§1 General Nonsense

1.1 Categories. A category \mathcal{C} consists of a class 1 of objects $\mathrm{Ob} \mathcal{C}$, where any ordered pair of objects $X, Y \in \mathrm{Ob} \mathcal{C}$ is equipped with a set of morphisms from X to Y

$$
\operatorname{Hom}(X, Y)=\operatorname{Hom}_{\mathcal{C}}(X, Y)
$$

It is convenient to think of the morphisms from X to Y as arrows $\varphi: X \rightarrow Y$. The sets $\operatorname{Hom}(X, Y)$ are disjoint for distinct pairs X, Y and their union over all $X, Y \in \mathrm{Ob} \mathcal{C}$ is denoted Mor $\mathcal{C}=\bigsqcup_{X, Y} \operatorname{Hom}_{\mathcal{C}}(X, Y)$. For each ordered triple $X, Y, Z \in \operatorname{Ob} \mathcal{C}$ there is a composition map ${ }^{2}$

$$
\begin{equation*}
\operatorname{Hom}(Y, Z) \times \operatorname{Hom}(X, Y) \rightarrow \operatorname{Hom}(X, Z), \quad(\varphi, \psi) \mapsto \varphi \circ \psi \quad(=\varphi \psi), \tag{1-1}
\end{equation*}
$$

which is associative: $(\chi \circ \varphi) \circ \psi=\chi \circ(\varphi \circ \psi)$ each time when LHS or RHS is defined. Finally, each object $X \in \mathrm{Ob} \mathcal{C}$ has the identity endomorphism ${ }^{3} \operatorname{Id}_{X} \in \operatorname{Hom}(X, X)$ such that $\varphi \circ \operatorname{Id}_{X}=\varphi$ and $\mathrm{Id}_{X} \circ \psi=\psi$ for all arrows $\varphi: X \rightarrow Y$ and $\psi: Z \rightarrow X$.

A subcategory $\mathcal{D} \subset \mathcal{C}$ is a category whose objects, arrows, and compositions come from \mathcal{C}. A subcategory $\mathcal{D} \subset \mathcal{C}$ is called full, if $\operatorname{Hom}_{\mathcal{D}}(X, Y)=\operatorname{Hom}_{\mathcal{C}}(X, Y)$ for all $X, Y \in \operatorname{Ob} \mathcal{D}$.

A category is called small, if $\mathrm{Ob} \mathcal{C}$ is a set. In this case $\operatorname{Mor} \mathcal{C}$ is a set as well.

Example 1.1 (nON-SMALL CATEGORIES)

The following categories often appear in examples and are not small: category Set of all sets and all mapping between them, category $\mathcal{T} o p$ of all topological spaces and continuous mappings, category $\mathcal{V e c} \mathbb{k}_{\mathbb{k}}$ of vector spaces over a field \mathbb{k} and \mathbb{k}-linear mappings, its full subcategory $v e c_{\mathbb{k}}$ formed by finite dimensional spaces, categories $R-\mathcal{M}$ od and \mathcal{M} od $-R$ of left and right modules over a ring R and R-liner mappings, their full subcategories R-mod and mod- R formed by finitely presented ${ }^{4}$ modules, category $\mathcal{A} b=\mathbb{Z}-\mathcal{M}$ od of abelian groups and category $\mathcal{G r}$ p of all groups and group homomorphisms, category $\mathcal{C} m r$ of commutative rings with unities and ring homomorphisms sending unity to unity, etc.

Example 1.2 (posets)
Each poset ${ }^{5} M$ is a category whose objects are the elements $m \in M$ and

$$
\operatorname{Hom}_{M}(n, m)=\left\{\begin{array}{l}
\text { one element, if } n \leqslant m \\
\varnothing \text { otherwise }
\end{array}\right.
$$

The composition of arrows $k \leqslant \ell$ and $\ell \leqslant n$ is the arrow $k \leqslant n$. Most important for us special example of such a category is a category $\mathcal{U}(X)$ of all open subsets in a topological space X and inclusions as the morphisms:

$$
\operatorname{Hom}_{U(X)}(U, W)=\left\{\begin{array}{l}
\text { the inclusion } U \hookrightarrow W, \text { if } U \subseteq W \\
\varnothing, \quad \text { if } U \nsubseteq W
\end{array}\right.
$$

[^0]
Example 1.3 (small categories vs associative algebras)

Each associative algebra A with unity $e \in A$ over a commutative ring K is a category with just one object e and $\operatorname{Hom}(e, e)=A$, where the composition of arrows equals the product in A. Vice versa, associated with an arbitrary small category \mathcal{C} and a commutative ring K is an associative algebra $K[\mathcal{C}]$ formed by all formal finite linear combinations of morphisms in \mathcal{C} with coefficients in K :

$$
K[\mathcal{C}] \underset{X, Y \in \operatorname{Ob} \mathcal{C}}{\oplus} \underset{\mathcal{C}}{\operatorname{Hom}(X, Y)} \otimes K=\left\{\sum x_{i} \varphi_{i} \mid \varphi_{i} \in \operatorname{Mor}(\mathcal{C}), x_{i} \in K\right\},
$$

where we write $M \otimes K$ for the free K-module with basis ${ }^{1} M$. The multiplication of arrows in $K[\mathcal{C}]$ is defined by the rule

$$
\varphi \psi \stackrel{\text { def }}{=} \begin{cases}\varphi \circ \psi & \text { if the target of } \psi \text { coincides with the source of } \varphi \\ 0 & \text { otherwise }\end{cases}
$$

and is extended linearly onto arbitrary finite linear combinations of arrows. One can think of $K[\mathcal{C}]$ as an algebra of (maybe infinte) square matrices whose cells are numbered by the pairs of objects of category \mathcal{C}, an element from (Y, X)-cell belongs to free module $\operatorname{Hom}(X, Y) \otimes K$, and only finitely many such elements are non-zero. In general, algebra $K[\mathcal{C}]$ is non-commutative and without unity. However for each $f \in K[\mathcal{C}]$ there is an idempotent $e_{f}=e_{f}^{2}$ such that

$$
e_{f} \circ f=f \circ e_{f}=f
$$

(e.g. $\sum_{X} \mathrm{Id}_{X}$, where X runs through the sources and targets of all arrows that appear in f).

