§8. Представления симметрических групп

8.1. Действие S_n на заполненных диаграммах Юнга. Будем называть диаграмму Юнга λ , в каждой клетке которой стоит какая-нибудь буква 1 алфавита $\{1,\ldots,m\}$ заполнением формы λ . Заполнение T называется c ислом клеток диаграммы, и каждая буква используется ровно один раз. Заполнение T называется c ислом клеток диаграммы, и каждая буква используется ровно один раз. Заполнение c называется c ислом стоящие в клетках диаграммы буквы нестрого возрастают слева направо в каждой строке и строго возрастают сверху вниз в каждом столбце. Число всех таблиц формы c в алфавите c ислом обозначается через c исло всех стандартных таблиц формы c через c ислов c ислов c ислов c обозначается через c ислов c ислов c ислов c обозначается через c ислов c ислов c ислов c обозначается через c ислов c исл

$$\sum_{\lambda} d_{\lambda} d_{\lambda}(m) = m^{n} \quad \text{if} \quad \sum_{\lambda} d_{\lambda}^{2} = n!, \qquad (8-1)$$

где суммирование в обоих случаях идёт по всем диаграммам Юнга веса $|\lambda| \stackrel{\mathrm{def}}{=} \sum \lambda_i = n$. С каждым стандартным заполнением T формы $\lambda = (\lambda_1, \dots, \lambda_k)$ и веса n связаны cmpouhan nodrpynna $R_T \subset S_n$, состоящая из всех перестановок, переводящих элементы каждой строки заполнения T в элементы из той же самой строки, и cmonbuo an nodrpynna $C_T \subset S_n$, состоящая из всех перестановок, переводящих элементы каждого столбца заполнения T в элементы из того же самого столбца. Таким образом, $R_T \simeq S_{\lambda_1} \times \ldots \times S_{\lambda_k}$ и $C_T \simeq S_{\lambda_1^t} \times \ldots \times S_{\lambda_m^t}$, где $\lambda^t = (\lambda_1^t, \dots, \lambda_m^t)$ здесь и далее означает транспонированную к λ диаграмму.

Упражнение 8.1. Убедитесь, что S_n транзитивно действует на стандартных заполнениях фиксированной формы λ и что $R_{gT}=gR_Tg^{-1}$ и $C_{gT}=gC_Tg^{-1}$ для всех $g\in S_n$.

Мы пишем $\lambda \trianglerighteq \mu$ и говорим, что диаграмма λ доминирует диаграмму μ , если²

$$\lambda_1 + \ldots + \lambda_k \geqslant \mu_1 + \ldots + \mu_k$$
 при всех $k \in \mathbb{N}$.

Мы пишем $\lambda > \mu$, если $\lambda = (\lambda_1, \dots, \lambda_k)$ лексикографически больше, чем $\mu = (\lambda_1, \dots, \lambda_m)$. Отметим, что диаграмма μ не может доминировать никакую диаграмму $\lambda > \mu$, и что в отличие от доминирования лексикографический порядок является линейным.

Лемма 8.1 (ключевая комбинаторная лемма)

Пусть стандартное заполнение T формы λ и стандартное заполнение U формы μ имеют одинаковый вес $|\lambda| = |\mu|$, и диаграмма μ не является строго доминирующей диаграмму λ . Тогда имеет место ровно одна из двух взаимоисключающих возможностей:

- либо найдутся два числа, стоящие в одной строке заполнения T и в одном столбце заполнения U
- \circ либо $\lambda = \mu$ и pT = qU для некоторых $p \in R_T$ и $q \in \mathcal{C}_U$.

Доказательство. Пусть все элементы каждой из строк заполнения T находятся в разных столбцах заполнения U. Из того, что все элементы первой строки T лежат в разных столбцах U, вытекает неравенство $\lambda_1 \leqslant \mu_1$ и существование перестановки $q_1 \in C_U$, переводящей все элементы из первой строки заполнения T в первую строку заполнения q_1U . Из того, что все элементы

 $^{^{1}}$ При этом могут использоваться не все буквы, а используемые буквы могут повторяться.

²См. обсуждение перед упр. 5.3 на стр. 56 и само это упражнение.

второй строки T тоже лежат в разных столбцах U, вытекает существование такой не затрагивающей элементов из первой строки заполнения T перестановки $q_2 \in C_{q_1U} = C_U$, что в заполнении q_2q_1U каждый элемент второй строки заполнения T стоит либо во второй строке, либо в первой , что влечёт неравенство $\lambda_1 + \lambda_2 \leqslant \mu_1 + \mu_2$. Продолжая в том же духе, мы получим последовательность перестановок $q_1, \ldots, q_k \in C_U$, где k — количество строк в диаграмме μ и каждая перестановка $q_i \in C_{q_{i-1}\ldots q_1U} = C_U$ оставляет на месте все элементы из первых i-1 строк заполнения T, а также все те элементы из i-той строки T, которые в заполнении $q_{i-1}\ldots q_1U$ лежат в столбцах меньшей, чем i высоты, а все остальные элементы из i-той строки T переводит в i-тую строку заполнения $q_iq_{i-1}\ldots q_1U$. В частности, при каждом i выполняется неравенство $\lambda_1 + \ldots + \lambda_i \leqslant \mu_1 + \ldots + \mu_i$, что по условию леммы возможно только при $\lambda = \mu$. Но тогда каждая перестановка q_i переводит элементы i-той строки заполнения T в точности в i-тую строку заполнения $q_i \ldots q_1U$. Поэтому $q_k \ldots q_1U = pT$ для некоторого $p \in R_T$.

Следствие 8.1

Перестановка $g \in S_n$ тогда и только тогда имеет вид g = pq для некоторых $p \in R_T$, $q \in C_T$, когда никакие два элемента из одной строки T не лежат в одном столбце gT, и в этом случае представление перестановки $g \in S_n$ в виде g = pq с $p \in R_T$ и $q \in C_T$ единственно.

Доказательство. Для любых $p \in R_T$ и $q \in C_T$ элементы из одной строки заполнения T лежат в разных столбцах заполнения qT, и p переставляет эти элементы между собою, оставляя их лежать в разных столбцах заполнения pqT. Наоборот, если никакие два элемента из одной строки заполнения T не лежат в одном столбце заполнения U = gT, то по лем. 8.1 найдутся такие $p \in R_T$ и $q' \in C_U$, что pT = q'U = q'gT. Поэтому p = q'g. Записывая перестановку $q' \in C_{gT} = gC_Tg^{-1}$ в виде gqg^{-1} , где $q \in C_T$, получаем $g = pq^{-1}$, как и требовалось. Единственность разложения g = pq вытекает из того, что $R_T \cap C_T = \{e\}$.

Упражнение 8.2. Покажите, что перестановка $g \in S_n$ имеет вид g = q'p' для некоторых $q' \in C_T$, $p' \in R_T$ если и только если никакие два элемента из одной строки gT не лежат в одном столбце T, и в этом случае представление g = q'p' тоже единственно.

