
§1 General Nonsense

1.1 Categories. A category 𝒞 consists of a class¹ of objects Ob 𝒞, where any ordered pair of
objects 𝑋,𝑌 ∈ Ob 𝒞 is equipped with a set of morphisms from 𝑋 to 𝑌

Hom(𝑋,𝑌) = Hom𝒞(𝑋,𝑌) .

It is convenient to think of the morphisms from 𝑋 to 𝑌 as arrows 𝜑 ∶ 𝑋 → 𝑌. e sets
Hom(𝑋,𝑌) are disjoint for distinct pairs 𝑋,𝑌 and their union over all 𝑋,𝑌 ∈ Ob 𝒞 is denoted
Mor 𝒞 = ⨆ , Hom𝒞(𝑋,𝑌). For each ordered triple 𝑋,𝑌, 𝑍 ∈ Ob 𝒞 there is a composition map²

Hom(𝑌, 𝑍) × Hom(𝑋, 𝑌) → Hom(𝑋, 𝑍) , (𝜑,𝜓) ↦ 𝜑 ∘ 𝜓 ( = 𝜑𝜓 ) , (1-1)

which is associative: (𝜒 ∘ 𝜑) ∘ 𝜓 = 𝜒 ∘ (𝜑 ∘ 𝜓) each time when LHS or RHS is defined. Finally,
each object 𝑋 ∈ Ob 𝒞 has the identity endomorphism³ Id ∈ Hom(𝑋,𝑋) such that 𝜑 ∘ Id = 𝜑 and
Id ∘ 𝜓 = 𝜓 for all arrows 𝜑 ∶ 𝑋 → 𝑌 and 𝜓 ∶ 𝑍 → 𝑋.

A subcategory 𝒟 ⊂ 𝒞 is a category whose objects, arrows, and compositions come from 𝒞.
A subcategory 𝒟 ⊂ 𝒞 is called full, if Hom𝒟(𝑋,𝑌) = Hom𝒞(𝑋,𝑌) for all 𝑋,𝑌 ∈ Ob𝒟.

A category is called small, if Ob 𝒞 is a set. In this case Mor 𝒞 is a set as well.

E 1.1 ( )
e following categories oen appear in examples and are not small: category 𝒮𝑒𝑡 of all sets
and all mapping between them, category 𝒯𝑜𝑝 of all topological spaces and continuous mappings,
category 𝒱𝑒𝑐𝕜 of vector spaces over a field 𝕜 and 𝕜-linear mappings, its full subcategory 𝑣𝑒𝑐𝕜
formed by finite dimensional spaces, categories 𝑅-ℳ𝑜𝑑 andℳ𝑜𝑑-𝑅 of le and right modules over
a ring 𝑅 and 𝑅-liner mappings, their full subcategories 𝑅-𝑚𝑜𝑑 and𝑚𝑜𝑑-𝑅 formed by finitely pre-
sented⁴ modules, category 𝒜𝑏 = ℤ-ℳ𝑜𝑑 of abelian groups and category 𝒢𝑟𝑝 of all groups and
group homomorphisms, category 𝒞𝑚𝑟 of commutative rings with unities and ring homomor-
phisms sending unity to unity, etc.

E 1.2 ()
Each poset⁵ 𝑀 is a category whose objects are the elements 𝑚 ∈ 𝑀 and

Hom (𝑛,𝑚) =
one element, if 𝑛 ⩽ 𝑚
∅ otherwise.

e composition of arrows 𝑘 ⩽ ℓ and ℓ ⩽ 𝑛 is the arrow 𝑘 ⩽ 𝑛. Most important for us special
example of such a category is a category 𝒰(𝑋) of all open subsets in a topological space 𝑋 and
inclusions as the morphisms:

Hom𝒰( )(𝑈,𝑊) =
the inclusion 𝑈 ↪ 𝑊, if 𝑈 ⊆ 𝑊
∅ , if 𝑈 ⊈ 𝑊.

¹We would not like to formalize here this logical notion explicitly (see any ground course of Math
Logic). However we will consider e.g. the category of sets whose objects — sets — do not form a set.