Example 1.4 (combinatorial simplexes)

Let $\Delta_{\text {big }}$ be the category of all finite ordered sets and order preserving maps ${ }^{2}$. This category is not small. However it contains a small full subcategory $\Delta \subset \Delta_{\text {big }}$ formed by the sets of integers

$$
\begin{equation*}
[n] \stackrel{\text { def }}{=}\{0,1, \ldots, n\}, \quad n \geqslant 0, \tag{1-2}
\end{equation*}
$$

with their standard orderings. The ordered set (1-2) is called the combinatorial n-simplex. Category Δ is called the simplicial category.

Exercise 1.1. Show that algebra $\mathbb{Z}[\Delta]$ is generated by the arrows

$$
\begin{align*}
e_{n}=\operatorname{Id}_{[n]} & \text { (the identity endomorphism) } \tag{1-3}\\
\partial_{n}^{(i)}:[n-1] \hookrightarrow[n] & \text { (the inclusion whose image does not contain } i \text {) } \tag{1-4}\\
s_{n}^{(i)}:[n] \rightarrow[n-1] & \text { (the surjection sending } i \text { and }(i+1) \text { to the same element) } \tag{1-5}
\end{align*}
$$

and describe the generating relations ${ }^{3}$ between these arrows.

[^1]1.1.1 Mono, epi, and isomorphisms. A morphism φ in a category \mathcal{C} is called a monomorphism ${ }^{1}$ (resp. an epimorphism ${ }^{2}$), if it admits left (resp. right) cancellation, that is
$$
\varphi \alpha=\varphi \beta \Rightarrow \alpha=\beta \quad(\text { resp. } \alpha \varphi=\beta \varphi \Rightarrow \alpha=\beta)
$$

A morphism $\varphi: X \rightarrow Y$ is called an isomorphism ${ }^{3}$, if there is a morphism $\psi: Y \rightarrow X$ such that $\varphi \psi=\operatorname{Id}_{Y}$ and $\psi \varphi=\mathrm{Id}_{X}$. In this case objects X and Y are called isomorphic. We depict injective, surjective, and invertible arrows as $\hookrightarrow, \rightarrow$, and $\xrightarrow{\rightarrow}$ respectively.

Exercise 1.2. Find the cardinality of $\operatorname{Hom}_{\Delta}([n],[m])$. How many injective, surjective, and isomorphic arrows are there in $\operatorname{Hom}_{\Delta}([n],[m])$?
1.1.2 Rewersal of arrows. Associated with a category \mathcal{C} is an opposite category $\mathcal{C}^{\text {opp }}$ with the same objects but rewersed arrows, that is

$$
\operatorname{Hom}_{\mathcal{C}^{\mathrm{opp}}}(X, Y) \stackrel{\text { def }}{=} \operatorname{Hom}_{\mathcal{C}}(Y, X) \quad \text { and } \quad \varphi^{\mathrm{opp}} \circ \psi^{\mathrm{opp}}=(\psi \circ \varphi)^{\mathrm{opp}}
$$

In terms of algebras, algebra $K\left[\mathcal{C}^{\text {opp }}\right]=K[\mathcal{C}]^{\text {opp }}$ is an opposite algebra of $K[\mathcal{C}]$. Injections in \mathcal{C} become surjections in $\mathcal{C}^{\text {opp }}$ and vice versa.
1.2 Functors. A functor ${ }^{4} F: \mathcal{C} \rightarrow \mathcal{D}$ between categories \mathcal{C} and \mathcal{D} is a mapping

$$
\mathrm{Ob} \mathcal{C} \rightarrow \mathrm{Ob} \mathcal{D}, \quad X \mapsto F(X),
$$

and a collection of maps ${ }^{5}$

$$
\begin{equation*}
\operatorname{Hom}_{\mathcal{C}}(X, Y) \rightarrow \operatorname{Hom}_{\mathcal{D}}(F(X), F(Y)), \quad \varphi \mapsto F(\varphi), \tag{1-6}
\end{equation*}
$$

such that $F\left(\operatorname{Id}_{X}\right)=\operatorname{Id}_{F(X)}$ for all $X \in \operatorname{Ob} \mathcal{C}$ and $F(\varphi \circ \psi)=F(\varphi) \circ F(\psi)$ each time when composition $\varphi \circ \psi$ is defined. In terms of algebras, a functor is a homomorfism of algebras $F: K[\mathcal{C}] \rightarrow K[\mathcal{D}]$. If all the maps (1-6) are surjective, functor F is called full. An image of a full functor is a full subcategory. If all the maps (1-6) are injective, F is called faithful. A faithful functor produces an injective homomorphism of algebras $F: K[\mathcal{C}] \rightarrow K[\mathcal{D}]$.

The simplest examples of functors are provided by the identity functor $\operatorname{Id}_{\mathcal{C}}: \mathcal{C} \rightarrow \mathcal{C}$ acting identically on the objects and on the arrows and by the forgetting functors, sending categories of sets with extra structures and the morphisms respecting these structures ${ }^{6}$ to the category Set, of sets, by forgetting the structure.