8.2. Симметризаторы Юнга. Лежащие в групповой алгебре $\mathbb{C}[S_n]$ элементы

$$r_T = \sum_{\sigma \in R_T} \sigma, \quad c_T = \sum_{\sigma \in C_T} \operatorname{sgn}(\sigma)\sigma,$$
 (8-2)

$$s_T = r_T c_T = \sum_{p \in R_T} \sum_{q \in C_T} \operatorname{sgn}(q) p q \tag{8-3}$$

называются, соответственно, *строчным*, *столбцовым* и *полным* симметризаторами Юнга. Они обладают следующими очевидными свойствами:

$$\forall g \in S_n \quad r_{gT} = gr_Tg^{-1} \;, \quad c_{gT} = gc_Tg^{-1} \quad \text{if} \quad s_{gT} = gs_Tg^{-1} \eqno(8-4)$$

$$\forall p \in R_T \ pr_T = r_T p = r_T$$
 и $\forall q \in C_T \ \mathrm{sgn}(q) q c_T = \mathrm{sgn}(q) c_T q = c_T$ (8-5)

$$\forall p \in R_T \quad \text{if} \quad \forall q \in C_T \quad \operatorname{sgn}(q) p s_T q = s_T. \tag{8-6}$$

Замечательно, что полный симметризатор $s_T \in \mathbb{C}[S_n]$ однозначно с точностью до пропорциональности определяется свойством (8-6).

 $^{^{1}}$ Последнее происходит, когда этот элемент изначально находится в столбце высоты 1.

Лемма 8.2

Векторное подпространство $E_T = \{f \in \mathbb{C}[S_n] \mid \forall p \in R_T \ \forall q \in C_T \ \mathrm{sgn}(q) \ pf \ q = f \}$ одномерно и линейно порождается симметризатором s_T .

Доказательство. Пусть $f = \sum_{g \in S_n} x_g g \in E_T$. Покажем, что $f = x_e s_T$. Условие $\mathrm{sgn}(q) \, pf \, q = f$ означает, что $x_{pgq} = \mathrm{sgn}(q) x_g$ для всех $g \in S_n$, $p \in R_T$ и $q \in C_T$. Полагая g = e, заключаем, что $x_{pq} = \mathrm{sgn}(q) x_e$ и $f = x_e s_T + \sum_{g \notin R_T C_T} x_g g$. Остаётся убедиться, что в последней сумме все $x_g = 0$. Если $g \notin R_T C_T$, то по сл. 8.1 найдутся два элемента, лежащие в одной строке заполнения T и в одном столбце заполнения gT. Транспозиция $\tau \in S_n$ этих двух элементов лежит и в R_T , и в $C_{gT} = gC_T g^{-1}$. Из второго вытекает, что $g^{-1}\tau g \in C_T$. Полагая $p = \tau$, $q = g^{-1}\tau g$ в равенстве $x_{pgq} = \mathrm{sgn}(q) x_g$, получаем $x_g = -x_g$, откуда $x_g = 0$.

Лемма 8.3

Имеют место равенства $s_T\mathbb{C}[S_n]s_T=\mathbb{C}\,s_T$ и $s_T^2=n_\lambda s_T$, где число $n_\lambda=n!/\dim\left(\mathbb{C}[S_n]s_T\right)$ рационально, положительно и зависит только от формы $\lambda=\lambda(T)$ заполнения T.

Доказательство. Из равенств (8-5) — (8-6) вытекает, что при любом $f \in \mathbb{C}[S_n]$ элемент $s_T f s_T$ обладает свойством (8-6) и, тем самым, лежит в одномерном пространстве $E_T = \mathbb{C} \ s_T$ из лем. 8.2. В частности, $s_T^2 = n_T s_T$ для некоторого $n_T \in \mathbb{C}$. Чтобы найти n_T , вычислим двумя способами след оператора $\mathbb{C}[S_n] \to \mathbb{C}[S_n]$ правого умножения на элемент $s_T \colon f \mapsto f s_T$. С одной стороны, из формулы (8-3) вытекает 1 , что для любого $g \in S_n$ коэффициент при g у произведения $g s_T$ равен единице, откуда $\operatorname{tr}(s_T) = |S_n| = n!$. С другой стороны, левый идеал $\mathbb{C}[S_n]$ s_T является S_n -подмодулем левого регулярного представления S_n . Так как последнее вполне приводимо, существует такой S_n -подмодуль $W \subset \mathbb{C}[S_n]$, что $\mathbb{C}[S_n] = W \oplus \mathbb{C}[S_n] s_T$. Правое умножение на s_T переводит $W \subset \mathbb{C}[S_n]$ внутрь $\mathbb{C}[S_n]$ s_T , а на идеале $\mathbb{C}[S_n]$ s_T действует как умножение на n_T . Поэтому $\operatorname{tr}(s_T) = n_T \dim(\mathbb{C}[S_n] s_T)$. Следовательно, число $n_T = n! / \dim(\mathbb{C}[S_n] s_T)$ рационально и положительно. Наконец, из равенства $s_{gT} = g s_T g^{-1}$ вытекает, что $s_{gT}^2 = g s_T^2 g^{-1} = n_T g s_T g^{-1} = n_T s_{gT}$. Поэтому число $n_T = n_{\lambda(T)}$ зависит только от формы $\lambda = \lambda(T)$ заполнения T.

Лемма 8.4

Если форма стандартного заполнения T лексикографически больше, чем форма стандартного заполнения U, то $r_T\mathbb{C}[S_n]\,c_U=c_U\mathbb{C}[S_n]\,r_T=s_T\mathbb{C}[S_n]\,s_U=0.$

Доказательство. Достаточно убедиться, что $r_Tgc_U=c_Ugr_T=0$ для всех $g\in S_n$. Пусть для начала g=e. По лем. 8.1 какие-то два элемента из одной строки заполнения T лежат в одном столбце заполнения U. Транспозиция $\tau\in S_n$ этих двух элементов лежит как в R_T , так и в C_U . Поэтому $r_Tc_U=(r_T\tau)c_U=r_T(\tau c_U)=-r_Tc_U$ и $c_Ur_T=-(c_U\tau)r_T=-c_U(\tau r_T)=-c_Ur_T$, откуда $r_Tc_U=c_Ur_T=0$. Теперь и для любого $g\in S_n$ получаем $r_Tgc_U=r_Tgc_Ug^{-1}g=\left(r_Tc_{gU}\right)g=0$ и $c_Ugr_T=c_Ugr_Tg^{-1}g=\left(c_Ur_{gT}\right)g=0$.

Теорема 8.1

Представление S_n левыми умножениями в идеале $V_T=\mathbb{C}[S_n]\,s_T$ неприводимо. Два таких представления V_T и V_U изоморфны тогда и только тогда, когда заполнения T и U имеют одинаковую

¹Так как $R_T \cap C_T = \{e\}$, все слагаемые в сумме (8-3) являются различными элементами группы S_n , взятыми со знаком ± 1 , причём элемент e = ee берётся с плюсом.

форму $\lambda=\lambda(T)=\lambda(U)$. Если для каждой n-клеточной диаграммы Юнга λ произвольным образом зафиксировать некоторое стандартное заполнение T_λ , то неприводимые представления $V_\lambda=V_{T_\lambda}$ составят полный список попарно неизоморфных неприводимых представлений S_n .

