
Every affine algebraic variety admits a regular finite surjection onto affine space.

Proof. Consider an affine variety   𝔸 and embed 𝔸 into ℙ as the standard affine chart
బ. Write ு∞ = ℙ ∖ బ for the hyperplane at infinity and  ⊂ ℙ for the projective closure
of . Pick a point  ∈ ு∞ ∖  and a hyperplane  ∌ . The projection గ∶  →  from 
to  looks within the chart బ as the parallel projection of  =  ∖ ு∞ to the affine hyperplane
బ ∩ =  ∖ு∞ in the direction of the vector . By the Proposition 8.1, this parallel projection is a
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finite morphism of affine algebraic varieties. If it is not surjective, we repeat the procedure within
the target hyperplane, as in the proof of Corollary 8.3. �
Exercise 8.14. Check that  ∩ு∞ ≠ ு∞ for  ≠ 𝔸.

Example 8.7 (Noether’s normaliඋation)
Consider a polynomial  ∈ 𝕜[௫భ,௫మ, … ,௫] of positive degree and write it as

 = బ + భ + ⋯ +  ,

where every ೖ is homogeneous of degree . Let  = () ⊂ ℙ be the projective of affine
hypersurface  = () ⊂ 𝔸, where 𝔸 is identified with the standard affine chart ௫బ = ଵ in ℙ,
(௫బ∶ ௫భ∶ … ∶ ௫) are homogeneous coordinates on ℙ, (௫భ,௫మ, … ,௫) are affine coordinates on
𝔸 and  = బ௫బ +భ௫−భ

బ + ⋯ +−భ௫బ +. An infinitely far point  = ( ∶ భ ∶ మ ∶ … ∶ )
does not lie on  if and only if (భ,మ, … ,) ≠ . Over an infinite field 𝕜, such a point  can
be always chosen. After renumbering the coordinates and rescaling , we can assume that

 = ( ∶ భ ∶ … ∶ −భ ∶ ଵ) .

Within the affine chart 𝔸, the projection from  to the affine hyperplane ௫ =  is looking as the
parallel projection గ∶  → 𝔸−భ along the vector  = (భ, … ,−భ, −ଵ). It takes

(௫భ,௫మ, … ,௫) ↦ (௫భ − భ௫, ௫మ − మ௫, … , ௫−భ − −భ௫, ) .

The pullback homomorphism గ∗
∶ 𝕜[௫భ,௫మ, … ,௫−భ] → 𝕜[] = 𝕜[௫భ,௫మ, … ,௫]∕() takes

௫ ↦ ௧ ≝ ௫ − ௫ ∈ 𝕜[] , for ଵ ⩽  ⩽  − ଵ .

Since the class of ௫ in 𝕜[] is annihilated by the polynomial

(௫భ,௫మ, … ,௫) =  (௧భ + భ௫, ௧మ + మ௫, … , ௧−భ + −భ௫,௫) =
= బ௫ + భ௫−భ

 + ⋯ + −భ௫ + 

whose coefficients  ∈ 𝕜[௧భ, ௧మ, … , ௧−భ] and the leading one బ = (భ, … ,−భ,ଵ) ∈ 𝕜 is
invertible, the variable ௫ and therefore the coordinate algebra 𝕜[] is integral over గ∗

𝕜[𝔸].
Thus, the projection గ∶  → 𝔸−భ is finite, that agrees with Proposition 8.1. This claim is
known as the Noether1 normalization lemma. Over an algebraically closed field 𝕜, the projection
గ is obviously surjective, because for a given point  ∈ 𝔸−భ, mapped to  by గ is every point
(భ + ఒభ, మ + ఒమ, … , −భ + ఒ−భ,ఒ), where ఒ is a root of the degree-ௗ polynomial

 (భ + భ௧, మ + మ௧, … , −భ + −భ௧, ௧) ∈ 𝕜[௧] .

Thus, over an algebraically closed field, every affine algebraic hypersurface () ⊂ 𝔸 of positive
degree admits a finite surjective parallel projection onto a hyperplane. Note that this forces

tr deg𝕜[] =  − ଵ . (8-9)

Exercise 8.15. Prove this by direct arguments not using Proposition 7.12.
1In honor of Emmy Noether, who proved it in 1926.
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Everywhere in §8 we assume on default that the ground field 𝕜 is algebraically closed.
9.1 Basic properties of the dimension. Given an algebraic manifold  and a point ௫ ∈ , the
maximal  ∈ ℕ such that there exists an increasing chain of closed irreducible submanifolds

{௫} = బ  భ  ⋯  −భ   ⊂  (9-1)

is called the dimension of  at ௫ and denoted by dimೣ . For an irreducible , the maximality of
a chain (9-1) forces  = . Thus, if the point ௫ belongs to several irreducible components of ,
then dimೣ  equals the maximal dimension among the dimensions of those components.
Exercise 9.1. Check that dimೣ  = dimೣ for every affine chart  ∋ ௫.

Lemma 9.1
Given a finite morphism of irreducible algebraic varieties ఝ∶  → , then dimೣ  ⩽ dimക(ೣ)  for
all ௫ ∈ . If ఝ is not surjective, then the inequality is strict.

Proof. Replacing  by an affine neighborhood ofఝ(௫) and  by the preimage of this neighborhood
allows us to assume, by Exercise 9.1, that both ,  are affine. It follows from Proposition 7.12
on p. 94 that every chain (9-1) in  is mapped to the strictly increasing chain of closed irreducible
subvarieties ఝ() in . This leads to the required inequality. If ఝ() ≠ , then the last subvariety
of the chain is proper in , and therefore the chain can be enlarged at least by . �

Proposition 9.1
dimೣ 𝔸 =  for all ௫ ∈ 𝔸.

Proof. Since for every ௫ ∈ 𝔸 there is a chain (9-1) of strictly increasing affine subspaces  = 𝔸
passing through ௫, the inequality dimೣ 𝔸 ⩾  holds. The opposite inequality is established by
induction in . It is obvious for 𝔸బ. Let dimೣ 𝔸 = . Then the last element in every maximal
chain (9-1) for  = 𝔸 is  = 𝔸. The next to last element −భ ⊊  is a proper subvariety
in 𝔸. By Corollary 8.4 on p. 105, it admits a finite map to some proper affine subspace 𝔸ೖ ⊊ 𝔸.
By Lemma 9.1 and the inductive assumption applied for , dim−భ ⩽ dim𝔸ೖ ⩽  < . Hence,
 − ଵ ⩽  − ଵ as required. �

Proposition 9.2
Let  be an irreducible algebraic manifold. Then dimೣ  does not depend on ௫ ∈ . If  is affine,
then dim = tr deg𝕜[].

Proof. Replacing  by an affine neighborhood of ௫ ∈  allows us to assume that  is affine. By
the Corollary 8.4 on p. 105, there exists a finite regular surjection గ∶  ↠ 𝔸. Its pullback

గ∗ ∶ 𝕜[௫భ,௫మ, … ,௫] ↪ 𝕜[]

realizes 𝕜[] as an algebraic extension of 𝕜[௫భ,௫మ, … ,௫]. Therefore, tr deg𝕜[] = . By the
Proposition 9.1 and Lemma 9.1, dimೣ  ⩽ dim𝔸 =  for all ௫ ∈ . It remains to prove the
opposite inequality. Consider a maximal chain of increasing irreducible subvarieties in 𝔸

{గ(௫)} = బ  భ  ⋯  −భ   = 𝔸 .

107
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By Proposition 7.13, every irreducible component of గ−భ() is surjectively mapped onto  for all .
Hence, there exists a strictly increasing chain {௫} = బ  భ  ⋯  −భ   =  in which
every  is an irreducible component of గ−భ() that contains −భ and is surjectively mapped onto
. This forces dimೣ  ⩾ . �

Corollar൰ 9.1
For every irreducible affine variety  and finite regular surjection  ↠ 𝔸, the equality  = dim
holds. �

Corollar൰ 9.2
The inequality dim ⩽ dim for a regular finite mapఝ∶  →  of irreducible manifolds1 becomes
the equality if and only if ఝ is surjective.

Proof. For nonsurjectife ఝ the inequality is strong by Lemma 9.1. For surjective ఝ, the algebra
𝕜[] is an algebraic extension of 𝕜[], and therefore tr deg𝕜[] = tr deg𝕜[]. �

Corollar൰ 9.3
dim( × ) = dim + dim for irreducible varieties , .

Proof. We can assume that ,  both are affine, and dim = , dim = . Then there exist
finite surjections గ∶  ↠ 𝔸, గೊ∶  ↠ 𝔸. Their direct product గ × గೊ∶  ×  ↠ 𝔸+ is
obviously regular and surjective. It is finite, because if some finite collections of elements  and
ೕ span, respectively, 𝕜[] as a 𝕜[௫భ,௫మ, … ,௫]-module and 𝕜[] as a 𝕜[௬భ,௬మ, … ,௬]-module,
then the products  ⊗ ೕ span 𝕜[] ⊗ 𝕜[] as a module over 𝕜[௫భ, … ,௫,௬భ, … ,௬]. �
Exercise 9.2. Verify the latter statement.

9.2 Dimensions of subvarieties. If an algebraic manifold  is reducible and a regular nonzero
function ∶  → 𝕜 vanishes identically along an irreducible component ′ ⊂  such that dim′ =
= dim, then for every point ௫ ∈ ′, the hypersurface () ⊂  has dimೣ () = dimೣ , though
() ≠  globally. For an irreducible , such phenomenon never happens.