Example 1.5 (GEOMETRIC REALIZATION OF COMBINATORIAL SIMPLEXES)

The geometric realization functor $\Delta \rightarrow \mathcal{T}$ op takes n-dimensional combinatorial simplex [n] from (1-2) to the standard regular n-simplex ${ }^{7}$

$$
\begin{equation*}
\Delta^{n}=\left\{\left(x_{0}, x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n+1} \mid \sum x_{v}=1, x_{v} \geqslant 0\right\} \subset \mathbb{R}^{n+1} \tag{1-7}
\end{equation*}
$$

[^2]and takes each order preserving map $\varphi:[n] \rightarrow[m]$ to the affine linear map $\varphi_{*}: \Delta^{n} \rightarrow \Delta^{m}$ that acts on the basic vectors as $e_{v} \mapsto e_{\varphi(v)}$. This is faithful but non-full functor. It sends generators (1-4), (1-5) of algebra $\mathbb{Z}[\Delta]$ to the i-th face inclusion $\Delta^{(n-1)} \hookrightarrow \Delta^{n}$ and to the i-th edge contraction ${ }^{1}$ $\Delta^{n} \rightarrow \Delta^{(n-1)}$.
1.2.1 Presheaves. A functor $F: \mathcal{C}^{\mathrm{opp}} \rightarrow \mathcal{D}$ is called a contra-variant functor from \mathcal{C} to \mathcal{D} or a presheaf of objects of category \mathcal{D} on a category \mathcal{C}. It reverses the compositions $F(\varphi \circ \psi)=$ $F(\psi) \circ F(\varphi)$. In terms of algebras, a contravariat functor produces an anti-homomorphism of algebras $K[\mathcal{C}] \rightarrow K[\mathcal{D}]$.

Example 1.6 (presheaves and sheaves of sections)

The notion «presheaf» has appeared initially in a context of the category $\mathcal{C}=\mathcal{U}_{(X)}$ of open subsets $U \subset X$ in a given topological space X. A presheaf $F: U(X)^{\mathrm{opp}} \rightarrow \mathcal{D}$ attaches an object $F(U) \in \operatorname{ObD}$ to each open set $U \subset X$. This object is called (an object of) sections of F over U. Depending on \mathcal{D}, the sections can form a ring, an algebra, a vector space, a topological space, etc. Attached to an inclusion of open sets $U \subset W$ is a map $F(W) \rightarrow F(U)$ called the restriction of sections from W onto $U \subset W$. The restriction of a section $s \in F(W)$ onto a subset $U \subset W$ is usually denoted by $\left.s\right|_{U}$. Here are some typical examples of such presheaves:

1) Presheaf Γ_{E} of the sets of local sections of a continuous mapping $p: E \rightarrow X$ has $\Gamma_{E}(U)$ equal to a set of maps $s: U \rightarrow E$ such that ${ }^{2} p \circ s=\mathrm{Id}_{U}$. Its restriction maps take sections to their restrictions onto smaller subsets.
2) Specializing the previous example to projection $p: X \times Y \rightarrow X$, we get the sheaf $\mathcal{C}^{0}(X, Y)$ of locally defined continuous mappings $s: U \rightarrow Y$.
3) Further specialization of the above examples leads to so called structure presheaves \mathcal{O}_{x} such as the presheaf of local smooth functions $U \rightarrow \mathbb{R}$ on a smooth manifold X, or the presheaf of local holomorphic functions $U \rightarrow \mathbb{C}$ on a complex analytic manifold X, or the presheaf of local rational functions $U \rightarrow \mathbb{k}$ on an algebraic manifold X over a field \mathbb{k} etc. All these presheaves are presheaves of algebras over the corresponding field \mathbb{R}, \mathbb{C}, or \mathbb{k}.
4) A constant presheaf S has $S(U)$ equal to a fixed set S for all open $U \subset X$ and all its restriction maps are the identity morphisms Id_{S}.

A presheaf F of sets on S is called a sheaf, if for any open W, any covering of W by open $U_{i} \subset W$, and any collection of sections $s_{i} \in F\left(U_{i}\right)$ such that $\left.s_{i}\right|_{U_{i} \cap U_{j}}=\left.s_{j}\right|_{U_{i} \cap U_{j}}$ for all i, j there exist a unique section $s \in F(W)$ such that $\left.s\right|_{U_{i}}=s_{i}$ for all i. If there exist at most one such a section s but it does not have to exist, then F is called a separable presheaf. All above presheaves (1) - (4) are separable and only the last of them is not a sheaf, because for disjoint union $W=U_{1} \sqcup U_{2}$ of open U_{1}, U_{2} not any pair of constants $s_{i} \in S\left(U_{i}\right)$ appears as the restriction of some constant $s \in S(W)$. However, besides the constant presheaf S, associated to an arbitrary set S is
5) a constant sheaf S^{\sim} whose sets of sections $S^{\sim}(U)$ consist of continuous maps $U \rightarrow S$, where S is considered with the discrete topology.

[^3]Exercise 1.3. Find all antiderivatives ${ }^{1}$ of real function $x \mapsto 1 / x$.
Exercise 1.4. Show that the category of sheaves $\operatorname{Sh}(X)$ is a full subcategory of the category of presheaves $p \operatorname{Sh}(X)$.

Example 1.7 (TRIANGULATED TOPOLOGICAL SPACES)
Write $\Delta_{\mathrm{s}} \subset \Delta$ for non-full subcategory with $\mathrm{Ob} \Delta_{\mathrm{s}}=\mathrm{Ob} \Delta$ and injective ${ }^{2}$ order preserving maps as the morphisms. Category Δ_{s} is called the semisimplicial category.

Exercise 1.5. Show that algebra $K\left[\Delta_{\mathrm{s}}\right]$ is generated by the identical arrows $e_{n}=\operatorname{Id}_{[n]}$ and the inclusions $\partial_{n}^{(i)}$ from (1-4).
A presheaf of sets $X: \Delta_{\mathrm{s}}^{\mathrm{opp}} \rightarrow$ Set on Δ_{s} is called a semisimplicial set. Each semisimplicial set is nothing but a combinatorial description for some triangulated topological space denoted by $|X|$ and called a geometric realization of semisimplicial set X. Namely, F attaches a set $X_{n}=X([n])$ to each non-negative integer n. Let us interpret the points $x \in X_{n}$ as disjoint regular n-simplexes Δ_{x}^{n}. The morphisms $\varphi:[n] \rightarrow[m]$ in category Δ_{s} stay in bijection with n-dimensional faces of regular m-simplex Δ^{m}. A map $X(\varphi): X_{m} \rightarrow X_{n}$, which corresponds to such a morphism φ, produces a gluing rule: for each $x \in X_{m}$ it picks up some n-simplex Δ_{y}^{n}, where $y=X(\varphi) x \in X_{n}$, that should be glued to the constructed space $|X|$ as the φ-th face of simplex Δ_{x}^{m}.