Доказательство. Пусть $W \subset V_T$ является S_n -инвариантным подмодулем. Перестановочный с левым умножением на S_n проектор $\pi_W: \mathbb{C}[S_n] woheadrightarrow W$ представляет собою оператор правого умножения на элемент $w=\pi_W(1)\in W$, поскольку $\pi_W(x)=x\pi_W(1)=xw$ для всех $x\in\mathbb{C}[S_n]$. Так как $s_TW \subset s_TV_T = s_T\mathbb{C}[S_n]$ $s_T = \mathbb{C}$ s_T , для левого действия элемента s_T на подмодуле W имеются ровно две возможности: либо $s_TW=0$, либо $s_TW=\mathbb{C}\,s_T$. В первом случае $WW\subset V_TW=$ $=\mathbb{C}[S_n]\,s_TW=0$, откуда $w^2=0$, а значит, и W=0, поскольку правое умножение на w тождественно действует на $W=\mathbb{C}[S_n]$ w. Во втором случае $s_T\in s_TW\subset W$, откуда $V_T=\mathbb{C}[S_n]$ $s_T\subset W$, т. е. $W = V_T$. Таким образом, модуль V_T неприводим. Если заполнения T и U имеют разные формы — скажем, форма заполнения T лексикографически больше формы заполнения U, то по лем. 8.4 левое умножение на s_T аннулирует модуль V_U , тогда как на модуле V_T оно, согласно лем. 8.3, действует нетривиально: элемент $s_T \in V_T$ является собственным вектором левого умножения на s_T с ненулевым собственным значением $n_{\lambda(T)}$. Поэтому представления V_T и V_U не изоморфны. Отсюда следует последнее утверждение теоремы: число попарно неизоморфных неприводимых представлений V_{T_1} равно числу классов сопряжённости в S_n . Если заполнение Uимеет ту же форму λ , что и T_{λ} , то неприводимое представление V_U , будучи неизоморфным ни одному из представлений $V_{T_{\mu}}$ с $\mu \neq \lambda$, изоморфно именно представлению $V_{T_{\lambda}}$.

8.2.1. Симметризаторы $s_T^{'}=c_Tr_T$. Множества R_TC_T и C_TR_T , вообще говоря, различны. Например, для стандартного заполнения $T=\frac{\lceil 1 \mid 2 \rceil}{ \rceil 3 \rceil}$ цикл $|132\rangle=|12\rangle\circ|13\rangle$ входит в R_TC_T и не входит в C_TR_T , а цикл $|123\rangle=|13\rangle\circ|12\rangle$, наоборот, входит в C_TR_T и не входит в R_TC_T . Поэтому перестановка сомножителей в симметризаторе $s_T=r_Tc_T$ даёт другой симметризатор

$$s_T' = c_T r_T = \sum_{p \in R_T} \sum_{q \in C_T} \operatorname{sgn}(q) \, qp \,,$$
 (8-7)

получающийся применением к $s_T \in \mathbb{C}[S_n]$ антиподального антиавтоморфизма

$$\alpha: \mathbb{C}[S_n] \cong \mathbb{C}[S_n], \quad \sum_{g \in G} x_g g \mapsto \sum_{g \in G} x_g g^{-1},$$
 (8-8)

который оборачивает порядок сомножителей в произведениях, но переводит в себя строчный и столбцовый симметризаторы r_T и c_T .

Упражнение 8.3. Сформулируйте и докажите для s_T' аналог форм. (8-6) на стр. 91, а также аналоги лем. 8.2 – лем. 8.4 и теор. 8.1 на стр. 92.

Предложение 8.1

Представления S_n левыми умножениями в идеалах $V_T=\mathbb{C}[S_n]\,s_T$ и $V_T'=\mathbb{C}[S_n]\,s_T'$ изоморфны.

Доказательство. Правые умножения на c_T и r_T задают гомоморфизмы левых \mathcal{S}_n -модулей

$$V_T' = \mathbb{C}[S_n] \, c_T r_T \xrightarrow[]{x \mapsto x c_T} \mathbb{C}[S_n] \, r_T c_T = V_T$$

Композиция $x\mapsto xr_Tc_T=xs_T$ действует на $V_T=\mathbb{C}[S_n]s_T$ умножением на ненулевую константу $n_{\lambda(T)}$. Таким образом, операторы правого умножения на $n_{\lambda}^{-1/2}c_T$ и $n_{\lambda}^{-1/2}r_T$ являются взаимно обратными изоморфизмами представлений.

Следствие 8.2

Неприводимые представления V_{λ} и V_{λ^t} , отвечающие транспонированным диаграммам λ и λ^t , получаются друг из друга тензорным умножением на одномерное знаковое представление.

Доказательство. Фиксируем какое-либо стандартное заполнение T формы λ и транспонированное заполнение T^t транспонированной диаграммы λ^t . Тогда $R_{T^t} = C_T$, $C_{T^t} = R_T$ и

$$s_{T^t} = \sum\nolimits_{p \in R_T} \sum\nolimits_{q \in C_T} \mathrm{sgn}(p) qp = \sum\nolimits_{p \in R_T} \sum\nolimits_{q \in C_T} \mathrm{sgn}(q) \, \mathrm{sgn}(pq) qp = \sigma\left(s_T'\right) \,,$$

где $\sigma\colon \mathbb{C}[S_n] \to \mathbb{C}[S_n]$ обозначает знаковый автоморфизм групповой алгебры, действующий на базис из групповых элементов по правилу $g\mapsto \mathrm{sgn}(g)g$. Тензорное произведение представления V_λ на одномерное знаковое представление изоморфно представлению в левом идеале $V_T'=\mathbb{C}[S_n]\,s_T'$ по правилу $g\colon xs_T'\mapsto \mathrm{sgn}(g)gxs_T'$. Знаковый автоморфизм σ изоморфно отображает пространство этого представления на $V_{\lambda^t}=\mathbb{C}[S_n]\,s_{T^t}$, превращая действие в левое умножение на $g\colon \sigma(x)s_{T^t}\mapsto g\sigma(x)s_{T^t}$.

Упражнение 8.4. Покажите, что представление S_n в пространстве M_λ изоморфно представлению S_n левыми умножениями в идеале $\mathbb{C}[S_n] \, r_T$.

Характер модуля M_{λ} обозначается через ψ_{λ} .

Предложение 8.2

Значение $\psi_{\lambda}(C_{\mu})$ на классе сопряжённости $C_{\mu} \in \mathrm{Cl}(S_n)$, состоящем из всех перестановок циклового типа μ , равно коэффициенту при m_{λ} в разложении симметрического многочлена Ньютона 1 $p_{\mu}(x_1,\ldots,x_n)$ по стандартному мономиальному базису 2 $m_{\lambda}(x_1,\ldots,x_n)$.

Доказательство. Как обычно, обозначим через m_i количество строк длины i в диаграмме μ . Тогда $p_\mu = p_{\mu_1} \dots p_{\mu_n} = p_1(x)^{m_1} \dots p_n(x)^{m_n}$, где

$$p_i(x)^{m_i} = (x_1^i + \dots + x_n^i)^{m_i} = \sum_{\rho_{i1}! \dots \rho_{in}!} x_1^{i\varrho_{i1}} \dots x_n^{i\varrho_{in}}$$

и суммирование идёт по всевозможным наборам неотрицательных целых чисел $\varrho_{i1},\dots,\varrho_{in}$ суммой $\sum_j \varrho_{ij} = m_i$. Таким образом, коэффициент при $x_1^{\lambda_1}\dots x_n^{\lambda_n}$ у многочлена $p_\mu = p_1^{m_1}\dots p_n^{m_n}$ равен

$$\sum_{\varrho_{ij}} m_1! \dots m_n! / \prod_{ij} \varrho_{ij}!, \qquad (8-9)$$

¹См. формулу (4-14) на стр. 40.