Proposition 9.3
Let  be an irreducible affine algebraic variety and  ∈ 𝕜[]. Then dim () = dim() − ଵ for
all  ∈ ().

Proof. If () = ∅, there is nothing to prove. Assume that () ≠ ∅ and therefore,  ≠ const.
Then, for  = 𝔸, the statement follows from the Example 8.7 on p. 106 and the Corollary 9.1.
The general case is reduced to  = 𝔸 by the same geometric construction as in the proof of
Proposition 7.13 on p. 95. Namely, fix a finite surjection గ∶  ↠ 𝔸 and consider the map

ఝ = గ ×  ∶  → 𝔸 × 𝔸భ , ௫ ↦ ( �గ(௫),(௫)) � .

As we have seen in the proof of Proposition 7.13, the map ఝ provides  with the finite surjection
onto the hypersurface (ఓ) ⊂ 𝔸 × 𝔸భ, the zero set of the minimal polynomial

ఓ(௨, ௧) = ௧ + ఈభ(௨)௧−భ + ⋯ + ఈ(௨) ∈ 𝕜[௨భ,௨మ, … ,௨][௧]
1See Lemma 9.1 on p. 107.
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for  over 𝕜(𝔸). The hypersurface () ⊂  is surjectively mapped by ఝ onto the intersection
(ఓ) ∩ (௧). Within the affine space 𝔸 = (௧) the intersection (ఓ) ∩ (௧) is given by the
equation  = , and therefore dim(ఓ) ∩ (௧) = dim() =  − ଵ at every point of this
intersection. By the Corollary 9.2, dim() = (ఓ) ∩ (௧) = dim − ଵ. �

Corollar൰ 9.4
Let  be an affine algebraic variety and భ,మ, … , ∈ 𝕜[]. Then

dim (భ,మ, … ,) ⩾ dim() − (9-2)

for all  ∈ (భ,మ, … ,). If the class of  in the quotient 𝕜[] ∕ (భ,మ, … ,−భ) does not
divide zero for every1  = ଵ, ଶ, … , , then the inequality (9-2) becomes an equality.

Proof. Induction in . Let  = (భ,మ, … ,−భ),  ∈ , and  be an irreducible component
of  passing through . The function  ether vanishes identically on  or is restricted to nonzero
element of 𝕜[]. The first means that  divides zero in 𝕜[] = 𝕜[]∕(భ,మ, … ,−భ), and forces
dim( ∩ (భ,మ, … ,)) = dim . In the second case, dim( ∩ (భ,మ, … ,)) = dim  − ଵ
by Proposition 9.3. �

Caution 9.1. Note that Proposition 9.3 and Corollary 9.4 do not assert that (భ,మ, … ,) ≠ ∅.
Since the empty set contains no points , for (భ,మ, … ,) = ∅, the Corollary 9.4 remains
formally true but becomes empty. The weak Nullstellensatz implies that (భ,మ, … ,) = ∅ if
and only if the class of  in 𝕜[]∕(భ,మ, … ,−భ) is invertible for some , and this may routinely
happen. For example, consider  = 𝔸య = Specm 𝕜[௫,௬, ௭], భ = ௫, మ = ௫ + ଵ. Obviously,
(௫,௫ + ଵ) = ∅. The same warning applies to the next corollary as well.
Corollar൰ 9.5
For affine algebraic varieties భ,మ ⊂ 𝔸 and every point ௫ ∈ భ ∩ మ,

dimೣ(భ ∩ మ) ⩾ dimೣ భ + dimೣ మ −  .

Proof. Let ఝ∶  ↪ 𝔸,  = ଵ,ଶ, be the closed immersions corresponding to the quotient
maps ఝ∗

 ∶ 𝕜[௫భ,௫మ, … ,௫] ↠ 𝕜[]. Then భ ∩ మ is isomorphic to the preimage of the diagonal
௱𝔸 ⊂ 𝔸 × 𝔸 under the map ఝభ × ఝమ∶ భ × మ ↪ 𝔸 × 𝔸. Within భ × మ, this preimage is
determined by the  equations ఝ∗

భ × ఝ∗
మ(௫) = ఝ∗

భ × ఝ∗
మ(௬), the pullbacks of equations ௫ = ௬ for

௱𝔸 in 𝔸 × 𝔸. It remains to apply Corollary 9.4. �

Proposition 9.4
For any irreducible projective varieties భ,మ ⊂ ℙ, the inequality dimభ + dimమ ⩾  forces
భ ∩ మ ≠ ∅.

Proof. Let ℙ = ℙ() and 𝔸+భ = 𝔸(). Given a nonempty irreducible projective variety  ⊂ ℙ,
write ′ ⊂ 𝔸+భ for the affine cone over  provided by the same homogeneous equations on the
coordinates. Then the origin ை ∈ 𝔸+భ belongs to ′ and dimೀ ′ ⩾ dim+ଵ, because every chain

1For  = ଵ this means that భ is not a zero divisor in 𝕜[]. A sequence of functions possessing this property
is called a a regular sequence, and the corresponding subvariety (భ,మ, … ,) ⊂  ia called a complete
intersection.
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{௭} ⊊ భ ⊊ ⋯ ⊊  =  produces the chain of cones {ை} ⊊ (ை, ௭) ⊊ ′
భ ⊊ ⋯ ⊊ ′

 = ′ starting
with the point ை and the line (ை, ௭). Therefore, by Corollary 9.5

dimೀ(′
భ ∩ ″

మ ) ⩾ dimೀ(భ) + ଵ + dimೀ(మ) + ଵ −  − ଵ ⩾ ଵ .

Thus, ′
భ ∩ ″

మ is not exhausted by ை. �
9.2.1 Dimensions of fibers of regular maps. In a contrast to differential geometry and topol-

ogy, the dimensions of nonempty fibers of regular maps are controlled in algebraic geometry almost
as strictly as in linear algebra.
Theorem 9.1
Let ఝ∶  →  be a dominant regular map of irreducible algebraic varieties. Then for all ௫ ∈ ,

dimೣఝ−భ(ఝ(௫)) ⩾ dim − dim . (9-3)

Moreover, there exists a dense Zariski open set  ⊂  such that for all ௬ ∈  and all ௫ ∈ ఝ−భ(௬),

dimೣఝ−భ(௬) = dimೣ  − dim  . (9-4)

Proof. Replacing  by an affine chart  ∋ ఝ(௫) and  by an affine neighborhood of ௫ in ఝ−భ()
allows us to assume that ,  are affine. Composing ఝ with a finite surjection  ↠ 𝔸, we may
assume that  = 𝔸 = Specm 𝕜[௬భ,௬మ, … ,௬] and ఝ(௫) = . Then ఝ−భ() ⊂  is given by the
equations ఝ∗(௬) = , the pullbacks of the equations ௬ = , which describe the origin within 𝔸.
Thus, Corollary 9.4 implies inequality (9-3).

To prove the second statement, let us factorize ఝ into a closed immersion  ↪ ×𝔸 followed
by the projection గ∶  × 𝔸 ↠ , as in formula (7-7) on p. 94, and apply Corollary 8.3 on p. 105
to the fibers of గ. Consider the projective closure  ⊂ ×ℙ, fix a projective hyperplane ு ⊂ ℙ
and a point  ∈ ℙ ∖ ு such that the section  × {} ⊂  × ℙ is not contained in . Then the
fiberwise projection from  to ு satisfies the conditions of Proposition 8.1 in the fibers over all

௬ ∈  ∖ గ(�( � × {}) � ∩ ) � ,

where గ∶ ×ℙ ↠  is the projection along ℙ. Since the latter is a closed map, the inadmissible
points ௬ form a proper Zariski closed subset in . Therefore, there exists a nonempty principal
open set  ⊂  such that Proposition 8.1 can be applied fiberwise over all points ௬ ∈ . Since 
is an affine algebraic variety as well, we can replace  by  and  by  ∩ గ−భ(). After that,
Corollary 8.3 gives a finite parallel fiberwise projection of  in the direction  to affine hyperplane
 ×𝔸−భ = ( ×ு) ∩ ( ×𝔸). If it is not surjective, we repeat the procedure until we get a finite
surjection ట∶  ↠  × 𝔸 whose composition with the projection onto  equals ఝ. This forces
dim = + dim. Since the fiber ఝ−భ(௬) is surjectively and finitely mapped onto {௬} ×𝔸 for all
௬ ∈ , we conclude from Lemma 9.1 that dimೣఝ−భ(௬) =  = dim− dim for all ௫ ∈ ఝ−భ(௬). �

Corollar൰ 9.6 (Semicontinuit൰ Theorem)
For every regular map of algebraic manifolds ఝ∶  → , the sets

ೖ ≝ {௫ ∈  | dimೣఝ−భ(ఝ(௫)) ⩾ }

are closed in  for all  ∈ ℤ.
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Proof. If dim = , then this is trivially true for all  and . For dim =  >  we can assume
by induction that the statement holds for all , , and all  with dim < . Replacing  and 
by some irreducible components of maximal dimension passing through ఝ(௫) and ௫ respectively
allows us to assume that both  and  are irreducible. Since ೖ =  for  ⩽ dim() − dim() by
Theorem 9.1, the statement holds for all such . For  > dim() − dim(), we can replace  and 
by ′ =  ∖  and ′ = ఝ−భ(′), where  ⊂  is that from Theorem 9.1, and apply the inductive
assumption, because ೖ ⊂ ′ and dim′ < dim. �

Corollar൰ 9.7
Let ఝ∶  →  be a closed regular morphism of algebraic manifolds. Then the sets

ೖ ≝ {௬ ∈  | dimఝ−భ(௬) ⩾ }

are closed in  for all  ∈ ℤ. �
Theorem 9.2 (dimension criterion of irreducibilit൰)
Assume that a closed regular surjection of algebraic manifolds ఝ∶  ↠  has irreducible fibers of
the same constant dimension. Then  is irreducible if  is.