²like the multiplication symbol, the composition symbol « ∘ » is usually skipped
³it is unique because of Id = Id ∘ Id = Id
⁴a module is called finitely presented, if it is isomorphic to a quotient of a finitely generated free module

through its finitely generated submodule
⁵that is, partially ordered set
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4 §1General Nonsense

E 1.3 (    )
Each associative algebra 𝐴 with unity 𝑒 ∈ 𝐴 over a commutative ring 𝐾 is a category with just
one object 𝑒 and Hom(𝑒, 𝑒) = 𝐴, where the composition of arrows equals the product in 𝐴. Vice
versa, associated with an arbitrary small category 𝒞 and a commutative ring 𝐾 is an associative
algebra 𝐾[𝒞] formed by all formal finite linear combinations of morphisms in 𝒞 with coefficients
in 𝐾:

𝐾[𝒞] = ⊕
, ∈Ob 𝒞

Hom(𝑋,𝑌) ⊗ 𝐾 = 𝑥 𝜑 ||𝜑 ∈ Mor(𝒞) , 𝑥 ∈ 𝐾 ,

where we write𝑀⊗𝐾 for the free 𝐾-module with basis¹𝑀. e multiplication of arrows in 𝐾[𝒞]
is defined by the rule

𝜑𝜓 ≝ 𝜑 ∘ 𝜓 if the target of 𝜓 coincides with the source of 𝜑
0 otherwise

and is extended linearly onto arbitrary finite linear combinations of arrows. One can think of
𝐾[𝒞] as an algebra of (maybe infinte) square matrices whose cells are numbered by the pairs of
objects of category 𝒞, an element from (𝑌,𝑋)-cell belongs to free module Hom(𝑋,𝑌) ⊗ 𝐾, and
only finitely many such elements are non-zero. In general, algebra 𝐾[𝒞] is non-commutative and
without unity. However for each 𝑓 ∈ 𝐾[𝒞] there is an idempotent 𝑒 = 𝑒 such that

𝑒 ∘ 𝑓 = 𝑓 ∘ 𝑒 = 𝑓

(e.g. ∑ Id , where 𝑋 runs through the sources and targets of all arrows that appear in 𝑓).

E 1.4 ( )
Let 𝛥big be the category of all finite ordered sets and order preserving maps². is category is not
small. However it contains a small full subcategory 𝛥 ⊂ 𝛥big formed by the sets of integers

[𝑛] ≝ {0, 1, … , 𝑛} , 𝑛 ⩾ 0 , (1-2)

with their standard orderings. e ordered set (1-2) is called the combinatorial 𝑛-simplex. Cate-
gory 𝛥 is called the simplicial category.

E 1.1. Show that algebra ℤ[𝛥] is generated by the arrows

𝑒 = Id[ ] (the identity endomorphism) (1-3)
𝜕( ) ∶ [𝑛 − 1] ↪ [𝑛] (the inclusion whose image does not contain 𝑖) (1-4)
𝑠( ) ∶ [𝑛] ↠ [𝑛 − 1] (the surjection sending 𝑖 and (𝑖 + 1) to the same element) (1-5)

and describe the generating relations³ between these arrows.

¹this module is formed by all finite formal linear combinations of elements of the set𝑀with coefficients
in 𝐾

²i.e. 𝜑 ∶ 𝑋 → 𝑌 such that 𝑥 ⩽ 𝑥 ⇒ 𝜑(𝑥 ) ⩽ 𝜑(𝑥 )
³i.e. generators of the kernel of the canonical surjection from the free associative algebra generated

by symbols 𝑒 , 𝜕( ), 𝜕( ) onto algebra ℤ[𝛥]
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1.1.1 Mono, epi, and isomorphisms. A morphism 𝜑 in a category 𝒞 is called a monomor-
phism¹ (resp. an epimorphism²), if it admits le (resp. right) cancellation, that is

𝜑𝛼 = 𝜑𝛽 ⇒ 𝛼 = 𝛽 (resp. 𝛼𝜑 = 𝛽𝜑 ⇒ 𝛼 = 𝛽 ) .

A morphism 𝜑 ∶ 𝑋 → 𝑌 is called an isomorphism³, if there is a morphism 𝜓 ∶ 𝑌 → 𝑋 such that
𝜑𝜓 = Id and 𝜓𝜑 = Id . In this case objects 𝑋 and 𝑌 are called isomorphic. We depict injective,
surjective, and invertible arrows as ↪ , ↠ , and ⥲ respectively.

E 1.2. Find the cardinality of Hom ([𝑛], [𝑚]). How many injective, surjective, and
isomorphic arrows are there in Hom ([𝑛], [𝑚])?
1.1.2 Rewersal of arrows. Associated with a category 𝒞 is an opposite category 𝒞opp with

the same objects but rewersed arrows, that is

Hom𝒞opp(𝑋,𝑌) ≝ Hom𝒞(𝑌,𝑋) and 𝜑opp ∘ 𝜓opp = (𝜓 ∘ 𝜑)opp .

In terms of algebras, algebra 𝐾[𝒞opp] = 𝐾[𝒞]opp is an opposite algebra of 𝐾[𝒞]. Injections in 𝒞
become surjections in 𝒞opp and vice versa.