²См. формулу (4-3) на стр. 36.

8.4. Модуль Шпехта 95

где суммирование идёт по всем таким наборам целых чисел $\varrho_{ij}\geqslant 0$, где $1\leqslant i,j\leqslant n$, что

$$\sum_{j} \varrho_{ij} = m_i \quad \text{if} \quad \sum_{i} i \varrho_{ij} = \lambda_j. \tag{8-10}$$

С другой стороны, согласно установленной в предл. 7.5 на стр. 88 формуле (7-31) для характера индуцированного представления,

$$\psi_{\lambda}(C_{u}) = [S_{n} : R_{T}] |C_{u} \cap R_{T}| / |C_{u}|, \tag{8-11}$$

где $[S_n:R_T]=n!/\prod_j\lambda_j!$, $|C_\mu|=n!/\prod_i i^{m_i}m_i!$, а пересечение $C_\mu\cap R_T$ распадается в объединение непересекающихся классов R_T -сопряжёности D_ϱ , каждый из которых состоит из перестановок циклового типа μ , в которых ϱ_{ij} из m_i циклов длины i заполнены элементами j-той строки из T. Эти классы также нумеруются удовлетворяющими условиям (8-10) наборами неотрицательных целых чисел $\varrho=\{\varrho_{ij}\}$ с $1\leqslant i,j\leqslant n$. При сопряжении подгруппой R_T стабилизатор перестановки $g\in D_\varrho$ является прямым произведением $\prod \varrho_{ij}!$ перестановок циклов одинаковой длины между собою как единого целого и $\prod i^{m_i}$ циклических сдвигов внутри этих циклов. Тем самым, $|C_\mu\cap R_T|=\sum_{\varrho}|D_\varrho|=\sum_{\varrho}\prod_j\lambda_j!/\prod_{ij}i^{m_i}\varrho_{ij}!$. Подставляя всё это в (8-11) и сокращая общие множители числителя и знаменателя, получаем (8-9).

8.4. Модуль Шпехта. Для каждого заполнения T формы λ рассмотрим в модуле таблоидов M_λ вектор

$$v_T = c_T\{T\} = \sum_{q \in C_T} \operatorname{sgn}(q)\{qT\}.$$
 (8-12)

Поскольку ни при каком $q\in C_T$ никакие два элемента из одного столбца T не могут оказаться в одной строке qT, равенство $q_1T=pq_2T$ невозможно ни при каких $q_1,q_2\in C_T$ и $p\in R_{q_2T}$, т. е. все слагаемые в правой сумме (8-12) суть *различные* базисные векторы пространства таблоидов M_λ , взятые с коэффициентами ± 1 . В частности, каждый из векторов v_T отличен от нуля. Линейная оболочка векторов (8-12), полученных из всех возможных заполнений T формы λ , является S_n -подмодулем в M_λ , так как $gv_T=gc_T\{T\}=gc_Tg^{-1}\{gT\}=c_{gT}\{gT\}=v_{gT}$ для всех $g\in S_n$. Этот подмодуль обозначается S_λ и называется модулем Шпехта.

Лемма 8.5

Если форма λ заполнения T не является строго доминирующей диаграмму μ , то

$$c_T M_\mu = \left\{ egin{aligned} 0 & ext{при } \mu
eq \lambda \ \mathbb{C} v_T & ext{при } \mu = \lambda \,. \end{aligned}
ight.$$

Доказательство. Если в пересечении $R_U \cap \mathcal{C}_T$ имеется хоть одна транспозиция τ , то

$$c_T\{U\} = c_T\{\tau U\} = c_T\tau\{U\} = -c_T\{U\}, \tag{8-13}$$

откуда $c_T\{U\}=0$. Если в условиях нашей леммы такой транспозиции нет, то по лем. 8.1 на стр. 90 заполнения U и T имеют одинаковую форму λ и pU=qT для некоторых $p\in R_U$ и $q\in C_T$. В этом случае $c_T\{U\}=c_T\{pU\}=c_T\{qT\}=sgn(q)c_T\{T\}=\pm v_T$.

Теорема 8.2

Модуль Шпехта S_{λ} изоморфен неприводимому представлению V_{λ} левыми умножениями в идеале $\mathbb{C}[S_n]$ s_T , построенному по произвольному заполнению T формы λ .

Доказательство. Покажем сначала, что S_{λ} неприводим. Пусть имеется разложение $S_{\lambda} = V \oplus W$ в сумму S_n -подмодулей. Тогда оператор c_T , построенный по заполнению T формы λ , переводит каждое из слагаемых в себя. Так как $c_T S_{\lambda} \subset c_T M_{\lambda} = \mathbb{C} v_T$ по лем. 8.5, ненулевой вектор v_T лежит ровно в одном из слагаемых — скажем, в V. Но тогда V содержит и все остальные векторы $v_{gT} = g v_T$, а значит, совпадает с S_{λ} . При $\mu \neq \lambda$ неприводимые представления S_{λ} и S_{μ} не изоморфны: если λ лексикографически меньше μ , то по лем. 8.5 оператор c_T аннулирует подмодуль $S_{\mu} \subset M_{\mu}$, а на модуле S_{λ} действует нетривиально, ибо $c_T v_T = c_T c_T \{T\} = |C_T| c_T \{T\} = |C_T| v_T$. Из сказанного вытекает, что модуль S_{λ} изоморфен ровно одному из неприводимых представлений $V_{\mu} = \mathbb{C}[S_n] s_U$, где U — любое заполнение формы μ . Поскольку по лем. 8.4 левое умножение на c_T аннулирует все идеалы V_{μ} с лексикографически меньшими, чем λ диаграммами μ , мы заключаем, что $S_{\lambda} \simeq V_{\lambda}$.

Следствие 8.3

В разложении представления M_{λ} в сумму неприводимых встречаются только модули S_{μ} с $\mu \triangleright \lambda$, а также модуль S_{λ} , входящий в M_{λ} с кратностью 1.

Доказательство. Так как оператор c_T переводит M_λ в подмодуль Шпехта и нетривиально действует на последнем, в разложении модуля M_λ в прямую сумму простых есть ровно одно слагаемое, изоморфное S_λ . Если существует S_n -линейное вложение $S_\mu \hookrightarrow M_\lambda$, то оператор c_U , отвечающий произвольному заполнению U формы μ , нетривиально действует на M_λ . Но в силу лем. 8.5 $c_U M_\lambda = 0$, когда μ не доминирует λ .

8.4.1. Табличный базис модуля Шпехта. Назовём *столбцовой развёрткой* заполнения T диаграммы λ слово, которое получится при прочтении заполнения T по столбцам, так что каждый столбец читается снизу вверх, а сами столбцы перебираются слева направо. Например, столбцовая развёртка стандартной таблицы

$$T = \begin{bmatrix} 1 & 3 & 4 \\ 2 & 5 \end{bmatrix}$$

это слово 21534. Скажем, что T > U, если наибольшее из чисел, стоящих в заполнениях T и U в разных клетках, встречается в столбцовой развёртке заполнения T раньше, чем в столбцовой развёртке заполнения U.