Proof. Let  = భ ∪ మ be reducible. Since every fiber of ఝ is irreducible, it is entirely contained
in భ or in మ. Put  ≝ {௬ ∈  | ఝ−భ(௬) ⊂ } for  = ଵ,ଶ. Then  = భ ∪ మ, and the subsets
భ,మ ⊊  are proper if భ,మ ⊊  are proper. Since  coincides with the locus of points in  over
which the fibers of the restricted map ఝ| ∶  →  achieve their maximal value, we conclude
from Corollary 9.7 that  is closed in  for both  = ଵ,ଶ. Thus, reducibility of  forces  to be
reducible. �

9.3 Dimensions of projective varieties. It follows from Proposition 9.4 on p. 109 that every
irreducible projective manifold  ⊂ ℙ = ℙ() of dimension dim = ௗ intersects all projective
subspaces ு ⊂ ℙ of dimension dimு ⩾  − ௗ. We are going to show that a generic projective
subspace ு of dimension dimு <  − ௗ does not intersect , and therefore, the dimension dim
is characterized as the maximal ௗ such that  intersects all projective subspaces of codimension ௗ.
We know from n∘ 4.6.4 on p. 58 that all projective subspaces of codimension ௗ + ଵ in ℙ = ℙ()
form the Grassmannian Gr(−ௗ,+ଵ) = Gr(−ௗ,), which is an irreducible projective manifold.
Consider the incidence variety

௰ ≝ {(௫,ு) ∈  × Gr( − ௗ,) | ௫ ∈ ு} (9-5)

and write గభ∶ ௰ ↠  and గమ∶ ௰ → Gr( − ௗ,) for the canonical projections.
Exercise 9.3. Convince yourself that ௰ is a projective algebraic variety.

The fiber of the first projection గభ∶ ௰ ↠  over an arbitrary point ௫ ∈  consists of all projective
subspaces passing trough ௫. It is naturally identified with the Grassmannian Gr( − ௗ − ଵ,) =
Gr(−ௗ− ଵ,∕𝕜 ⋅ ௫) of all (−ௗ− ଵ)-dimensional vector subspaces in the quotient space ∕𝕜௫.
Thus, గభ is a closed surjective morphism with irreducible fibers of the same constant dimension
( − ௗ − ଵ)(ௗ + ଵ). By Theorem 9.2, the incidence variety ௰ is irreducible, and

dim௰ = ௗ + ( − ௗ − ଵ)(ௗ + ଵ) = ( − ௗ)(ௗ + ଵ) − ଵ .

This forces the image of the second projection గమ(௰) ⊂ Gr(−ௗ,), which consists of all (−ௗ−ଵ)-
dimensional projective subspaces intersecting , to be a closed irreducible subvariety of dimension
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at most dim௰ in the grassmannian Gr( − ௗ,) of dimension ( − ௗ)(ௗ + ଵ) > dim௰. Therefore,
the codimension (ௗ+ଵ) projective subspaces ு not intersecting  form a dense Zariski open subset
in the Grassmannian Gr( − ௗ,).

In fact, dimensional arguments allow us to say much more about the interaction of  with the
projective subspaces in ℙ. If we repeat the previous construction for the Grassmannian Gr( −
ௗ + ଵ,) of codimension-ௗ subspaces ு′ ⊂ ℙ() and the incidence variety

௰′ ≝ {(௫,ு′) ∈  × Gr( − ௗ + ଵ,) | ௫ ∈ ு} ,

which is an irreducible projective manifold of dimension

dim + dim Gr( − ௗ,) = ௗ + ௗ( − ௗ) = ௗ( − ௗ + ଵ)

for the same reasons as above, we get a surjective projection గమ∶ ௰′ ↠ Gr( − ௗ + ଵ,), because
∩ு′ ≠ ∅ for all ு′ ⊂ ℙ(). Theorem 9.1 forces the fibers of గమ to achieve their minimal possible
dimension dim௰ − dim Gr( − ௗ + ଵ, + ଵ) = ௗ( − ௗ + ଵ) − ( − ௗ + ଵ)ௗ =  over all points
of some open dense subset in the Grassmannian. This means that a generic projective subspace of
codimension ௗ intersects  in a finite number of points. Let us fix such a subspace ு′ and draw an
(−ௗ−ଵ)-dimensional subspace ு ⊂ ு′ through some intersection point  ∈ ∩ு′. Then ு∩
is a nonempty finite set. Therefore, the second projection of the incidence variety (9-5)

గమ∶ ௰ → Gr( − ௗ,)

has a zero-dimensional fiber. This forces the minimal dimension of nonempty fibers to be zero. It
follows from Theorem 9.1 that dimగమ(௰) = dim௰ = dim Gr( − ௗ,) − ଵ. In other words, the
codimension (ௗ+ଵ) projective subspaces ு ⊂ ℙ() intersecting an irreducible variety  ⊂ ℙ() of
dimension ௗ form an irreducible hypersurface in the Grassmannian Gr(−ௗ,) of all codimension-
(ௗ + ଵ) projective subspaces in ℙ = ℙ().
Exercise 9.4. Deduce from this that for every irreducible projective variety  ⊂ ℙ of dimen-
sion ௗ, there exists a unique, up to a scalar factor, irreducible homogeneous polynomial in the
Plücker coordinates of a codimension-ௗ subspace ு ⊂ ℙ that vanishes at a given ு if and
only if ு ∩  ≠ ∅.

The above analysis illustrates a method commonly used in geometry for calculating the dimensions
of projective manifolds by means of auxiliary incidence varieties. Below are two more examples.

Example 9.1 (resultant)
Given collection of positive integers ௗబ,ௗభ, … ,ௗ ∈ ℕ, write ℙಿ = ℙ (ௌ∗) for the space of
degree-ௗ hypersurfaces in ℙ = ℙ(). We are going to show that the resultant variety1

ℛ = {(ௌబ, ௌభ, … , ௌ) ∈ ℙಿబ × ℙಿభ × ⋯ × ℙಿ | ∩ ௌ ≠ ∅}

of a system of ( + ଵ) homogeneous polynomial equations of given degrees in  + ଵ unknowns
is an irreducible hypersurface, i.e., there exists a unique, up to proportionality, irreducible poly-
nomial ோ in the coefficients of the equations, homogeneous in the coefficients of each equation,
such that ோ vanishes at a given collection of polynomials బ,భ, … , if and only if the equations

1See n∘ 6.8 on p. 79.
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(௫బ,௫భ, … , ௫) = ,  ⩽  ⩽ , have a nonzero solution. The polynomial ோ is called the resultant
of  + ଵ homogeneous polynomials of degrees ௗభ,ௗమ, … ,ௗ.

Consider the incidence variety ௰ ≝ {(ௌభ, ௌమ, … , ௌ, ) ∈ ℙಿబ × ⋯ × ℙಿ × ℙ |  ∈ ∩ௌ}.
Exercise 9.5. Convince yourself that ௰ is an algebraic projective variety.

Since the equation () =  is linear in , all degree-ௗ hypersurfaces in ℙ passing through a given
point  ∈ ℙ form a hyperplane in ℙಿ . Therefore, the projection గమ∶ ௰ ↠ ℙ is surjective, and
all its fibers, which are the products of projective hyperplanes in the spaces ℙಿ , are irreducible and
have the same constant dimension ∑(ே − ଵ) = ∑ே −  − ଵ. Thus, ௰ is an irreducible projective
variety of dimension ∑ே − ଵ.
Exercise 9.6. Write + ଵ hypersurfaces () ⊂ ℙ of prescribed degrees ௗ = deg such that
(బ,భ, … , ) is just one point.

The exercise shows that the projection గభ∶ ௰ → ℙಿబ × ℙಿభ × ⋯ × ℙಿ has a nonempty fiber of
dimension zero. This forces a generic nonempty fiber to be of dimension zero, and implies the
equality dimగభ(௰) = dim௰. Therefore, గభ(௰) is an irreducible submanifold of codimension ଵ in
ℙಿబ × ⋯ × ℙಿ .

Exercise 9.7. Show that every irreducible submanifold of codimension ଵ in a product of projec-
tive spaces is the zero set of an irreducible polynomial in the homogeneous coordinates on the
spaces, homogeneous in the coordinates of each space.

Example 9.2 (lines on surfaces)
Algebraic surfaces of degree ௗ in ℙయ = ℙ() form the projective space ℙಿ = ℙ(ௌ∗) of dimension
ே = భ

ల (ௗ+ଵ)(ௗ+ଶ)(ௗ+ଷ) −ଵ. The lines in ℙయ form the Grassmannian Gr(ଶ,ସ) = Gr(ଶ,), which
is isomorphic to the smooth ସ-dimensional projective Plücker quadric1

 = {ఠ ∈ ௸మ |ఠ ∧ ఠ = }

in ℙఱ = ℙ(௸మ) by means of the Plücker embedding, which maps a line (,) ⊂ ℙయ to the decom-
posable Grassmannian quadratic form  ∧  ∈ ℙఱ. Consider the incidence variety

௰ ≝ { �(ௌ, ℓ) ∈ ℙಿ × Gr(ଶ,ସ) | ℓ ⊂ ௌ } .