Exercise 1.6. Is there a triangulation of the cycle S^{1} by \quad a) three 0 -simplexes and three 1 simplexes ${ }^{3}$ в) one 0 -simplex and one 1 -simplex? Is there a triangulation of the 2 -sphere S^{2} by c) four 0 -simplexes, six 1 -simplexes and four 2 -simplexes D) two 0 -simplexes, one 1 simplex and one 2 -simplexes? Is there a triangulation of the 2 -torus T^{2} by one 0 -simplex, three 1 -simplexes and two 2 -simplex?

Example 1.8 (Simplicial sets)

Presheaves $X: \Delta^{\mathrm{opp}} \rightarrow$ Set on the whole of the simplicial category are called simplicial sets. Each simlicial set X also produces a topological space $|X|$ called a geometric realization of X. It is glued from disjoint regular simplexes $\Delta_{x}^{n}, x \in X_{n}$, by identifying points $s \in \Delta_{\varphi^{*}(x)}^{n}$ and $\varphi_{*}(s) \in \Delta_{x}^{m}$, where $\varphi:[n] \rightarrow[m]$ is a morphism in category $\Delta, \varphi^{*} \stackrel{\text { def }}{=} X(\varphi): X_{m} \rightarrow X_{n}$ denotes its image under X, and $\varphi_{*}: \Delta^{n} \rightarrow \Delta^{m}$ denotes affine linear map whose action on the vertexes of Δ^{n} is prescribed by φ. Formally speaking, $|X|$ is a quotient space of a topological direct product ${ }^{4} \prod_{n \geqslant 0} X_{n} \times \Delta^{n}$ by the minimal equivalence relation that contains identifications $\left(x, \varphi_{*} s\right) \simeq\left(\varphi^{*} x, s\right)$ for all arrows $\varphi:[n] \rightarrow[m]$ in $\operatorname{Mor}(\Delta)$, all $x \in X_{m}$, and all $s \in \Delta^{n}$.

If an arrow $\varphi=\delta \sigma:[n] \rightarrow[m]$ is decomposed into a surjection $\sigma:[n] \rightarrow[k]$ followed by an injection $\delta:[k] \hookrightarrow[m]$, then n-simplex Δ_{z}^{n} marked by $z=\sigma^{*} y=\sigma^{*} \delta^{*} x \in \varphi^{*}\left(X_{m}\right) \subset X_{n}$ appears in the space $|X|$ as k-simplex Δ_{y}^{k} obtained from Δ^{n} by means of linear projection $\sigma_{*}: \Delta^{n} \rightarrow \Delta^{k}$ and this k-simplex has to be the δ-th face of m-simplex Δ_{x}^{m}. In particular, all simplexes $z \in X_{n}$

[^4]lying in the image of any map σ^{*} coming from an arrow $\sigma:[k] \rightarrow[n]$ with $k>n$ are degenerated: they are visible in the space $|X|$ as simplexes of a smaller dimension.

Usage of degenerated simplexes allows to describe combinatorially more complicated cell complexes than the triangulations. For example, topological description of n-spere S^{n} as a quotint space $S^{n}=\Delta^{n} / \partial \Delta^{n}$ leads to a pseudo-triangulation of S^{n} by one 0 -simplex and one n-cell, which is the interior part of the regular n-simplex Δ^{n}. Combinatorially, this is the geometric realization of simplicial set X that consists of sets X_{k} obtained from the sets $\operatorname{Hom}_{\Delta}([k],[n])$ by gluing all non-surjective maps to one distiguished element. The map $\varphi^{*}: X_{m} \rightarrow X_{k}$ corresponding to an arrow $\varphi:[k] \rightarrow[m]$ is induced by the left composition with φ :

$$
\operatorname{Hom}_{\Delta}([m],[n]) \rightarrow \operatorname{Hom}_{\Delta}([k],[n]), \quad \zeta \mapsto \varphi \zeta .
$$

Exercise 1.7. Compute cardinalities ${ }^{1}$ of all sets X_{k} and check that maps $\varphi^{*}: X_{m} \rightarrow X_{k}$ are well defined and produce a functor $X: \Delta^{\mathrm{opp}} \rightarrow$ Set.
1.2.2 Hom-functors. Associated with an object $X \in \mathrm{Ob} \mathcal{C}$ in an arbitrary category \mathcal{C} are a (covariant) functor $h^{X}: \mathcal{C} \rightarrow$ Set that takes $Y \in \operatorname{Ob\mathcal {C}}$ to $h^{X}(Y) \stackrel{\text { def }}{=} \operatorname{Hom}(X, Y)$ and sends an arrow $\varphi: Y_{1} \rightarrow Y_{2}$ to the map $\varphi_{*}: \operatorname{Hom}\left(X, Y_{1}\right) \rightarrow \operatorname{Hom}\left(X, Y_{2}\right) \psi \mapsto \varphi \circ \psi$, provided by the left composition with φ and a presheaf $h_{X}: \mathcal{C} \rightarrow \mathcal{S e t}$ that takes $Y \in \operatorname{Ob} \mathcal{C}$ to $h_{X}(Y) \stackrel{\text { def }}{=} \operatorname{Hom}(Y, X)$ and sends an arrow $\varphi: Y_{1} \rightarrow Y_{2}$ to the map $\varphi^{*}: \operatorname{Hom}\left(Y_{2}, X\right) \rightarrow \operatorname{Hom}\left(Y_{1}, X\right) \psi \mapsto \psi \circ \varphi$ provided by the right composition with φ.