Упражнение 8.5. Проверьте, что это отношение задаёт линейный порядок на стандартных заполнениях формы λ .

Например, 120 стандартных заполнений формы выстроятся по убыванию так:

Обратите внимание, что этот порядок отличается от лексикографического порядка на столбцовых развёртках. Главная его особенность состоит в том, что для любой *стандартной таблицы* T и любых $p \in R_T$, $q \in C_T$ выполнены строгие неравенства pT > T > qT. Действительно, самое большое число в любом цикле перестановки p сдвигается влево, а самое большое число

¹См. n° 8.1 на стр. 90.

в любом цикле перестановки q сдвигается вверх. В частности, каждая стандартная таблица T является минимальным элементом своей R_T -орбиты $R_T T$. Из этого вытекает, что для любого заполнения $U \prec T$ таблоид $\{U\} \neq \{T\}$ в модуле M_λ .

Упражнение 8.6. Покажите, что $c_T\{U\}=0$ для любых стандартных таблиц $U\succ T$.

Теорема 8.3

Векторы v_T , где T пробегает множество стандартных таблиц формы λ , образуют базис модуля Шпехта S_λ . В частности, dim $S_\lambda=d_\lambda$.

Доказательство. Покажем, что d_{λ} векторов v_T , построенных по всем стандартным таблицам T, линейно независимы. Выражение вектора $v_T = \sum_{q \in C_T} \mathrm{sgn}(q) \{qT\}$ через базисные векторы $\{U\}$ пространства M_{λ} имеет вид $v_T = \{T\} + \sum_{U < T} \varepsilon_U \{U\}$, где $\varepsilon_U = -1, 0, 1$, а всякая линейная зависимость между ними может быть записана в виде $^1 v_T = \sum_{U < T} x_U v_U$. Раскладывая векторы v_T и v_U по базису из таблоидов, мы получаем равенство вида $\{T\} = \sum_{U < T} y_U \{U\}$, невозможное в силу того, что $\{T\} \neq \{U\}$ ни для какого U < T. Из линейной независимости векторов v_T вытекает неравенство dim $S_{\lambda} \geqslant d_{\lambda}$. С другой стороны, второе равенство из форм. (8-1) на стр. 90 и соотношение на сумму квадратов размерностей неприводимых представлений из сл. 7.1 на стр. 77 влекут равенство $\sum d_{\lambda}^2 = n! = \sum \dim^2 S_{\lambda}$. Поэтому dim $S_{\lambda} = d_{\lambda}$.

8.5. Кольцо представлений симметрических групп. Обозначим через \Re_n аддитивную группу абелеву кольца представлений группы S_n , т. е. свободный \mathbb{Z} -модуль с базисом $[V_{\lambda}]$, где V_{λ} пробегает множество попарно неизоморфных представителей всех неприводимых представлений S_n . Иначе \Re_n можно описать как целочисленную линейную оболочку неприводимых характеров группы S_n в пространстве всех функций $S_n \to \mathbb{C}$. Положим $\Re_0 \stackrel{\text{def}}{=} \mathbb{Z}$. На прямой сумме

$$\mathfrak{R} \stackrel{\mathrm{def}}{=} \bigoplus_{n \geq 0} \mathfrak{R}_n$$

имеется коммутативное умножение Литтлвуда – Pичарdсон a^3 со свойством $\Re_k \Re_m \subset \Re_{k+m}$, т. е. наделяющее \Re структурой zраdуuрованного коммутативного кольца с единицей.

8.5.1. Умножение Литтлвуда – Ричардсона в кольце %. Каждая пара линейных представлений $\varphi: S_k \to \mathrm{GL}(U)$ и $\psi: S_m \to \mathrm{GL}(W)$ задаёт представление

$$\varphi \times \psi : S_k \times S_m \to \mathrm{GL}(U \otimes W) \,, \quad (g,h) : u \otimes w \mapsto gu \otimes hw \,. \tag{8-14}$$

Вложим $S_k \times S_m$ в S_{k+m} в качестве подгруппы, сохраняющей разбиение

$$\{1, \dots, k+m\} = \{1, \dots, k\} \sqcup \{k+1, \dots, k+m\},$$
 (8-15)

образуем представление $\operatorname{ind}(\varphi \times \psi)$ группы S_{k+m} , индуцированное представлением (8-14), и положим $[\varphi][\psi] \stackrel{\text{def}}{=} [\operatorname{ind}(\varphi \times \psi)]$. Если вместо разбиения (8-15) воспользоваться другим разбиением $\{1,\ldots,k+m\}=I \sqcup J$ на непересекающихся подмножества из k и m элементов, получится другая

 $^{^{1}}$ Для этого надо оставить слева ненулевой член с максимальным индексом T, а все остальные члены перенести направо.

²См. прим. 7.5 на стр. 84.

³Оно *отпичается* от имеющегося на каждом кольце представлений \Re_n в отдельности умножения $[U], [W] \mapsto [U \otimes W]$ из прим. 7.5 на стр. 84.

подгруппа $S_k \times S_m \subset S_{k+m}$, сопряжённая к использованной выше, и представление $\operatorname{ind}(\varphi \times \psi)$, индуцированное с этой подгруппы, будет изоморфно предыдущему.

Упражнение 8.7. Убедитесь в этом.

Таким образом, класс $[\varphi][\psi]$ не зависит от выбора разбиения (8-15), используемого для его построения. В частности, умножение (8-14) коммутативно. Его ассоциативность вытекает из того, что для любых трёх представлений ξ , η и ζ групп S_k , S_ℓ и S_m , оба класса $([\xi][\eta])[\zeta]$ и $[\xi]([\eta][\zeta])$ совпадают с классом представления S_{m+n+k} , индуцированного с представления подгруппы $S_k \times S_\ell \times S_m \subset S_{m+n+k}$ в тензорном произведении пространств представлений ξ , η и ζ по правилу $(g_1,g_2,g_3) \mapsto \xi(g_1) \otimes \eta(g_2) \otimes \zeta(g_3)$.

Упражнение 8.8. Убедитесь в этом.

Дистрибутивность умножения по отношению к прямым суммам представлений следует из дистрибутивности тензорных произведений.

Лемма 8.6

Кольцо \Re изоморфно кольцу многочленов с целыми коэффициентами от счётного числа переменных, отвечающих классам тривиальных одномерных представлений $[\mathbb{1}_k]$ групп S_k для всех $k \in \mathbb{N}$. При этом классы модулей таблоидов $[M_\lambda] = [\mathbb{1}_{\lambda_1}] \dots [\mathbb{1}_{\lambda_n}] = [\mathbb{1}_1]^{\ell_1} \dots [\mathbb{1}_n]^{\ell_n}$, где ℓ_i означает количество строк длины i в диаграмме λ , образуют базис кольца \Re как модуля над \mathbb{Z} .