Exercise 9.8. Convince yourself that ௰ ⊂ ℙಿ × Gr(ଶ,ସ) is a projective algebraic variety.
The projection గమ∶ ௰ ↠ ொು is surjective and all its fibers are projective spaces of the same constant
dimension. Indeed, the line ℓ given by the equations ௫బ = ௫భ =  lies on a surface () if and only
if  = ௫మ ⋅  + ௫య ⋅  belongs to the image of the 𝕜-linear map

ట∶ ௌ−భ∗ ⊕ ௌ−భ∗ → ௌ∗ , (,) ↦ ௫మ + ௫య .

This image is isomorphic to the quotient of the space ௌ−భ∗ ⊕ ௌ−భ∗ by the subspace
ker ట = {(,) = (௫య, −௫మ) |  ∈ ௌ−మ∗} .

Since dim ௌ−భ∗ = భ
ల ௗ(ௗ + ଵ)(ௗ + ଶ) and dim ker ట = భ

ల (ௗ − ଵ)ௗ(ௗ + ଵ), the degree-ௗ surfaces
containing ℓ form a projective space of dimension

ଵ
 (� ଶ ௗ(ௗ + ଵ)(ௗ + ଶ) − (ௗ − ଵ)ௗ(ௗ + ଵ) )� − ଵ = ଵ

 ௗ(ௗ + ଵ)(ௗ + ହ) − ଵ .

1Compare with Problem 17.20 of Algebra I
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We conclude that ௰ is an irreducible projective variety of dimension

dim௰ = ଵ
 ௗ(ௗ + ଵ)(ௗ + ହ) + ଷ .

The image of projection గభ∶ ௰ → ℙಿ consists of all surfaces containing at least one line. It follows
from the above analysis that గభ(௰) is an irreducible closed submanifold of ℙಿ.
Exercise 9.9. For every integer ௗ ⩾ ଷ find a degree-ௗ surface ௌ ⊂ ℙయ containing just a finite
number of lines.

The exercise shows that for ௗ ⩾ ଷ, the projection గభ has a nonempty fiber of dimension zero.
Therefore, a generic nonempty fiber of గభ is finite, and dimగభ(௰) = dim௰ for ௗ ⩾ ଷ. Since the
difference ே − dim௰ = భ

ల ( �(ௗ + ଵ)(ௗ + ଶ)(ௗ + ଷ) − ௗ(ௗ + ଵ)(ௗ + ହ)) � − ସ = ௗ − ଷ, every cubic
surface in ℙయ contains a line, and the set of cubic surfaces with a finite number of lines lying on
them contains a dense Zariski open subset of ℙಿ. At the same time, there are no lines on a generic
surface of degree ௗ ⩾ ସ.
9.4 Application: 27 lines on a smooth cubic surface. Let ௌ ⊂ ℙయ be a smooth cubic surface
provided by equation ி(௫) = . We are going to show that there are exactly ଶ lines laying on ௌ
and the configuration of these lines does not depend on ௌ up to permutations of the lines.

9.4.1 The 10 lines associated with a given line. To construct the lines laying on ௌ, we
consider one such a line ℓ ⊂ ௌ, which exists by the previous Example 9.2, and intersect ௌ with the
planes passing through ℓ.
Lemma 9.2
A reducible plane section of ௌ splits into a union of either a line and a smooth conic or a triple of
distinct lines. In other words, it does not contain a double line component.

Proof. Let a plane section గ ∩ ௌ contain a double line ℓ. In coordinates where గ has the equation
௫మ =  and ℓ is given by ௫మ = ௫య = , the equation of ௌ acquires the form

ி(௫) = ௫మொ(௫) + ௫మయ(௫) = 

for some linear  and quadratic ொ. Let  be an intersection point of ℓ with the quadric ொ(௫) = .
The relations ௫మ() = ௫య() = ொ() =  force all partial derivatives డி∕డ௫ vanish at . Thus, ௌ
is singular at . �

Corollar൰ 9.8
For a point  ∈ ௌ, there may be at most three lines lying on ௌ and passing through , and all such
lines must be coplanar.

Proof. All lines passing through  ∈ ௌ and lying on ௌ lie inside ௌ ∩ ்ௌ, which is a plane cubic
that may split into a union of at most three lines. �

Lemma 9.3
For every line ℓ ⊂ ௌ, there are exactly five distinct planes గభ,గమ, … ,గఱ containing ℓ and intersect-
ing ௌ in a triple of lines. Let గ ∩ ௌ = ℓ ∪ ℓ ∪ ℓ′

 , then ℓ ∩ ℓೕ = ℓ ∩ ℓ′
ೕ = ℓ′

 ∩ ℓ′
ೕ = ∅ for all  ≠ ,

and every line on ௌ that does not intersect ℓ must intersect exactly one of the lines ℓ, ℓ′
 for every

 = ଵ, … , ହ.
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Proof. Fix a basis {బ, భ, మ, య} in  such that ℓ = (బభ) is given by equations ௫మ = ௫య = .
Then the equation of ௌ acquires the form

బబ(௫మ,௫య) ⋅ ௫మబ + ଶబభ(௫మ,௫య) ⋅ ௫బ௫భ + భభ(௫మ,௫య) ⋅ ௫మభ+
+ ଶொబ(௫మ,௫య) ⋅ ௫బ + ଶொభ(௫మ,௫య) ⋅ ௫భ + ோ(௫మ,௫య) =  , (9-6)

where ೕ,ொഌ,ோ ∈ [௫మ,௫య] are homogeneous of degrees ଵ,ଶ,ଷ respectively. Let us parameterize
the pencil of plains గഛ passing through ℓ by the points

ഛ ≝ గഛ ∩ (మ, య) = ణమమ + ణయయ ∈ (మయ)

and write (௧బ ∶ ௧భ ∶ ௧మ) for the homogeneous coordinates in the plane గഛ = (బభഛ) with respect
to the basis బ, భ, ഛ. The equation for the plane conic (గഛ ∩ ௌ)⧵ℓ is obtained by the substitution
௫ = (௧బ ∶ ௧భ ∶ ణమ௧య ∶ ణయ௧య) in the equation (9-6) and canceling the common factor ௧య. The
resulting conic has the Gram matrix

ீ =
⎛
⎜
⎜
⎝

బబ(ణ) బభ(ణ) ொబ(ణ)
బభ(ణ) భభ(ణ) ொభ(ణ)
ொబ(ణ) ொభ(ణ) ோ(ణ)

⎞
⎟
⎟
⎠

whose determinant (ణ) is the following homogeneous degree-ହ polynomial in ణ = (ణమ ∶ ణయ)

బబ(ణ)భభ(ణ)ோ(ణ) + ଶబభ(ణ)ொబ(ణ)ொభ(ణ) − భభ(ణ)ொమబ(ణ) − బబ(ణ)ொమభ (ణ) − బభ(ణ)మோ(ణ) .

It has five roots, and we have to show that all these roots are simple. Every root corresponds to a
splitting of the conic into a pair of lines ℓ′, ℓ″. There are two possibilities: either the intersection
point ℓ′ ∩ ℓ″ lies on ℓ or it lies outside ℓ.

In the first case, we can fix a basis in order to have ℓ′ = (బమ) and ℓ″ = ( �బ (భ + మ)) �. These
lines are given by the equations ௫య = ௫భ =  and ௫య = (௫భ − ௫మ) = , and the splitting appears
for ణ = (ଵ ∶ ). The multiplicity of this root equals the highest power of ణయ dividing (ణమ,ణయ).
Since ℓ, ℓ′, ℓ″ ⊂ ௌ, the equation (9-6) has the form ௫భ௫మ(௫భ − ௫మ) + ௫య ⋅ (௫) for some quadratic
(௫). Thus, elements of ீ that may be not divisible by ణయ are exhausted by భభ ≡ ௫మ (mod ణయ)
and ொభ ≡ −௫మమ ∕ଶ (mod ణయ). So, (ణమ,ణయ) ≡ −బబொమభ (mod ణమయ). This term is of order one in ௧య
if the monomials ௫భ௫మమ and ௫మబ௫మ appear in (9-6) with non zero coefficients. The first of these two
monomials is the only monomial that gives a nonzero contribution in డி∕డ௫భ computed at మ ∈ ௌ
and the second in డி/డ௫మ at బ ∈ ௌ. Hence, they have to appear in ி.

In the second case, we fix a basis in order to have ℓ′ = (బమ), ℓ″ = (భమ), the lines given by
the equations ௫య = ௫భ =  and ௫య = ௫బ = . The splitting happens again for ణ = (ଵ ∶ ). The
equation (9-6) turns to ௫బ௫భ௫మ +௫య ⋅(௫). A nonzero modulo ణయ contribution may come only from
బభ ≡ ௫మ ∕ଶ (mod ణయ). Thus, (ణమ,ణయ) ≡ −మబభோ (mod ణమయ) is of the first order in ௧య if ௫మమ௫య and
௫బ௫భ௫మ appear in (9-6). The first is the only monomial giving a non zero contribution to డி∕డ௫య
computed at మ ∈ ௌ. Thus, it does appear. The second does too, because otherwise ி would be
divisible by ௫య.

All the remaining statements of the lemma follow immediately from Corollary 9.8, Lemma 9.2
and the fact that every line in ℙయ intersects every plane. �

Lemma 9.4
Any four mutually nonintersecting lines on ௌ do not lie simultaneously on a quadric, and there exist
either one or two (but no more!) lines on ௌ intersecting each of the four lines.