For example, presheaf $h_{[n]}: \Delta_{s}^{\mathrm{opp}} \rightarrow$ Set produces the standard triangulation of the regular n-simplex Δ^{n} : the sets of k-simplexes $h_{[n]}([k])=\operatorname{Hom}([k],[m])$ of this triangulation are precisely the sets of k-dimensional faces of Δ^{n}. Presheaf $h_{U}: U(X) \rightarrow$ Set on a topological space X has exactly one section over all open $W \subset U$ and the empty set of sections over all other open $W \not \subset U$. Presheaf $h_{\mathfrak{k}}: \mathcal{V} e c_{\mathbb{k}}^{\mathrm{opp}} \rightarrow \mathcal{V} e c_{\mathbb{k}}$ takes a vector space V to its dual space $h_{\mathbb{k}}(V)=\operatorname{Hom}(V, \mathbb{k})=V^{*}$ and sends a linear mapping $\varphi: V \rightarrow W$ to its dual mapping $\varphi^{*}: W^{*} \rightarrow V^{*}$, which takes a linear form $\xi: W \rightarrow \mathbb{k}$ to $\xi \circ \varphi: V \rightarrow \mathbb{k}$.
1.3 Natural transformations. Given two functors $F, G: \mathcal{C} \rightarrow \mathcal{D}$, then a natural ${ }^{2}$ transformation is a collection of arrows $f_{X}: F(X) \rightarrow G(X)$, numbered by objects $X \in \mathrm{Ob} \mathcal{C}$, such that for each morphism $\varphi: X \rightarrow Y$ in \mathcal{C} a diagram

is commutative in \mathcal{D}. A natural transformation $f: F \rightarrow G$ is called an isomorphism of functors, if all the morphisms $f_{X}: F(X) \rightarrow G(X)$ are isomorphisms. In this case functors F and G are called isomorphic.

On the language of algebras, a homomorphism $F: K[\mathcal{C}] \rightarrow K[\mathcal{D}]$ provides $K[\mathcal{D}]$ with a structure of a module over $K[\mathcal{C}]$, in which an element $a \in K[\mathcal{C}]$ acts on an element $b \in K[\mathcal{D}]$ as $a \cdot b \stackrel{\text { def }}{=} F(a) \cdot b$. Two functors F, G produce two different $K[\mathcal{C}]$-module structures on $K[\mathcal{D}]$ and

[^5]natural transformation $f: K[\mathcal{D}] \rightarrow K[\mathcal{D}]$ is nothing but a $K[\mathcal{C}]$-linear homomorphism between these modules: for each $\varphi \in K[\mathcal{C}]$ multiplications by $F(\varphi)$ and by $G(\varphi)$ in $K[\mathcal{D}]$ satisfy the relation $f \circ F(\varphi)=G(\varphi) \circ f$.
1.3.1 Categories of functors. If a category \mathcal{C} is small, then the functors $\mathcal{C} \rightarrow \mathcal{D}$ to an arbitrary category \mathcal{D} form a category $\mathcal{F} u n(\mathcal{C}, \mathcal{D})$, whose objects are the functors and morphismfs are the natural transformations. Contravariant functors $\mathcal{C}^{\text {opp }} \rightarrow \mathcal{D}$ also form a category called a category of presheaves ${ }^{1}$ and denoted by $p \operatorname{Sh}(\mathcal{C}, \mathcal{D})$. Omitted letter \mathcal{D} in this notation means on default that $\mathcal{D}=\operatorname{Set}$, i.e. $p \operatorname{Sh}(\mathcal{C}) \stackrel{\text { def }}{=} \mathcal{F} u n\left(\mathcal{C}^{\mathrm{opp}}, \mathcal{S e t}\right)$.

Exercise 1.8. Verify that prescription $X \mapsto h_{X}$ produces a covariant functor $\mathcal{C} \rightarrow p \operatorname{Sh}(\mathcal{C})$ and prescription $X \mapsto h^{X}$ produces a contravariant functor $\mathcal{C}^{\mathrm{opp}} \rightarrow \mathcal{F u}(\mathcal{C}, \mathcal{S e t})$.
1.3.2 Эквивалентности категорий. Categories \mathcal{C} and \mathcal{D} are called equivalent, if there exists a pair of functors $F: \mathcal{C} \rightarrow \mathcal{D}$ and $G: \mathcal{D} \rightarrow \mathcal{C}$ such that compositions $G F$ and $F G$ are isomorphic to the identity functors $\mathrm{Id}_{\mathcal{C}}$ and $\mathrm{Id}_{\mathcal{D}}$ respectively. This does not mean that $F G=\operatorname{Id}_{\mathcal{D}}$ or $G F=\mathrm{Id}_{C}$: objects $G F(X)$ and X may be different as well as objects $F G(Y)$ and Y. But there are functorial in $X \in \mathrm{Ob} \mathcal{C}$ and $Y \in \mathrm{Ob} \mathcal{D}$ isomorphisms

$$
\begin{equation*}
G F(X) \xrightarrow{\leadsto} X \quad \text { and } \quad F G(Y) \leadsto Y . \tag{1-9}
\end{equation*}
$$

In these case functors F and G are called quasi-inverse equivalences between categories \mathcal{C} and \mathcal{D}.

Example 1.9 (Choice of bases)

Write $v e c_{\mathbb{k}}$ for the category of finite dimensional vector spaces over a field \mathbb{k} and $\mathcal{C} \subset v e c_{\mathbb{k}}$ for its small full subcategory formed by coordinate spaces $\mathbb{k}^{n}, n \geqslant 0$, where we put $\mathbb{k}^{0}=\{0\}$. Let us fix some basis in each vector space $V \in \mathrm{Ob} v e c_{\mathrm{k}}$ or, equivalently, an isomorphism ${ }^{2}$

$$
\begin{equation*}
f_{V}: V \xrightarrow{\leadsto} \mathbb{k}^{\operatorname{dim}(V)}, \tag{1-10}
\end{equation*}
$$

and for $V=\mathbb{k}^{n}$ put $f_{\mathbb{k}^{n}}=\operatorname{Id}_{\mathbb{k}^{n}}$. Define a functor $F:$ vec $\rightarrow \mathcal{C}$ by sending a space V to $\mathbb{k}^{\operatorname{dim} V}$ and an arrow $\varphi: V \rightarrow W$ to composition $F(\varphi)=f_{W} \circ \varphi \circ f_{V}^{-1}$, which can be viewed as the matrix of φ in the chosen bases of V and W. Let us show that F is an equivalence of categories quasi-inverse to the tautological full inclusion $G: \mathcal{C} \hookrightarrow$ vec. By the construction of F there is an explicit equality of functors ${ }^{3} F G=\operatorname{Id}_{\mathcal{C}}$. Reverse composition $G F:$ vec \rightarrow vec takes values in the small subcategory $\mathcal{C} \subset$ vec whose cardinality is non-compatible with cardinality vec at all. However, the isomorphisms (1-10) give a natural transformation $\mathrm{Id}_{v e c} \rightarrow G F$, because all the diagrams (1-8)

are commutative by the construction of F. Thus, the identity functor $\mathrm{Id}_{v e c}$ is naturally isomorphic to $G F$.