1.2 Functors. A functor⁴ 𝐹 ∶ 𝒞 → 𝒟 between categories 𝒞 and 𝒟 is a mapping

Ob𝒞 → Ob𝒟 , 𝑋 ↦ 𝐹(𝑋) ,

and a collection of maps⁵

Hom𝒞(𝑋,𝑌) → Hom𝒟(𝐹(𝑋),𝐹(𝑌)) , 𝜑 ↦ 𝐹(𝜑) , (1-6)

such that 𝐹(Id ) = Id ( ) for all 𝑋 ∈ Ob 𝒞 and 𝐹(𝜑 ∘𝜓) = 𝐹(𝜑) ∘𝐹(𝜓) each time when composition
𝜑 ∘ 𝜓 is defined. In terms of algebras, a functor is a homomorfism of algebras 𝐹 ∶ 𝐾[𝒞] → 𝐾[𝒟].
If all the maps (1-6) are surjective, functor 𝐹 is called full. An image of a full functor is a full
subcategory. If all the maps (1-6) are injective, 𝐹 is called faithful. A faithful functor produces
an injective homomorphism of algebras 𝐹 ∶ 𝐾[𝒞] → 𝐾[𝒟].

e simplest examples of functors are provided by the identity functor Id𝒞 ∶ 𝒞 → 𝒞 acting
identically on the objects and on the arrows and by the forgeing functors, sending categories of
sets with extra structures and the morphisms respecting these structures⁶ to the category 𝒮𝑒𝑡, of
sets, by forgeing the structure.

E 1.5 (    )
e geometric realization functor 𝛥 → 𝒯𝑜𝑝 takes 𝑛-dimensional combinatorial simplex [𝑛] from
(1-2) to the standard regular 𝑛-simplex⁷

𝛥 = (𝑥 , 𝑥 , … , 𝑥 ) ∈ ℝ + || 𝑥 = 1 , 𝑥 ⩾ 0 ⊂ ℝ + , (1-7)

¹or an injection
²or a surjection
³or an invertible morphism
⁴or a covariant functor
⁵one map for each ordered pair 𝑋, 𝑌 ∈ Ob 𝒞
⁶e.g. topological spaces with continuous maps or vector spaces with linear maps
⁷that is the convex hull of the ends of the standard basic vectors 𝑒 , 𝑒 , … , 𝑒 ∈ ℝ +
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and takes each order preserving map 𝜑 ∶ [𝑛] → [𝑚] to the affine linear map 𝜑∗ ∶ 𝛥 → 𝛥 that
acts on the basic vectors as 𝑒 ↦ 𝑒 ( ). is is faithful but non-full functor. It sends generators
(1-4), (1-5) of algebra ℤ[𝛥] to the 𝑖-th face inclusion 𝛥( − ) ↪ 𝛥 and to the 𝑖-th edge contraction¹
𝛥 ↠ 𝛥( − ).

1.2.1 Presheaves. A functor 𝐹 ∶ 𝒞opp → 𝒟 is called a contra-variant functor from 𝒞 to 𝒟
or a presheaf of objects of category 𝒟 on a category 𝒞. It reverses the compositions 𝐹(𝜑 ∘ 𝜓) =
𝐹(𝜓) ∘ 𝐹(𝜑). In terms of algebras, a contravariat functor produces an anti-homomorphism of
algebras 𝐾[𝒞] → 𝐾[𝒟].

E 1.6 (    )
e notion «presheaf» has appeared initially in a context of the category 𝒞 = 𝒰(𝑋) of open
subsets 𝑈 ⊂ 𝑋 in a given topological space 𝑋. A presheaf 𝐹 ∶ 𝒰(𝑋)opp → 𝒟 aaches an object
𝐹(𝑈) ∈ Ob𝒟 to each open set 𝑈 ⊂ 𝑋. is object is called (an object o) sections of 𝐹 over 𝑈.
Depending on 𝒟, the sections can form a ring, an algebra, a vector space, a topological space,
etc. Aached to an inclusion of open sets 𝑈 ⊂ 𝑊 is a map 𝐹(𝑊) → 𝐹(𝑈) called the restriction
of sections from 𝑊 onto 𝑈 ⊂ 𝑊. e restriction of a section 𝑠 ∈ 𝐹(𝑊) onto a subset 𝑈 ⊂ 𝑊 is
usually denoted by 𝑠| . Here are some typical examples of such presheaves:

1) Presheaf 𝛤 of the sets of local sections of a continuous mapping 𝑝 ∶ 𝐸 → 𝑋 has 𝛤 (𝑈)
equal to a set of maps 𝑠 ∶ 𝑈 → 𝐸 such that² 𝑝 ∘ 𝑠 = Id . Its restriction maps take sections
to their restrictions onto smaller subsets.