116 §9Dimension

Proof. If the four given lines lie on some quadric ொ, then ொ is smooth and the lines belong to
the same ruling family1. Every line from the second ruling family lies on ௌ, because a line passing
through four distinct points of ௌ must lie on ௌ. Hence, ொ ⊂ ௌ and therefore, ௌ is reducible. It
remains to apply Exercise 2.14. �

9.4.2 The configuration of all 27 lines. Fix two nonintersecting lines ,  ⊂ ௌ and consider
the five pairs of lines ℓ, ℓ′

 provided by Lemma 9.3 applied to the line ℓ = . Write ℓ for the lines
that do meet , and ℓ′

 for the remaining lines, which do not. There are five more lines ℓ″
 coupled

with ℓ by the Lemma 9.3 applied to the line ℓ = . Every line ℓ″
 intersects  but neither  nor ℓೕ

for  ≠ . Thus, ℓ″
 intersects all ℓ′

ೕ with  ≠ . Every line  ⊂ ௌ, different from the ଵ lines just
constructed, intersects neither  nor . At the same time, for each , it must intersect either ℓ or ℓ′

 .
By Lemma 9.4, the lines intersecting ⩾ ସ of the ℓ’s are exhausted by  and . Let  intersect ⩽ ଶ
of the ℓ’s, say ℓ′

భ, ℓ′
మ, ℓ′

య and either ℓ′
ర or ℓఱ. In both cases, we already have two distinct lines ,

ℓ″
ఱ other than  intersecting all the four lines. This contradicts to Lemma 9.4. We conclude that 
intersects exactly three of the five lines ℓ.
Lemma 9.5
The remaining lines  ⊂ ௌ stay in bijection with ଵହ triples {, , } ⊂ {ଵ, ଶ, ଷ, ସ, ହ}.

Proof. For every triple of lines ℓ, there is at most one line  other than  intersecting the three
given lines and the remaining two lines ℓ′

ೕ , because these five lines are mutually nonintersecting.
On the other hand, it follows from Lemma 9.3 that for every , there are exactly ଵ lines on ௌ
intersecting the line ℓ. Four of them are , , ℓ′

 , ℓ″
 . Each of the other six lines must intersect

exactly two of the remaining four ℓೕ’s. So, we have a bijection between these six lines and the
= (రమ) pairs of ℓೕ’s. �

Corollar൰ 9.9
Every smooth cubic surface ௌ ⊂ ℙయ contains exactly ଶ lines and their incidence matrix2 is the
same for all ௌ up to reordering the lines. �

Exercise 9.10∗. Write ீ ⊂ ௌమళ for the group of all permutations of the ଶ lines that preserve all
pairwise incidences between them. Consider the field of ସ elements 𝔽ర def= 𝔽మ[ఠ]∕(ఠమ+ఠ+ଵ),
where 𝔽మ = ℤ∕ (ଶ). The extension 𝔽మ ⊂ 𝔽ర is equipped with the conjugation automorphism3

௭ ⟼ ௭ def= ௭మ, which lives 𝔽మ fixed and permutes two roots of the polynomial ఠమ + ఠ + ଵ.
Show that the unitary4 ସ × ସ matrices with elements in 𝔽ర, considered up to proportionality,
form a (normal) subgroup of index ଶ in ீ, and find the order of ீ.

1See n∘ 2.5.1 on p. 23.
2That is, the matrix of size ଶ × ଶ whose rows and columns stay in bijection with the lines, and the

element in a position (, ) equals ଵ if ℓ ∩ ℓೕ ≠ ∅ and  otherwise.
3It is quite similar to the complex conjugation in the extension ℝ ⊂ ℂ.
4That is, satisfying ெ ⋅ெ = ா.



Comments to some exercises

Exrc. 1.4. The right hand side consists of  + −భ + ⋯ +  + ଵ points. The cardinality of the
left hand side equals the number of non zero vectors in 𝔽+భ

 divided by the number of non zero
elements in 𝔽, that is, (+భ−ଵ)∕(−ଵ). We get the summation formula for geometric progression.

Exrc. 1.5. Every line passing through the origin of ℝ+భ intersects the unit semisphere ∑௫మ = ଵ,
௫బ ⩾ . The lines laying in the hyperplane ௫బ =  intersect the semisphere in two opposite points of
the boundary. Any other line intersects the semisphere in exactly one internal point. Thus, ℙ(ℝ+భ)
can be obtained from the solid ball of dimension  by gluing together every pair of opposite points
of its boundary sphere. In particular, the plane ℙమ = ℙ(ℝయ) is obtained from a square by gluing the
opposite edges taken with opposite orientations, see fig. 9⋄1.

𝑎𝑎

𝑏

𝑏

𝑐

𝑐 𝑑

𝑑

𝑎𝑎

𝑏

𝑏

𝑐

𝑐 𝑑

𝑑

≃

Fig. 9⋄1. Gluing ℙ(ℝయ) from a square.

The same result is obtained by gluing a Möbius tape with a disk along the boundary circles,
see fig. 9⋄2.

𝑎𝑎

𝑏

𝑏

𝑏ଵ

𝑏ଶ

𝑐

𝑐 𝑑

𝑑

𝑏ଵ 𝑏ଶ𝑎
𝑐

𝑑

𝑏ଵ

𝑏ଶ

𝑏𝑐 𝑑≃ ∪

Fig. 9⋄2. ℙ(ℝయ) as a Möbius tape glued to a disk along the boundary circle.

The solid ball of radius గ in ℝయ is mapped onto the group SOయ by sending a point  to the rotation
about line (ை) by angle1 |ை| radians in the clockwise direction being viewed along ⃖⃖⃖⃖⃗ை. This map
is injective on internal points of the ball and identifies the opposite points of its boundary sphere.

Exrc. 1.6. Let ℙ = ℙ(),  = ℙ(),  = ℙ(ௐ) for some vector subspaces ,ௐ ⊂ . Then

dim( ∩ ௐ) = dim() + dim(ௐ) − dim( + ௐ) ⩾ dim() + ଵ + dim() + ଵ −  − ଵ ⩾ ଵ .

Exrc. 1.7. (+
 ) − ଵ.

Exrc. 1.8. In projective space any line does intersect any hyperplane, see Exercise 1.6.
1We write || for the euclidean distance between the points , .
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Exrc. 1.9. If char 𝕜 =  >  and ௗ = , then (ఈబ௫బ +ఈభ௫భ) = (ఈబ௫బ +ఈభ௫భ ) lies in the linear
span of those monomials ௫ഋబ௫ഌభ whose exponents ఓ, ఔ both are divisible by .

Exrc. 1.10. Let vector ௩ = ௨+௪ represent a point  ∈ ℙ(). Then ℓ = (௨,௪) passes through  and
intersects  and  at ௨ and௪. Vice versa, if ௩ ∈ (,), where  ∈  and  ∈ ௐ, then ௩ = ఈ+ఉ
and the uniqueness of the decomposition ௩ = ௨ +௪ forces ఈ = ௨ and ఉ = ௪. Hence () = ℓ.

Exrc. 1.12. Let భ = ℙ(), మ = ℙ(ௐ),  = ℙ(𝕜 ⋅ ). Then  = ௐ ⊕ 𝕜 ⋅ , because of  ∉ మ.
Projection from  is a projectivization of linear projection of  onto ௐ along 𝕜 ⋅ . Since  ∉
భ, the restriction of this projection onto  has zero kernel. Thus, it produces linear projective
isomorphism.

Exrc. 1.13. Let [భ, మ, య, ర] = [భ, మ, య, ర]. Write ఝ,ఝ∶ ℙభ ⥲ ℙభ for the linear pro-
jective automorphisms sending ∞, , ଵ to the triples భ, మ, య and భ, మ, య respectively. Then
ఝ(ర) = ఝ(ర) and ఝ−భ

 ∘ ఝ sends భ, మ, య, ర to భ, మ, య, ర. Vice versa, let a linear pro-
jective automorphism ట∶ ℙభ ⥲ ℙభ send భ, మ, య, ర to భ, మ, య, ర. Write ట∶ ℙభ ⥲ ℙభ
for the linear projective automorphism sending భ, మ, య to ∞, , ଵ. Then ట ∘ట takes

భ, మ, య, ర ↦ ∞, , ଵ, [భ, మ, య, ర] .

Hence, [భ, మ, య, ర] = [భ, మ, య, ర].
Exrc. 1.14. The map (మ,భ,య) ↦ (∞,,ଵ) can be decomposed as the map (భ,మ,య) ↦ (∞,,ଵ)
followed by the map (∞,,ଵ) ↦ (, ∞,ଵ), which takes ణ ↦ ଵ∕ణ. Similarly, to permute (భ,మ,య)
via the cycles (ଵଷ), (ଶଷ), (ଵଶଷ), (ଵଷଶ) we compose the map (భ,మ,య) ↦ (∞,,ଵ) with the maps
sending (∞,,ଵ) to (ଵ,, ∞) , (∞,ଵ,) , (ଵ, ∞,) , (,ଵ, ∞) respectively, i.e., with the maps sending
ణ to ణ∕(ణ − ଵ) , ଵ − ణ , (ణ − ଵ)∕ణ , ଵ∕(ଵ − ణ).

Exrc. 2.4. This follows from the last representation from formula (2-1) on p. 17.
Exrc. 2.5. Let ℙ() = ℙ(Ann క) ∪ ℙ(Annఎ) for some non zero covectors క,ఎ ∈ ∗. Then the
quadratic form (௩) = క(௩)ఎ(௩) vanishes identically on . Therefore its polarization ̃(௨,௪) =
((௨ +௪) − (௨) − (௪))∕ଶ also vanishes. Hence, the Gram matrix of  equals zero, i.e.,  is the
zero polynomial. However, the polynomial ring has no zero divisors.