[^6]ExErcise 1.9. Show that category of finite ordered sets $\Delta_{\text {big }}$ is equivalent to its small simplicial subcategory $\Delta \subset \Delta_{\text {big }}$.

Lemma 1.1

Functor $G: \mathcal{C} \rightarrow \mathcal{D}$ is an equivalence of categories iff it is full, faithful, and essentially surjective (the latter means that for each $Y \in \operatorname{Ob} \mathcal{D}$ there is some $X=X(Y) \in \mathrm{Ob} \mathcal{C}$ such that $G(X)$ is isomorphic to Y).

Proof. For each $Y \in \operatorname{Ob} \mathcal{D}$ pick up some $X=X(Y) \in \operatorname{Ob} \mathcal{C}$ and an isomorphism $f_{Y}: Y \leadsto G(X)$. When $Y=G(X(Y))$ put $f_{G(X)}=\operatorname{Id}_{G(X)}$. Define a functor $F: \mathcal{D} \rightarrow \mathcal{C}$ by sending $Y \in \mathrm{Ob} \mathcal{D}$ to $F(Y)=X(Y)$ and arrow $\varphi: Y_{1} \rightarrow Y_{2}$ to an arrow $\psi: X\left(Y_{1}\right) \rightarrow X\left(Y_{2}\right)$ such that $G(\psi)=f_{Y_{2}} \circ \varphi \circ f_{Y_{1}}^{-1}$ (since $G: \operatorname{Hom}\left(X_{1}, X_{2}\right) \xrightarrow{\sim} \operatorname{Hom}\left(G\left(X_{1}\right), G\left(X_{2}\right)\right)$ is an isomorphism, such arrow ψ exists and is unique). By construction, $F G=\operatorname{Id}_{\mathcal{C}}$ and for each morphism $\varphi: Y_{1} \rightarrow Y_{2}$ we have commutative diagram

Thus, morphisms $f_{Y}: Y \xrightarrow{\leadsto} G(X)=G F(Y)$ give a natural isomorphism between $\operatorname{Id}_{\mathcal{D}}$ and $G F$.
EXERCISE 1.10. Show that dualizing functor $h_{\mathrm{k}}: v e c_{\mathrm{k}} \rightarrow v e c_{\mathbb{k}}, V \mapsto V^{*}$, is quasi-inverse to itself and produces autoantiequivalence of the category of finite dimensional vector spaces.
1.4 Representable functors. A presheaf $F: \mathcal{C}^{\text {opp }} \rightarrow$ Set is called representable, if it is naturally isomorphic to presheaf h_{X} for some $X \in \operatorname{Ob} \mathcal{C}$. In this case we say that object X a represents presheaf F. Dually, a covariant functor $F: \mathcal{C} \rightarrow$ Set is called corepresentable, if it is naturally isomorphic to covariant functor h^{X} for some $X \in \operatorname{Ob\mathcal {C}}$. In this case we say that object $X a$ corepresents functor F.

Lemma 1.2 (contravariant Yoneda lemma)

For any presheaf of sets $F: \mathcal{C}^{\mathrm{opp}} \rightarrow$ Set on an arbitrary category \mathcal{C} there is functorial in $F \in$ $p \operatorname{Sh}(\mathcal{C})$ and in $A \in \mathcal{C}$ bijection $F(A) \xrightarrow{\leadsto} \operatorname{Hom}_{p S h(\mathcal{C})}\left(h_{A}, F\right)$. It takes an element $a \in F(A)$ to a natural transformation

$$
\begin{equation*}
f_{X}: \operatorname{Hom}(X, A) \rightarrow F(X), \tag{1-11}
\end{equation*}
$$

that sends an arrow $\varphi: X \rightarrow A$ to the image of element a under map $F(\varphi): F(A) \rightarrow F(X)$. The inverse bijection takes a natural transformation (1-11) to the image of the identity $\operatorname{Id}_{A} \in h_{A}(A)$ under the map $f_{A}: h_{A}(A) \rightarrow F(A)$.

Proof. For any natural transformation (1-11), for any object $X \in \mathrm{Ob} \mathcal{C}$, and for any arrow $\varphi: X \rightarrow A$ commutative diagram (1-8)

forces the equality $f_{X}(\varphi)=F(\varphi)\left(f_{A}\left(\operatorname{Id}_{A}\right)\right)$, because the upper arrow in (1-12) sends Id_{A} to φ. Thus the whole of transformation $f: h_{A} \rightarrow F$ is uniquely recovered as soon the element $a=$ $f_{A}\left(\operatorname{Id}_{A}\right) \in F(A)$ is given. Choosing some $a \in F(A)$ we obtain transformation (1-11) that sends $\varphi \in \operatorname{Hom}(X, A)$ to $f_{X}(\varphi)=F(\varphi)(a) \in F(X)$. It is natural, because for any arrow $\psi: Y \rightarrow X$ and any $\varphi \in h_{A}(X)$ we have $f_{Y}\left(h_{A}(\psi) \varphi\right)=f_{Y}(\varphi \psi)=F(\varphi \psi) a=F(\psi) F(\varphi) a=F(\psi)\left(f_{X}(\varphi)\right)$, i.e. $f_{Y} \circ h_{A}(\psi)=F(\psi) \circ f_{X}$ are the same maps $h_{A}(X) \rightarrow F(Y)$.

Exercise 1.11 (covariant Yoneda lemma). For any covariant functor $F: \mathcal{C} \rightarrow$ Set construct functorial in F and in $A \in \operatorname{Ob\mathcal {C}}$ bijection $F(A) \xrightarrow{\sim} \operatorname{Hom}_{\mathcal{F u n}(\mathcal{C}, \text { Set })}\left(h^{A}, F\right)$.