Доказательство. Из сл. 8.3 вытекает, что классы таблоидных представлений $[M_{\lambda}]$ выражаются через неприводимые классы $[S_{\lambda}]$ при помощи верхней треугольной матрицы с целыми коэффициентами и единицами по главной диагонали. Поэтому классы $[M_{\lambda}]$ образуют базис $\mathfrak R$ как модуля над $\mathbb Z$. Поскольку представление M_{λ} , отвечающее диаграмме $\lambda = (\lambda_1, \dots, \lambda_n)$, индуцировано с тривиального одномерного представления подгруппы $S_{\lambda_1} \times \dots \times S_{\lambda_n} \subset S_{|\lambda|}$, класс $[M_{\lambda}]$ является произведением классов тривиальных одномерных представлений $[\mathbb T_{\lambda_i}]$ групп S_{λ_i} . При этом $[\mathbb T_{\lambda_i}] = [M_{(\lambda_i)}]$ — это тоже модуль таблоидов, состоящих из одной строки длины λ_i . Поэтому совокупность мономов от классов тривиальных представлений в точности совпадает с совокупностью классов модулей таблойдов, а их формальное перемножение как мономов, совпадает с умножением в кольце $\mathfrak R$.

8.5.2. Скалярное произведение в кольце \Re . Обозначим через ([U], [W]) евклидово скалярное произведение на \Re , для которого базис из классов неприводимых представлений [V_{λ}] является ортонормальным. Сумма $\Re = \oplus \Re_k$ является ортогональной относительно такого скалярного произведения, а для любых двух классов [U] = $\sum k_{\lambda}[V_{\lambda}]$ и [W] = $\sum m_{\lambda}[V_{\lambda}]$, лежащих в одной и той же компоненте \Re_n , выполняется равенство

$$([U],[W]) = \sum_{|\lambda|=n} k_{\lambda} m_{\lambda} = \dim \operatorname{Hom}_{S_n}(U,W) = (\chi_U,\chi_W)_n, \tag{8-16}$$

где $(\chi_U,\chi_W)_n$ означает скалярное произведение характеров в алгебре функций \mathbb{C}^{S_n} . Как обычно, для каждой диаграммы μ обозначим через m_i число её строк длины i и положим

$$z_{\mu} = \prod_{i} m_{i}! i^{m_{i}}, \qquad (8-17)$$

так что число элементов в классе сопряжённости $C_{\mu} \subset S_n$, состоящем из всех перестановок циклового типа μ , равно $|C_{\mu}| = n!/z_{\mu}$. В силу зам. 7.2. на стр. 83 скалярное произведение характеров

¹См. зам. 7.2. на стр. 83.

в правой части (8-16) переписывается в виде

$$\frac{1}{n!} \sum\nolimits_{g \in S_n} \chi_U(g) \chi_W(g) = \frac{1}{n!} \sum\nolimits_{\mu} |C_{\mu}| \chi_U(C_{\mu}) \chi_W(C_{\mu}) = \sum\nolimits_{\mu} z_{\mu}^{-1} \chi_U(C_{\mu}) \chi_W(C_{\mu}) \,.$$

Таким образом, скалярное произведение классов представлений $[U],[W]\in\Re_n$ равно

$$([U], [W]) = \sum_{\mu} z_{\mu}^{-1} \chi_{U}(C_{\mu}) \chi_{W}(C_{\mu}). \tag{8-18}$$

8.5.3. Изоморфизм кольца \Re с кольцом симметрических функций. В n° 5.6 на стр. 60 мы ввели на кольце Λ симметрических функций с целыми коэффициентами скалярное произведение $\langle * , * \rangle$, для которого базис из полиномов Шура s_λ является ортонормальным, базис из полных симметрических функций h_λ является двойственным к мономиальному базису m_λ , а полиномы Ньютона p_λ образуют ортогональный базис векторного пространства $\mathbb{Q} \otimes \Lambda$ со скалярными квадратами $\langle p_\lambda , p_\lambda \rangle = z_\lambda$. Согласно предл. 8.2 на стр. 94 значения $\psi_\lambda(C_\mu)$ характера ψ_λ таблоидного представления M_λ совпадают с коэффициентами разложения ньютоновской симметрической функции $p_\mu = \sum_\lambda \psi_\lambda(C_\mu) m_\lambda$ по мономиальному базису m_λ , а значит, равны скалярным произведениям симметрических функций p_λ с элементами двойственного к мономиальному базиса из полных симметрических многочленов: $\psi_\lambda(C_\mu) = \langle p_\mu , h_\lambda \rangle$, которые в свою очередь являются коэффициентами разложения полных симметрических многочленов h_λ по ортогональному базису $z_\mu^{-1}p_\mu$:

$$h_{\lambda} = \sum_{\mu} z_{\mu}^{-1} \langle p_{\mu}, h_{\lambda} \rangle p_{\mu} = \sum_{\mu} z_{\mu}^{-1} \chi_{M_{\lambda}}(C_{\mu}) p_{\mu}. \tag{8-19}$$

Сопоставление равенств (8-19) и (8-18) подсказывает следующий результат:

Теорема 8.4

Существует изометрический изоморфизм колец ch : $\Re \to \Lambda$, переводящий классы таблоидных представлений $[M_{\lambda}]$ в полные симметрические многочлены h_{λ} , классы неприводимых представлений $[S_{\lambda}]$ — в многочлены Шура s_{λ} , а инволюцию на классах представлений, заданную тензорным умножением на одномерное знаковое представление, — в каноническую инволюцию 1 ω на Λ , переводящую друг в друга s_{λ} и $s_{\lambda^{t}}$, а также h_{λ} и e_{λ} . Этот изоморфизм корректно задаётся формулой 2

$$\operatorname{ch}([U]) \stackrel{\text{def}}{=} \sum_{\mu} z_{\mu}^{-1} \chi_{U}(C_{\mu}) p_{\mu}. \tag{8-20}$$

Доказательство. Отображение (8-20) очевидно линейно по [U]:

$$\begin{split} \text{ch}([U]+[W]) &= \text{ch}([U \oplus W]) = \sum_{\mu} z_{\mu}^{-1} \chi_{U \oplus W}(C_{\mu}) p_{\mu} = \\ &= \sum_{\mu} z_{\mu}^{-1} \left(\chi_{U}(C_{\mu}) + \chi_{W}(C_{\mu}) \right) p_{\mu} = \text{ch}([U]) + \text{ch}([W]) \,. \end{split}$$

Согласно лем. 8.6 на стр. 98 и сл. 4.4 на стр. 40 оба кольца \Re и Λ являются кольцами многочленов от счётного числа переменных: первое — от классов тривиальных одномерных представлений $[\mathbb{1}_k]$ групп S_k , второе — от простейших полных симметрических многочленов h_k , где в обоих случаях h_k пробегает h_k . В силу соотношения (8-19) отображение сh переводит каждый

¹См. сл. 5.2 на стр. 60.

 $^{^{2}}$ Не смотря на то, что она содержит знаменатели.

³Напомню, что $h_k(x)$ представляет собою сумму всех мономов полной степени k, см. n° 4.3 на стр. 39.