Exrc. 2.7. Use Lemma 2.1 on p. 19 and prove that non-empty smooth quadric over an infinite field
can not be covered by a finite number of hyperplanes.

Exrc. 2.9. Pick up some ଷ on each line and draw a quadric through these ଽ points.
Exrc. 2.10. By Theorem 2.1 on p. 19, ௌ is the linear join of the singular line Sing ௌ and a smooth
quadric ௌ ∩ ℓ within a line ℓ complementary to Sing ௌ. This smooth quadric is either a pair of
distinct points or empty.

Exrc. 2.12. Every line ℓ ⊂ ௌ passing through a given point  ∈ ௌ lies inside ௌ ∩ ்ೌௌ, which is the
split conic exhausted by two ruling lines crossing at .

Exrc. 2.13. See Proposition 2.10 on p. 24.
Exrc. 2.14. Use the method of loci: remove one of the given lines and look how does the locus filled
by the lines crossing ଷ remaining lines interact with the removed line.

Exrc. 3.1. This is a particular case of Exercise 1.12.
Exrc. 3.2. Draw the cross-axix ℓ by joining (భమ) ∩ (భ,మ) and (భమ) ∩ (భ, మ)). Then draw a
line through భ and ℓ ∩ (௫,మ) . This line crosses ℓమ in ఝ(௫).
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Exrc. 3.3. Let two tangent lines to  drown from ௫ be given by linear equations క(௫) = , ఎ(௫) = ,
and let the line ℓభ be the second of them. Then క,ఎ ∈ ℙ×

మ are the intersection points of the dual
conic × ⊂ ℙమ and the line Ann௫ ⊂ ℙ×

మ . To find them, we need to solve a quadratic equation whose
coefficients are polynomials in the coordinates of the point ௫ and the elements of the Gram matrix
of conic . One root of this equation leads to the given point ఎ ∈ ℙమ and therefore is known. Then
the second root is a rational function of the first root and the coefficients of quadratic equation by
the Vieta formula.

Exrc. 3.4. The arguments are dual to those from Exercise 3.3.
Exrc. 3.6. Let భ, మ ∈  ∖ {భ,మ,య,ర}. Parametrize the pencils ×

భ and ×
మ by some lines

ℓభ ∌ భ and ℓమ ∌ మ respectively, and write ′
 , ″

 for the images of points  under the projections
∶  ⥲ ℓ. Then [భ,మ,య,ర] = [′

భ,′
మ,′

య,′
ర] = [″

భ ,″
మ ,″

య ,″
ర ], where the second equality

holds, because the composition of projections (మ∶  ⥲ ℓమ) ∘ (భ∶ ℓభ ⥲ ) is a homography
ℓభ ⥲ ℓమ sending  ↦ ″

 for all  (comp. with n∘ 3.1.3 on p. 29). Since any linear projective
automorphism ఝ∶ ℙమ ⥲ ℙమ induces the homography of the pencils of lines × ⥲ ఝ()×, the
second statement of the problem holds as well.

Exrc. 3.8. This is the smooth conic passing through ,,,, .
Exrc. 3.10. For given , ∈ ℙభ, the equality [,,௫,௬] = −ଵ allows to express ௫ = ௫బ ∕௫భ and
௬ = ௬బ∕௬భ through one other rationally. Hence, by Lemma 3.1 on p. 27, a homography ℙభ → ℙభ
is provided by the map sending a point ௫ ∈ ℙభ to the point ௬ ∈ ℙభ such that [,,௫,௬] = −ଵ. It
is involutive1, because [,,௫,௬] = −ଵ = [,,௬,௫]. Since it keeps both ,  fixed, it coincides
with ఙ,.

Exrc. 3.13. For a point  and line ℓ in ℙమ = ℙ(), the conics  = () ⊂ ℙమ such that ℓ is the
polar of  with respect to  form a projective subspace of codimension ଶ in ℙఱ = ℙ(ௌమ∗). Indeed,
associated with  ∈  is the linear map

pl∶ ௌమ∗ → ∗ ,  ↦ ̂() , (9-7)
which sends a quadratic form  to the covector ̂()∶  → 𝕜, and dim ker plೡ = dim ௌమ∗ −
dim∗ = ଷ when dim = ଷ. Thus, the preimage of dimension ଵ subspace Ann(ℓ) ∈ ∗ under the
map (9-7) has dimension ସ, that is, codimension ଶ. Its projectivisation is of codimension ଶ as well.
In particular, for  ∈ ℓ, this gives what we have stated. Futher, two subspaces of codimension 2 in
ℙఱ = ℙ(ௌమ∗) formed, respectively, by conics touching the lines ℓభ, ℓమ at the points భ ∈ ℓభ ∖ ℓమ,
మ ∈ ℓమ ∖ ℓభ are intersecting at least along a line. If their intersection would a plane, then for any
pair of points ,ℙమ there would be a conic passing through ,  and touching ℓభ, ℓమ at భ, మ
respectively. For  ∈ ℓ ∖ {భ,మ},  ∉ ℓ ∪ ℓభ ∪ ℓమ, such the conic must split into the line ℓ and
another line different from ℓ, ℓభ, ℓమ. Hence, this conic can not intersect ℓభ, ℓమ with multiplicities
ଶ in భ, మ simultaneously.

Exrc. 3.14. The first follows from the fact that ℓ″
భ ∪ ℓ″

మ also touches ℓ at భ. The second is similar to
Exercise 3.13: use the facts that conics passing through a given point form a hyperplane, whereas
conics touching a given line at a given point form a subspace of codimension ଶ in the space of
conics.

Exrc. 3.15. Four hyperplanes in ℙఱ = ℙ(ௌమ∗) formed by the conics passing through , , , ௗ are
linearly independent, because for any ଷ of the points, there is a split conic passing through them

1Do you see that in the affine chart whose infinity is , the this homography is nothing but the central
symmetry with respect to ?
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but not through the remaining fourth point. Hence, these ସ hyperplanes are intersecting along a
line. The split conics formed by pairs of opposite sides in quadrangle ௗ lie in the pencil. This
forces the pencil to be simple.

Exrc. 4.3. The first statement is verified by the same arguments as in n∘ 2.5.1 on p. 23. To
prove the second, chose some dual bases ௨భ,௨మ, … ,௨ ∈  , ௨∗

భ,௨∗
మ, … ,௨∗

 ∈ ∗ and a basis
௪భ,௪మ, … ,௪ ∈ ௐ. Then decomposable tensors ௨∗

 ⊗௪ೕ form a basis in ∗ ⊗. The matrix
of operator

௨∗
 ⊗ ௪ೕ ∶ ௨ೖ ↦

{
௪ೕ for  = 
 otherwise

� .

has ଵ in the crossing of  th row with  th column and zeros elsewhere. Thus, these operators span
Hom(,ௐ).

Exrc. 4.4. For any linear mapping ∶  →  the multiplication

 ×  × ⋯ ×  →  ,

which takes (௩భ, ௩మ, … , ௩) to their product ఝ(௩భ) ⋅ ఝ(௩మ) ⋅ ⋯ ⋅ ఝ(௩) ∈ , is multilinear. Hence,
for each  ∈ ℕ there exists a unique linear mapping ⊗ →  taking tensor multiplication to
multiplication in . Add them all together and get required algebra homomorphism T → 
extending . Since any algebra homomorphism T →  that extends  has to take ௩భ ⊗௩మ ⊗ ⋯ ⊗
௩ ↦ ఝ(௩భ) ⋅ ఝ(௩మ) ⋅ ⋯ ⋅ ఝ(௩), it coincides with the extension just constructed. Uniqueness of
free algebra is proved exactly like Lemma 4.1 on p. 40.

Exrc. 4.5. Since the decomposable tensors span ∗⊗ and the equality

ೡఝ(௪భ,௪మ, … ,௪−భ) = ఝ(௩, ௪భ,௪మ, … ,௪−భ)

is bilinear in ௩, ఝ, it is enough to check it for the decomposable ఝ = కభ ⊗ కమ ⊗ ⋯ ⊗ క.
Exrc. 4.6. Fix a basis భ, … , , ௨భ, … , ௨, ௪భ, … , ௪ೝ, ௩భ, … , ௩ೞ in  such that  form a basis
in  ∩ௐ, ௨ೕ and ௪ೖ extend it to some bases in ,ௐ, and ௩ complete everything to a basis in .
Then expand ௧ through the standard monomial basis of T built from this basis of .

Exrc. 4.8. Fo all ௩,௪ ∈  we have

 = ఝ(… , (௩ + ௪), … , (௩ + ௪), …) = ఝ(… , ௩, … , ௪, …) + ఝ(… , ௪, … , ௩, …) .

Vice versa, if char 𝕜 ≠ ଶ, then ఝ(… , ௩, … , ௩, …) = −ఝ(… , ௩, … , ௩, …) forces

ఝ(… , ௩, … , ௩, …) =  .

Exrc. 4.9. See, e.g., the Proposition 11.2 on p. 260 in the sec. 11.2.2 of the book: A. L. Gorodentsev,
Algebra I. Textbook for Students of Mathematics., Springer, 2016.