Corollary 1.1

Covariant functor $X \mapsto h_{X}$ and contravariant functor $X \mapsto h^{X}$ are full and faithful. In other words, there are functorial in $A, B \in \mathrm{Ob} \mathcal{C}$ isomorphisms $\operatorname{Hom}_{p s h(\mathcal{C})}\left(h_{A}, h_{B}\right)=\operatorname{Hom}_{\mathcal{C}}(A, B)$ and $\operatorname{Hom}_{\mathcal{F u n}(\mathcal{C})}\left(h^{A}, h^{B}\right)=\operatorname{Hom}_{\mathcal{C}}(B, A)$.

Proof. Apply Yoneda lemmas to $F=h_{B}$ and $F=h^{B}$.
Corollary 1.2
If a functor $F: \mathcal{C} \rightarrow$ Set is (co)representable, then its (co)representing object is unique up to natural isomorphism.

Proof. If $F \simeq h^{A} \simeq h^{B}$ (or $F \simeq h_{A} \simeq h_{B}$), then the natural isomorphism between functors h_{A} and h_{B} (resp. between h^{A} and h^{B}) produces by cor. 1.1 an isomorphism between A and B in \mathcal{C}.
1.4.1 Definitions via «universal properties». The Yoneda lemmas provide us with two dual ways for transferring set-theoretical constructions from category Set to an arbitrary category \mathcal{C}. Namely, to define some set-theoretical operation on objects $X_{i} \in \mathrm{Ob} \mathcal{C}$, consider a presheaf $\mathcal{C}^{\text {opp }} \rightarrow \mathcal{S e t}$ that takes an object $Y \in \mathrm{Ob} \mathcal{C}$ to the set obtained from the sets $\operatorname{Hom}\left(Y, X_{i}\right)$ by the operation in question. If this presheaf is representable, we declare its representing object to be the result of our operation applied to the objects X_{i}. The dual way uses covariant in Y functors $\operatorname{Hom}\left(X_{i}, Y\right)$ and corerepresentig object. Although both definitions are implicit, defined objects (if exist) come with some universal properties and are unique up to unique isomorphism respecting these properties.

Example 1.10 (Direct product $A \times B$)

A product $A \times B$ of objects $A, B \in \mathrm{Ob} \mathcal{C}$ in an arbitrary category \mathcal{C} is defined as representing object for presheaf of sets $Y \mapsto \operatorname{Hom}(Y, A) \times \operatorname{Hom}(Y, B)$. If $A \times B$ exists, then for all Y in \mathcal{C} there is functorial in Y isomorphism $\beta_{Y}: \operatorname{Hom}(Y, A \times B) \xrightarrow{\leftrightharpoons} \operatorname{Hom}(Y, A) \times \operatorname{Hom}(Y, B)$. For $Y=A \times B$ it produces a pair of arrows $A \stackrel{\pi_{A}}{\leftarrow} A \times B \xrightarrow{\pi_{B}} B$ - the image of the identity $\beta_{A \times B}\left(\operatorname{Id}_{A \times B}\right) \in$ $\operatorname{Hom}(A \times B, A) \times \operatorname{Hom}(A \times B, B)$. This pair is universal in the following sense: for any pair of arrows $A \stackrel{\varphi}{\longleftrightarrow} Y \xrightarrow{\psi} B$ there exists a unique arrow $\varphi \times \psi: Y \rightarrow A \times B$ such that $\varphi=\pi_{A} \circ(\varphi \times \psi)$ and $\psi=\pi_{B} \circ(\varphi \times \psi)$.

EXERCISE 1.12. Show that A) for each diagram $A \stackrel{\pi_{A}^{\prime}}{\leftrightarrows} C \xrightarrow{\pi_{B}^{\prime}} B$ that possess the same universal property there exists a unique isomorphism $\gamma: C \xrightarrow{\sim} A \times B$ such that $\pi_{A} \circ \gamma=\pi_{A}^{\prime}$ and $\pi_{B} \circ \gamma=\pi_{B}^{\prime}$ в) for any pair of arrows $\alpha: A_{1} \rightarrow A_{2}, \beta: B_{1} \rightarrow B_{2}$ there is a unique arrow $\alpha \times \beta: A_{1} \times B_{1} \rightarrow A_{2} \times B_{2}$ such that $\alpha \circ \pi_{A}=(\alpha \times \beta) \circ \alpha$ and $\beta \circ \pi_{B}=(\alpha \times \beta) \circ \beta$.

Exercise 1.13. Show that the product in $\mathcal{T} o p$ exists and coincides with the set theoretical product $A \times B=\{(a, b) \mid a \in A, b \in B\}$ equipped with the weakest topology in which both maps π_{A}, π_{B} are continuous. Being equipped with componentwise operations, the set $A \times B$ turns to direct product in the categories of groups, rings and modules over a ring.

Example 1.11 (Direct coproduct $A \otimes B$)
Dually, a coproduct $A \otimes B$ in an arbitrary category \mathcal{C} is defined as corepresenting object for covariant functor $\mathcal{C} \rightarrow$ Set, $Y \mapsto \operatorname{Hom}(A, Y) \times \operatorname{Hom}(B, Y)$. It is uniquely characterized by the universal diagram $A \xrightarrow{\iota_{A}} A \otimes B \stackrel{\iota_{B}}{\longleftrightarrow} B$ such that for any pair of arrows $A \xrightarrow{\varphi} Y \stackrel{\psi}{\longleftrightarrow} B$ there exists a unique arrow $\varphi \otimes \psi: A \otimes B \rightarrow Y$ such that $\varphi=(\varphi \otimes \psi) \circ \iota_{A}$ and $\psi=(\varphi \otimes \psi) \circ \iota_{B}$.