базисный моном $[M_{\lambda}]=[\mathbb{1}_{\lambda_1}]\dots[\mathbb{1}_{\lambda_n}]=[\mathbb{1}_1]^{\ell_1}\dots[\mathbb{1}_n]^{\ell_n}$, где ℓ_i равно количеству строк длины i в диаграмме λ , в базисный моном $h_{\lambda}=h_{\lambda_1}\dots h_{\lambda_n}=h_1^{\ell_1}\dots h_n^{\ell_n}$ с сохранением мультипликативной структуры, ибо $\mathrm{ch}([\mathbb{1}_k])=h_k$. Тем самым, отображение (8-20) является корректно определённым изоморфизмом колец. Ортогональность отображения ch вытекает из формулы (8-18) и того, что полиномы Ньютона p_{λ} образуют в ортогональный базис $\mathbb{Q}\otimes \Lambda$ со скалярными квадратами λ 0 λ 1 со скалярными квадратами λ 2 λ 3 λ 4 со скалярными квадратами λ 4 λ 5 λ 6 со скалярными квадратами λ 6 λ 7 со скалярными квадратами λ 8 λ 9 со скалярными квадратами λ 9 λ 9 со скалярными квадратами λ 10 со скалярными странами λ 10 со скалярными странами λ 10 со скалярными странами странами λ 10 со скалярными странами странами

$$\langle \operatorname{ch}([U]) \,,\, \operatorname{ch}([W]) \, \rangle = \sum\nolimits_{\lambda,\mu} z_{\lambda}^{-1} z_{\mu}^{-1} \chi_{U}(\mathcal{C}_{\lambda}) \chi_{W}(\mathcal{C}_{\mu}) \, \langle \, p_{\mu} \,,\, p_{\lambda} \, \rangle = \sum\nolimits_{\mu} z_{\mu}^{-1} \chi_{U}(g) \chi_{W}(g) = ([U],[W]) \,.$$

Из сл. 8.3 на стр. 96 вытекает, что ортонормальный базис $[S_{\lambda}]$ выражается через таблоидный базис $[M_{\lambda}]$ при помощи нижней унитреугольной матрицы: $[S_{\lambda}] = [M_{\lambda}] + \sum_{\mu \rhd \lambda} x_{\mu\lambda} [M_{\mu}]$. По форм. (5-18) на стр. 59 полные симметрические многочлены h_{λ} выражаются через многочлены Шура s_{λ} также при помощи нижней унитреугольной матрицы²: $h_{\lambda} = s_{\lambda} + \sum_{\mu \rhd \lambda} K_{\mu,\lambda} s_{\mu}$. Поэтому $\mathrm{ch}([S_{\lambda}])$ выражается через полиномы Шура тоже посредством нижней унитреугольной матрицы: $\mathrm{ch}\left([S_{\lambda}]\right) = \mathrm{ch}\left([M_{\lambda}] + \sum_{\mu \rhd \lambda} x_{\mu\lambda} [M_{\mu}]\right) = h_{\lambda} + \sum_{\mu \rhd \lambda} x_{\mu\lambda} h_{\mu} = s_{\lambda} + \sum_{\mu \rhd \lambda} y_{\mu\lambda} s_{\mu}$. Из равенств $1 = \left([S_{\lambda}], [S_{\lambda}]\right) = \langle \mathrm{ch}([S_{\lambda}]), \mathrm{ch}([S_{\lambda}]) \rangle = \langle s_{\lambda}, s_{\lambda} \rangle + \sum_{\mu \rhd \lambda} y_{\mu\lambda}^{2} \langle s_{\mu}, s_{\mu} \rangle = 1 + \sum_{\mu \rhd \lambda} y_{\mu\lambda}^{2}$ мы заключаем, что все $y_{\mu\lambda} = 0$ и $\mathrm{ch}([S_{\lambda}]) = s_{\lambda}$. Утверждение об инволюциях вытекает из сл. 8.2 на стр. 94 и сл. 5.2 на стр. 60.

Следствие 8.4 (правило Юнга)

Кратность вхождения неприводимого представления S_{μ} в модуль таблоидов M_{λ} равна числу Костки $K_{\mu,\lambda}$.

Следствие 8.5 (правило Литтлвуда – Ричардсона)

Кратность вхождения $[S_{\nu}]$ в $[S_{\lambda}]$ $[S_{\mu}]$ равна коэффициенту Литтлвуда – Ричардсона 3 $c_{\lambda\mu}^{\nu}$ из разложения $s_{\lambda}s_{\mu}=\sum_{\nu}c_{\lambda\mu}^{\nu}s_{\nu}$.

Следствие 8.6 (правило ветвления индуцированных представлений)

Представление группы S_{n+1} , индуцированное неприводимым представлением S_{λ} подгруппы $S_n\subset S_{n+1}$, является прямой суммой однократных неприводимых представлений S_{μ} , диаграмма μ которых получается добавлением одной клетки к диаграмме λ .

Доказательство. Поскольку $[\operatorname{ind}(S_{\lambda})] = [S_{\lambda}][\mathbb{1}_1]$, утверждение вытекает из предыдущего следствия и формулы Пьери⁴ для вычисления $s_{\lambda}h_1$.

Следствие 8.7 (правило ветвления ограниченных представлений)

Ограничение неприводимого представления S_{λ} группы S_n на подгруппу $S_{n-1} \subset S_n$ является прямой суммой однократных неприводимых представлений S_{μ} , диаграмма μ которых получается выкидыванием одной клетки из диаграммы λ .

Доказательство. Это получается из предыдущего следствия и взаимности Фробениуса: кратность вхождения неприводимого представления S_μ в res S_λ равна кратности вхождения неприводимого представления S_λ в ind S_μ .

¹См. предл. 5.2 на стр. 60.

²Напомню, что *число Костки K*_{μ,λ} равно количеству таблиц формы μ , заполненных λ_1 единицами, λ_2 двойками, и т. д. Оно ненулевое лишь при $\mu \ge \lambda$, и все $K_{\lambda,\lambda} = 1$. См. пояснения к форм. (5-11) на стр. 56.

³См. теор. 5.2 на стр. 58.

⁴См. упр. 5.5 на стр. 58.

Следствие 8.8 (формула Фробениуса для характеров S_n)

Значение характера χ_λ неприводимого представления S_λ симметрической группы S_n на классе сопряжённости $C_\mu\subset S_n$ равно каждому из следующих трёх чисел:

- коэффициенту при $z_\mu^{-1}p_\mu(x)$ в разложении многочлена Шура $s_\lambda(x)$ по базису $z_\mu^{-1}p_\mu(x)$ в векторном пространстве $\mathbb{Q}\otimes \Lambda$
- коэффициенту при $s_{\lambda}(x)$ в разложении многочлена Ньютона $p_{\mu}(x)$ по базису Шура $s_{\lambda}(x)$ в \mathbb{Z} -модуле Λ
- \circ коэффициенту при одночлене $x^{\lambda+\delta}=x_1^{\lambda_1+n-1}x_2^{\lambda_2+n-2}\dots x_n^{\lambda_n}$ в многочлене

$$p_{\mu}(x)\Delta_{\delta}(x) = p_1(x)^{m_1} \dots p_n(x)^{m_n} \prod_{i < j} (x_i - x_j),$$

где $p_k(x)=\sum_i x_i^k$ суть степенные суммы Ньютона, число m_i равно количеству строк длины i в диаграмме μ , а $\Delta_\delta(x)=\det\left(x_j^{n-i}\right)$ — это определитель Вандермонда.