Exrc. 4.10. Every multilinear map ఝ∶  ×  × ⋯ ×  → ௐ is uniquely decomposed as ఝ = ி ∘ ఛ,
where ி∶ ⊗ → ௐ is linear. Such ி is factorized through the projection ⊗ ↠ ௌ if and only
if

ி( ⋯ ⊗ ௩ ⊗ ௪ ⊗ ⋯ ) = ி( ⋯ ⊗ ௪ ⊗ ௩ ⊗ ⋯ ) .

The latter is equivalent to ఝ( … , ௩,௪, … ) = ఝ( … ,௪, ௩, … ). This proves the universality of
the multiplication in ௌ. Every linear map ∶  →  induces the symmetric multilinear map
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 ×  × ⋯ ×  → , (௩భ, ௩మ, … , ௩) ↦ ∏ఝ(௩) for any  ∈ ℕ. The latter gives the linear map
ௌ → . All together these maps extend  to the homomorphism of 𝕜-algebras ௌ → . Vice
versa, every homomorphism of 𝕜-algebras ௌ → , which extends , takes ∏ ௩ → ∏ఝ(௩) and
coincides with the previous extension. The uniqueness of extension is verified as in Lemma 4.1 on
p. 40.

Exrc. 4.11. The first follows from  = (௩ + ௪) ⊗ (௩ + ௪) = ௩ ⊗ ௪ + ௪ ⊗ ௩, the second from
௩ ⊗ ௩ + ௩ ⊗ ௩ = .

Exrc. 4.13. If dim = ௗ, then  (௸) = ௸+⨁ೖ ௸మೖ. For even ௗ, the first summand is contained
in the second, for odd ௗ the sum is direct.

Exrc. 4.15. Use that det  = det , and transpose everything.
Exrc. 4.16. The summands form one ௌ-orbit. The stabilizer of an element in this orbit consists of
భ! మ! ⋯ ! independent permutations of coinciding factors. Hence, the length of orbit equals

!
భ!మ!⋯! .

Exrc. 4.17. For ௩ = ∑ఈ, the complete contraction of ௩⊗ with ̃ = భ!⋅మ!⋯!
! ௫[భ,మ,…,]

is the sum of !∕(భ! ⋅మ! ⋯ ! ) mutually equal products
భ! ⋅మ! ⋯ !

! ⋅ ௫భ(௩)భ ⋅ ௫మ(௩)మ ⋅ ⋯ ⋅ ௫(௩) = భ! ⋅మ! ⋯ !
! ⋅ ఈభ

భ ఈమ
మ …ఈ

 .

Thus, it coincides with the result of substitution (௫భ,௫మ, … ,௫) = (ఈభ,ఈమ, … ,ఈ) in the monomial
!

భ!మ!⋯!௫
భ
భ ௫మ

మ …௫
 .

Exrc. 4.18. Use the same arguments as in the proof of multinomial expansion formula

(௩భ + ௩మ + ⋯ + ௩ೖ) = ∑
భమ …ೖ

!
భ!మ! ⋯ ೖ! ⋅ ௩భ

భ ௩మ
మ … ௩ೖ

ೖ .

Exrc. 4.20. Since the Leibniz rule is linear in ௩, , , it is enough to check it for ௩ = ,  =
௫భ
భ …௫

 ,  = ௫ೖభభ …௫ೖ . In this case it follows directly from the definition of polar map. The
formula for ̃(௩భ, ௩మ, … , ௩) follows from the equality ̃(௩భ,௫, … ,௫) = భ

 ⋅ డೡభ(௫) by induction
in  = deg.

Exrc. 4.23. Similar to Exercise 4.20.
Exrc. 4.24. Let భ, మ, … ,  be a basis in . If ఠ ∉ ௸, then the expansion of ఠ as a linear
combination of basis monomials  contains a monomial whose index ூ differs from the whole
ଵ, ଶ, … , . Let  ∉ ூ. Then ೖ ∧ ఠ ≠ , because the basis monomial {ೖ}⊔ appears in ೖ ∧ ఠ
with a nonzero coefficient. Conversely, if ఠ ∈ ௸, then ఠ = ఒ ⋅ భ ∧ మ ∧ … ∧  and  ∧ఠ = 
for all .

Exrc. 4.26. See Example 4.9 on p. 58.
Exrc. 4.27. Let  ≠ ௐ be two subspaces of dimension . Chose a basis

భ, మ, … , ೝ, ௨భ,௨మ, … ,௨−ೝ, ௪భ,௪మ, … ,௪−ೝ, ௩భ,௩మ, … ,௩+ೝ−మ ∈ 

such that భ, మ, … , ೝ is a basis of ∩ௐ, vectors ௨భ,௨మ, … ,௨−ೝ and௪భ,௪మ, … ,௪−ೝ complete
it to bases in  and ௐ respectively, and the remaining vectors are complementary to  + ௐ. The
Plücker embedding (4-46) sends  and  to the different basis monomials

௩భ ∧ ⋯ ∧ ௩ೝ ∧ ௨భ ∧ ⋯ ∧ ௨−ೝ ≠ ௩భ ∧ ⋯ ∧ ௩ೝ ∧௪భ ∧ ⋯ ∧௪−ೝ
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in ௸.
Exrc. 5.2. (Comp. with general theory from n∘ 2.6 on p. 24.) The cone  = ∩் consist of all lines
passing through  and laying on . On the other hand, it consists of all lines joining its vertex with
a smooth quadric ீ = ∩ு cut out of  by any 3-dimensional hyperplaneு ⊂ ் complementary
to  inside ் ≃ ℙర. Thus, any line on  passing through  has a form (′) = గഀ ∩ గഁ, where
′ ∈ ீ and గഀ, గഁ are two planes spanned by  and two lines laying on the Segre quadric ீ and
passing through ′ (see fig. 5⋄1 on p. 62).

Exrc. 5.4. See n∘ 5.3.3 on p. 68.
Exrc. 5.5. If ఠ ∈ , then ௳ = ்ഘ and ఠ = 𝔲(ℓ) for some lagrangian line ℓ ⊂ ℙ(). Then all lines
in ℙయ intersecting ℓ have to be lagrangian as well. This forces ఆ to be degenerated.

Exrc. 5.6. The relations ௪ =  ⋅ ೢ, ௨ =  ⋅ ೠ, ௪ = ௨ ⋅ ೠೢ, where , ௨, ௪ are the row matrices
whose elements are the corresponding basis vectors, force ೢ = ೠೠೢ.

Exrc. 5.7. See Example 4.3 on p. 47.
Exrc. 5.8. Use the Plücker relation (4-47) on 58 and appropriate congruence reasons avoiding the
complete enumeration of ଶ matchings between ೕ and the given  numbers.

Exrc. 5.15. Since an alternating polynomial, considered as a polynomial in ௫ೕ with coefficients in
the polynomial ring on the remaining variables, has the root ௫ೕ = ௫, it is divisible by (௫ − ௫ೕ) for
all  ≠ .

Exrc. 6.1. Let polynomials (௫),(௫) ∈ ூ have degrees  ⩾  and leading coefficients , .
Then  +  equals either zero or the leading coefficient of polynomial (௫) + ௫− ⋅ (௫) ∈ ூ of
degree. Similarly, for every ఈ ∈  the product ఈ either is zero or equals the leading coefficient
of polynomial ఈ(௫) ∈ ூ of degree .

Exrc. 6.2. Repeat the arguments proving Theorem 6.1 on p. 71 but cancel non-zero monomials of
the lowest degree instead of the leading.

Exrc. 6.3. Let గ ∶  ↠  be the quotient epimorphism. The complete preimage గ−భ(ூ) of every
ideal ூ ⊂  is an ideal in , and therefore, it is generated by a finite set of element. Their images
under గ generate ூ.

Exrc. 6.4. Begin with బ = ௭ sin(ଶగ௭).
Exrc. 6.5. It is enough to construct such extension for just one monic irreducible polynomial  ∈
[௫] of positive degree. If deg = ଵ, put  = . Then use induction on deg. The quotient ring
 = [௫]∕() contains  as the subring formed by residue classes of the constants. Write ణ ∈ 
for the residue class of ௫. Then (ణ) =  and therefore,  is divisible by (௫ − ణ) in [௫], that is,
becomes a product of irreducible monic polynomials of smaller degree in [௫].

Exrc. 6.6. An element  ∈  ∖𝔪 is invertible in ∕𝔪 if and only if ଵ ∈ (,𝔪).
Exrc. 7.1. If  =  and  = , then ( + )+−భ =  and () =  for all .
Exrc. 7.2. Since ∕𝔭 has no zero divisors for all prime 𝔭 ⊂ , every factorization map  ↠ 𝔭
by prime 𝔭 annihilates all the nilpotents. Thus, 𝔫() ⊂ ⋂ 𝔭. Conversely, let  ∈  be non-
nilpotent. Then all nonnegative integer powers  form the multiplicative system . Write [−భ]
for the localization1 by this system. This is a nonzero ring2. The full preimage of any prime ideal3

1See Section 4.1.1 of Algebra II.
2which may be a field
3which is zero if [−భ] is a field
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𝔪 ⊂ [−భ] under the canonical homomorphism  → [−భ] is the prime ideal of  that does not
contain .

Exrc. 7.6. Homomorphisms 𝕜[] × 𝕜[] ↠ 𝕜 stay in bijection with the pairs of homomorphisms
𝕜[] ↠ 𝕜, 𝕜[] ↠ 𝕜.