EXERCISE 1.14. Let universal diagram $A \xrightarrow{\iota_{A}} A \otimes B \stackrel{\iota_{B}}{\longleftrightarrow} B$ exist. Show that A) it is unique up to unique isomorphism commuting with ι_{A} and ι_{B} в) each pair of arrows $\alpha: A_{1} \rightarrow A_{2}$, $\beta: B_{1} \rightarrow B_{2}$ produces a unique arrow $\alpha \otimes \beta: A_{1} \otimes B_{1} \rightarrow A_{2} \otimes B_{2}$ such that $\iota_{A} \circ \alpha=(\alpha \otimes \beta) \circ \alpha$.
In Set and $\mathcal{T} o p$ the coproduct $A \otimes B=A \sqcup B$ is the disjoint union. In $\mathcal{G r p}$ the coproduct $A \otimes B=A * B$ is the free product ${ }^{1}$. In category of modules over a ring ${ }^{2} A \otimes B=A \times B=A \oplus B$ is the direct sum of modules. In the category of commutative rings with unity $A \otimes B$ is the tensor product of rings ${ }^{3}$.

[^7]
Comments to some exercises

Exrc. 1.3. Typical answer $« \ln |x|+C$, where C is an arbitrary constant» is incorrect. Actually, C is a section of the constant sheaf \mathbb{R}^{\sim} over $\mathbb{R} \backslash\{0\}$.
Exrc. 1.11. Each natural transformation f_{*} picks up an element in $F(A)$ - the image of the identity $\operatorname{Id}_{A} \in h^{A}(A)$ under the map $f_{A}: h^{A}(A) \rightarrow F(A)$. Vice versa, an element $a \in F(A)$ produces a transformation $f_{X}: \operatorname{Hom}(A, X) \rightarrow F(X)$ that sends an arrow $\varphi: A \rightarrow X$ to the image of a under the map $F(\varphi): F(A) \rightarrow F(X)$. To verify that it is natural and takes $\operatorname{Id}_{A} \in h^{A}(A)$ to a via $f_{A}: h^{A}(A) \rightarrow F(A)$, use commutative diagram

whose upper arrow sends Id_{A} to φ and forces $f_{X}(\varphi)=F(\varphi)\left(f_{A}\left(\operatorname{Id}_{A}\right)\right)$.

[^0]: ${ }^{1}$ We would not like to formalize here this logical notion explicitly (see any ground course of Math Logic). However we will consider e.g. the category of sets whose objects - sets - do not form a set.
 ${ }^{2}$ like the multiplication symbol, the composition symbol «०» is usually skipped
 ${ }^{3}$ it is unique because of $\mathrm{Id}^{\prime}=\mathrm{Id}^{\prime} \circ \mathrm{Id}^{\prime \prime}=\mathrm{Id}^{\prime \prime}$
 ${ }^{4}$ a module is called finitely presented, if it is isomorphic to a quotient of a finitely generated free module through its finitely generated submodule
 ${ }^{5}$ that is, partially ordered set

[^1]: ${ }^{1}$ this module is formed by all finite formal linear combinations of elements of the set M with coefficients in K
 ${ }^{2}$ i.e. $\varphi: X \rightarrow Y$ such that $x_{1} \leqslant x_{2} \Rightarrow \varphi\left(x_{1}\right) \leqslant \varphi\left(x_{2}\right)$
 ${ }^{3}$ i.e. generators of the kernel of the canonical surjection from the free associative algebra generated by symbols $e_{n}, \partial_{n}^{(i)}, \partial_{n}^{(i)}$ onto algebra $\mathbb{Z}[\Delta]$

[^2]: ${ }^{1}$ or an injection
 ${ }^{2}$ or a surjection
 ${ }^{3}$ or an invertible morphism
 ${ }^{4}$ or a covariant functor
 ${ }^{5}$ one map for each ordered pair $X, Y \in \mathrm{Ob} \mathcal{C}$
 ${ }^{6}$ e.g. topological spaces with continuous maps or vector spaces with linear maps
 ${ }^{7}$ that is the convex hull of the ends of the standard basic vectors $e_{0}, e_{1}, \ldots, e_{n} \in \mathbb{R}^{n+1}$

[^3]: ${ }^{1}$ i.e. projection onto a face along the edge joining i-th and $(i+1)$-th vertexes
 ${ }^{2}$ i.e. sending each point $x \in U$ to the fiber $p^{-1}(x) \subset E$ over x

[^4]: ${ }^{1}$ i.e. functions $f(x)$ with $f^{\prime}(x)=1 / x$
 ${ }^{2}$ that is, strictly increasing
 ${ }^{3}$ i.e. can one get S^{1} as the geometric realization of a semisimplicial set X whose X_{0} and X_{1} consist of 3 elements and all other X_{k} are empty?
 ${ }^{4}$ where sets X_{n} are considered with the discrete topology and topologies on simplexes $\Delta^{n} \subset \mathbb{R}^{n+1}$ are iduced by the standard topologies on \mathbb{R}^{n+1}

[^5]: ${ }^{1}$ note that $X_{k} \neq \varnothing$ for all $k \in \mathbb{Z}_{\geqslant 0}$
 ${ }^{2}$ or functorial

[^6]: ${ }^{1}$ of objects of the category \mathcal{D} on the category \mathcal{C}
 ${ }^{2}$ that sends the fixed basis to the standard basis in \mathbb{k}^{n}
 ${ }^{3}$ non just a natural isomorphism

[^7]: ${ }^{1}$ i.e. the quotient of free group generated by $(A \backslash e) \sqcup(B \backslash e)$ through the minimal normal subgroup of relations that allow to replace any pair of consequent elements of the same group by their product in that group; for example, $\mathbb{Z} * \mathbb{Z} \simeq \mathbb{F}_{2}$ is free (non-commutative) group on two generators
 ${ }^{2}$ in particular, in $\mathcal{A b}$
 ${ }^{3}$ It coincides with the tensor product of underlying abelian groups in the category of \mathbb{Z}-modules. The multiplication is defined as $\left(a_{1} \otimes b_{1}\right) \cdot\left(a_{2} \otimes b_{2}\right) \stackrel{\text { def }}{=}\left(a_{1} \cdot a_{2}\right) \otimes\left(b_{1} \cdot b_{2}\right)$