Доказательство. Первое вытекает прямо из теор. 8.4. Второе — из свойств скалярного произведения на кольце симметрических функций: поскольку система многочленов p_μ ортогональна со скалярными квадратами z_μ , коэффициент при $z_\mu^{-1}p_\mu(x)$ в разложении s_λ по базису p_μ равен скалярному произведению $\langle s_\lambda\,,\,p_\mu\,\rangle$, которое в свою очередь равно коэффициенту при s_λ в разложении p_μ по ортонормальному базису s_λ . Для доказательства третьего запишем s_λ по формуле Якоби – Труди как отношение определителей $s_\lambda(x) = \Delta_{\lambda+\delta}(x)/\Delta_\delta(x)$ и умножим обе части разложения $p_\mu(x) = \sum_\lambda \chi_\lambda(C_\mu) \Delta_{\lambda+\delta}(x)/\Delta_\delta(x)$ на Δ_δ . Получим равенство $p_\mu(x) \Delta_\delta(x) = \sum_\lambda \chi_\lambda(C_\mu) \Delta_{\lambda+\delta}(x)$, означающее, что $\chi_\lambda(C_\mu)$ равен коэффициенту разложения кососимметрического многочлена $p_\mu(x) \Delta_\delta(x)$ по стандартному детерминантному базису $\Delta_{\lambda+\delta}(x)$.

8.5.4. Размерности неприводимых представлений. По формуле Фробениуса размерность $\dim S_{\lambda} = \chi_{\lambda}(1)$ равна коэффициенту при $x^{\lambda+\delta} = x_1^{\lambda_1+n-1}x_2^{\lambda_2+n-2}\dots x_n^{\lambda_n}$ в многочлене

$$p_1^n \varDelta_\delta = \left(\sum x_i\right)^n \det\left(x_j^{n-i}\right) = \sum_{m_1 \dots m_n} \frac{n!}{m_1! \dots m_n!} x_1^{m_1} \dots x_n^{m_n} \sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) x_1^{n-\sigma(1)} \dots x_n^{n-\sigma(n)} \,.$$

Обозначим строго убывающие длины строк диаграммы $\eta=\lambda+\delta$ через $\eta_i=\lambda_i+n-i$. Коэффициент при $x^\eta=x_1^{\eta_1}\dots x_n^{\eta_n}$ в предыдущем произведении равен

$$\sum_{\sigma} \frac{\operatorname{sgn}(\sigma)n!}{\prod_{j} \left(\eta_{j} - n + \sigma(j)\right)!} = \frac{n!}{\eta_{1}! \dots \eta_{n}!} \sum_{\sigma} \operatorname{sgn}(\sigma) \prod_{j} \eta_{j}(\eta_{j} - 1) \dots (\eta_{j} - n + \sigma(j) + 1),$$

где суммирование происходит по всем перестановкам $\sigma \in S_n$, для которых каждое из n чисел $\eta_j - n + \sigma(j) \geqslant 0$, и j-тый сомножитель последнего произведения сам является произведением $n - \sigma(j)$ последовательно убывающих чисел, начиная с η_j . Такая сумма равна

$$\det \begin{pmatrix} \eta_1 \dots (\eta_1 - n + 1) & \eta_2 \dots (\eta_2 - n + 1) & \dots & \eta_n \dots (\eta_n - n + 1) \\ \vdots & \vdots & \cdots & \vdots \\ \eta_1 (\eta_1 - 1) & \eta_2 (\eta_2 - 1) & \cdots & \eta_n (\eta_n - 1) \\ \eta_1 & \eta_2 & \cdots & \eta_n \\ 1 & 1 & \cdots & 1 \end{pmatrix}$$

¹См. n° 4.1.2 на стр. 37.

Упражнение 8.9. Покажите, что этот определитель равен $\prod_{i < j} (\eta_i - \eta_j)$. Таким образом, нами установлено

Следствие 8.9 (формула Фробениуса для размерностей) Пусть
$$\eta=\lambda+\delta$$
, т. е. $\eta_i=\lambda_i+n-i$. Тогда $\dim S_\lambda=\frac{n!}{\eta_1!...\eta_n!}\prod_{i< j}(\eta_i-\eta_j)$.

Упражнение 8.10 (формула крюков). Назовём *крюком* клетки a в диаграмме Юнга λ Γ -образную поддиаграмму, состоящую из клетки a и всех клеток ниже a в том же столбце и всех клеток правее a в той же строке. Количество клеток в таком крюке обозначим через $\Gamma(a)$ и назовём длиной крюка клетки a. Докажите, что dim $S_{\lambda} = n! / \prod_{a \in \lambda} \Gamma(a)$.

Например, длины крюков диаграммы $\lambda=(4,2,1)$ суть $\frac{6 \cdot 4 \cdot 2 \cdot 1}{3 \cdot 1}$, откуда размерность модуля Шпехта $S_{(4,2,1)}$ группы S_7 равна $7!/(6 \cdot 4 \cdot 3 \cdot 2) = 7 \cdot 5 = 35$. Довольно нетривиальным следствием из упр. 8.10 и теор. 8.3 на стр. 97 является возможность подсчитать количество стандартных таблиц формы λ по формуле крюков. К примеру, только что проделанное вычисление показывает, что стандартных таблиц формы имеется ровно 35 штук.

Ответы и указания к некоторым упражнениям

- Упр. 8.2. Примените сл. 8.1 на стр. 91 к перестановке g^{-1} .
- Упр. 8.3. Аналогом равенства (8-6) и лем. 8.2 является равенство $\mathrm{sgn}(q)qs_T'p=s_T'$, справедливое для всех $p\in R_T$, $q\in \mathcal{C}_T$, и утверждение о том, что пространство

$$E_T' = \{ f \in \mathbb{C}[S_n] \mid \forall p \in R_T \ \forall q \in C_T \ \operatorname{sgn}(q) q f p = f \}$$

одномерно и порождается симметризатором s_T' . Последнее доказывается при помощи упр. 8.2 дословно также, как лем. 8.2. Дополнением к лем. 8.4 на стр. 92 является равенство $s_T'\mathbb{C}[S_n]s_U'=0$, справедливое при $\lambda(T)>\lambda(U)$ и непосредственно вытекающее из оригинальной лем. 8.4. Утверждения из лем. 8.3 и теор. 8.1 на стр. 92, как и их доказательства, сохраняют силу после замены s на s'.

- Упр. 8.5. Будем писать $T \succ_a U$, если $T \succ U$, и наибольшее из чисел, стоящих в заполнениях T и U в разных клетках, равно a. Если $T \succ_a U$ и $U \succ_b W$, то $T \succ_a W$ при $a \geqslant b$ и $T \succ_b W$ при $a \leqslant b$.
- Упр. 8.6. Для всех $q \in R_T$ и $p \in C_U$ выполнено строгое неравенство pU > qT. По лем. 8.1 существует транспозиция $\tau \in R_U \cap C_T$, и вычисление (8-13) показывает, что $c_T\{U\} = 0$.
- Упр. 8.9. Вычисление аналогично вычислению определителя Вандермонда: в кольце многочленов $\mathbb{Z}[\eta_1,\ldots,\eta_n]$ определитель делится на каждую из разностей $\eta_i-\eta_j$, а значит, и на $\prod_{i< j}(\eta_i-\eta_j)$. Сравнение лексикографически старших мономов показывает, что частное равно 1.
- Упр. 8.10. Индукцией по количеству столбцов покажите, что произведение длин крюков любой диаграммы λ равно $\prod_i \eta_i!/\prod_{i < j} (\eta_i \eta_j)$, где $\eta = \lambda + \delta$, и воспользуйтесь формулой Фробениуса. Индуктивный переход основан на том, что длина крюка i-той сверху клетки первого столбца равна $\eta_i n + \ell$, где ℓ число строк в диаграмме.