Exrc. 7.7. Since (భమ)⊗(భమ) is linear in each of four elements, the multiplication (భ⊗భ)⋅(మ⊗
మ) ≝ (భమ)⊗(భమ) is correctly extended to the 𝕜-bilinear map (⊗)×(⊗) → ⊗, which
provides ⊗  with a commutative associative binary operation. The required universal property
of maps  ഀ−→  ⊗  ഁ←−  follows from the universal property of the tensor product of vector
spaces. Namely, for any two homomorphisms of 𝕜-algebras with unit ఝ∶  → , ట∶  → , the
bilinear map × → , (,) ↦ ఝ() ⋅ట(), is uniquely passed through the tensor product ⊗.

Exrc. 7.8. Take the union of equations ഌ(௫) = , ഋ(௬) = , each considered as the equation on
the whole set of coordinates (௫,௬) in 𝔸 × 𝔸.

Exrc. 7.9. The equalities (a), (b), (c), and the inclusions (ூ) ∪() ⊂ (ூ∩) ⊂ (ூ) ⊂ (ூ) ∪()
in (d) follow immediately from the definitions. Note that coincidence (ூ∩) = (ூ) is equivalent
to the equality of radicals √ூ ∩  = √ூ, which can be easily verified independently.

Exrc. 7.10. Let  ⊂ 𝔸,  ∈ 𝕜[௫భ,௫మ, … ,௫]. If () = , then  ∈ ூ() and therefore, the class
of  in 𝕜[] equals zero. If () = ∅, then the ideal spanned in 𝕜௫ by  and ூ() has empty zero
set and therefore, contains the unity. Hence, ଵ ≡  (mod ூ()) for some  ∈ 𝕜[௫భ,௫మ, … ,௫].
Thus, the classes of  and  are inverse one to the other in 𝕜[].

Exrc. 7.11. Otherwise  = ( ∖) ∪ ( − ). More scientifically, this holds because both ,  are
continuous and  is dense.

Exrc. 7.12.  = ( ∩ ) ∪  ∖ , where the first subset of  is proper by the assumption.
Exrc. 7.15. Let  = భ∪మ∪ … ∪. For every , chose a nonzero linear form క ∈ ∗ annihilating
. Then  = ∏

=భ క ∈ ௌ∗ is the nonzero polynomial on  evaluated to zero at every point of
𝔸(). This is impossible over an infinite ground field.

Exrc. 7.16. Use the open covering  = ⋃𝒟(௫) and Proposition 7.10.
Exrc. 7.17. Every intersection ூ ∩ ூ() is a proper vector subspace of ூ, because if ூ ⊂ ூ(ഌ), then
ഌ ⊂ ⋃

≠ೕ
(∩ೕ) and therefore, ഌ ⊂ ∩ೕ for some  ≠ , although such inclusions are forbidden.

If the 𝕜-linear span of ூ ∩ 𝕜[]∘ is proper too, ூ splits in a finite union of proper vector subspaces.
Exrc. 7.20. Let  = 𝕜[],  = 𝕜[]. The inclusion ఝ∗ ∶  ↪  provides  with the struc-
ture of finitely generated -algebra. This allows to rewrite  as  ≃ [௫భ,௫మ, … ,௫] ∕ . Then
ట∗ ∶ [௫భ,௫మ, … ,௫] ↠  is the quotient homomorphism, and గ∗ ∶  ↪ [௫భ,௫మ, … ,௫] is the
inclusion of constants into polynomial ring.

Exrc. 8.2. If ௫௫ೕ ≠ , then ௧ೕ,ഌ = ௫ഌ∕௫ೕ = (௫ഌ ∶ ௫)∕(௫ೕ ∶ ௫) = ௧,ഌ∕௧,ೕ (for ఔ =  we put ௧, = ଵ).
Therefore, ఝ∗

ೕ∶ ௧ೕ,ഌ ↦ ௧,ഌ∕௧,ೕ. The inverse to ఝ∗
ೕ homomorphism 𝕜 [𝒟 (௧,ೕ)] → 𝕜 [𝒟 (௧ೕ,)] acts

by the same rule ௧()
ೕ ↦ ଵ∕௧(ೕ)

 , ௧,ഌ ↦ ௧ೕ,ഌ∕௧ೕ,.
Exrc. 8.3. Every such ௐ has a unique basis ௪భ,௪మ, … ,௪ೖ projected to భ , మ , … , ೖ . Write
௫ೈ for the matrix formed by the coordinates of vectors ௪భ,௪మ, … ,௪ೖ written in rows. Then
௦ (௫ೈ) = ா.

Exrc. 8.5. Note that the elements of  ×  matrix ௦−భ
 (ఝ(௧)) ⋅ ఝ(௧) are the rational functions of

the elements of matrix ௧ with the denominators equal to det ௦ (ఝ(௧)). In particular, they all are
regular in 𝒟 (det ௦ (ఝ(௧))).
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Exrc. 8.6. This follows from the definition of regular function and Corollary 7.2 on p. 92.
Exrc. 8.9. The definition of త can be rewrite as (௫బ ∶ ௫భ ∶ ௫మ) ↦ (௫భ௫మ ∶ ௫బ௫మ ∶ ௫బ௫భ). It makes
clear that త is undefined only at the points (ଵ ∶  ∶ ), ( ∶ ଵ ∶ ), ( ∶  ∶ ଵ) and takes all values
except for these points.

Exrc. 8.10. Given a homogeneous polynomial (௫బ,௫భ, … , ௫), write () ⊂ ℙ for the set of its
zeros. In the notations of Example 8.1 on p. 98, the intersection () ∩  is described in terms of
the affine coordinates ௧ within th chart  by the polynomial equation

 (௧,బ, … , ௧,−భ,ଵ, ௧,+భ, … , ௧,) =  .

Exrc. 8.12. Use the Segre embedding ℙభ × ℙమ × ⋯ × ℙ ↪ ℙಿ described in n∘ 4.1.2 on p. 40
and analyzed in more details in Example 4.10 on p. 58.

Exrc. 8.13. If  ⊂  and  ⊃  are two integral extensions of commutative rings, then the extension
 ⊂  is integral as well by Proposition 6.1 on p. 73.

Exrc. 9.1. Let భ,మ ⊂  be two closed irreducible subsets, and  ⊂  an open set such that
both intersections భ ∩ , మ ∩  are nonempty. Then భ = మ ⟺ భ ∩  = మ ∩ , because
 =  ∩ .

Exrc. 9.3. Chose some basis in ு and write the coordinates of the basis vectors together with the
coordinates of a variable point  ∈ ℙ as the rows of ( − ௗ + ଵ) × ( + ଵ)-matrix. Then the
condition  ∈ ு is equivalent to vanishing of all the minors of maximal degree  − ௗ + ଵ in these
matrix. The latter are quadratic bilinear polynomials in the homogeneous coordinates of  and the
Plücker coordinates1.

Exrc. 9.5. The set ௰ ⊂ ℙಿబ × ⋯ × ℙಿ × ℙ is given by the equations

బ() = భ() = ⋯ = () = 

on  ∈ ℙಿ and  ∈ ℙ, linear homogeneous in each  and homogeneous of degrees ௗ in .
Exrc. 9.6. Take + ଵ hyperplanes intersecting at one point and exponentiate their linear equations
in the prescribed degrees.

Exrc. 9.7. Consider the product ℙభ × ℙమ × ⋯ × ℙ and write ௫() = (௫()
బ ∶ ௫()

భ ∶ … ∶ ௫()
 ) for

the set of homogeneous coordinates on the 
divs th factor ℙ . Modify the proof of Lemma 8.1 on p. 103 to show that any closed submanifold
 ⊂ ℙభ × ℙమ × ⋯ × ℙ can be described by appropriate system of global polynomial equations
ഌ (௫(భ), ௫(మ), … , ௫()) = , homogeneous in every group of variables ௫(). Then assume that  is ir-
reducible of codimension ଵ, show that there exists an irreducible polynomial  (௫(భ), ௫(మ), … , ௫())
vanishing on , and use the dimensional argument to check that  = () is the zero set of . Fi-
nally, use the strong Nullstellensatz to show that for irreducible polynomials భ, మ, the equality
(భ) = (మ) forces భ, మ to be proportional.

Exrc. 9.8. Identify Gr(ଶ,ସ) with the Plücker quadric  ⊂ ℙఱ = ℙ(௸మ) by sending a line (,) ⊂
ℙయ to the point  ∧  ∈ ℙఱ. The line (,) lies on the surface () ⊂ ℙయ if and only if the
polynomial  vanishes identically on the linear span of vectors , , which is the linear support of
the Grassmannian polynomial ∧ and coincides with the image of the map ∗ → , క ↦ క⌙(∧),

1Recall that they equal the top degree minors of the transition matrix from some basis in ு to the the
standard basis in , see Example 8.4 on p. 101.
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contracting a covector క ∈ ∗ with the first tensor factor of ( ⊗  −  ⊗ )∕ଶ ∈ Skewమ . Verify
that the identical vanishing of the function క ↦ (క⌙( ∧ )) can be expressed by a system of
bihomogeneous equations on the coefficients of  and the Plücker coordinates ௫ೕ of the bivector
 ∧  = ∑బ⩽<ೕ⩽య ௫ೕ ∧ ೕ.

Exrc. 9.9. Show that the affine surface ௫భ௫మ …௫ = ଵ contains no affine lines and its projective
closure intersects the hyperplane of infinity in  lines ௫ = .

Exrc. 9.10. Hint: use the fact that over 𝔽ర, the Fermat cubic form ∑௫య , whose zero set is a smooth
cubic surface, coincides with the standard Hermitian inner product ∑௫௫. The final answer is
|ீ| = ହଵ଼ସ = ଶళ ⋅ ଷర ⋅ ହ.
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