2) Specializing the previous example to projection 𝑝 ∶ 𝑋 × 𝑌 → 𝑋, we get the sheaf 𝒞 (𝑋,𝑌)
of locally defined continuous mappings 𝑠 ∶ 𝑈 → 𝑌.

3) Further specialization of the above examples leads to so called structure presheaves 𝒪 such
as the presheaf of local smooth functions 𝑈 → ℝ on a smooth manifold 𝑋, or the presheaf
of local holomorphic functions 𝑈 → ℂ on a complex analytic manifold 𝑋, or the presheaf
of local rational functions 𝑈 → 𝕜 on an algebraic manifold 𝑋 over a field 𝕜 etc. All these
presheaves are presheaves of algebras over the corresponding field ℝ, ℂ, or 𝕜.

4) A constant presheaf 𝑆 has 𝑆(𝑈) equal to a fixed set 𝑆 for all open𝑈 ⊂ 𝑋 and all its restriction
maps are the identity morphisms Id .

A presheaf 𝐹 of sets on 𝑆 is called a sheaf , if for any open𝑊, any covering of𝑊 by open 𝑈 ⊂ 𝑊,
and any collection of sections 𝑠 ∈ 𝐹(𝑈 ) such that 𝑠 | ∩ = 𝑠 | ∩ for all 𝑖, 𝑗 there exist a
unique section 𝑠 ∈ 𝐹(𝑊) such that 𝑠| = 𝑠 for all 𝑖. If there exist at most one such a section 𝑠
but it does not have to exist, then 𝐹 is called a separable presheaf. All above presheaves (1) – (4)
are separable and only the last of them is not a sheaf, because for disjoint union 𝑊 = 𝑈 ⊔ 𝑈
of open 𝑈 , 𝑈 not any pair of constants 𝑠 ∈ 𝑆(𝑈 ) appears as the restriction of some constant
𝑠 ∈ 𝑆(𝑊). However, besides the constant presheaf 𝑆, associated to an arbitrary set 𝑆 is

5) a constant sheaf 𝑆∼ whose sets of sections 𝑆∼(𝑈) consist of continuous maps 𝑈 → 𝑆, where
𝑆 is considered with the discrete topology.

¹i.e. projection onto a face along the edge joining 𝑖-th and (𝑖 + 1)-th vertexes
²i.e. sending each point 𝑥 ∈ 𝑈 to the fiber 𝑝− (𝑥) ⊂ 𝐸 over 𝑥
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E 1.3. Find all antiderivatives¹ of real function 𝑥 ↦ 1∕𝑥.

E 1.4. Show that the category of sheaves 𝒮ℎ(𝑋) is a full subcategory of the category of
presheaves 𝑝𝒮ℎ(𝑋).

E 1.7 (  )
Write 𝛥s ⊂ 𝛥 for non-full subcategory with Ob𝛥s = Ob𝛥 and injective² order preserving maps as
the morphisms. Category 𝛥s is called the semisimplicial category.

E 1.5. Show that algebra 𝐾[𝛥s] is generated by the identical arrows 𝑒 = Id[ ] and the
inclusions 𝜕( ) from (1-4).

A presheaf of sets 𝑋 ∶ 𝛥opp
s → 𝒮𝑒𝑡 on 𝛥s is called a semisimplicial set. Each semisimplicial set is

nothing but a combinatorial description for some triangulated topological space denoted by |𝑋|
and called a geometric realization of semisimplicial set 𝑋. Namely, 𝐹 aaches a set 𝑋 = 𝑋([𝑛]) to
each non-negative integer 𝑛. Let us interpret the points 𝑥 ∈ 𝑋 as disjoint regular 𝑛-simplexes
𝛥 . e morphisms 𝜑 ∶ [𝑛] → [𝑚] in category 𝛥s stay in bijection with 𝑛-dimensional faces
of regular 𝑚-simplex 𝛥 . A map 𝑋(𝜑) ∶ 𝑋 → 𝑋 , which corresponds to such a morphism 𝜑,
produces a gluing rule: for each 𝑥 ∈ 𝑋 it picks up some 𝑛-simplex 𝛥 , where 𝑦 = 𝑋(𝜑)𝑥 ∈ 𝑋 ,
that should be glued to the constructed space |𝑋| as the 𝜑-th face of simplex 𝛥 .

E 1.6. Is there a triangulation of the cycle 𝑆 by ) three 0-simplexes and three 1-
simplexes³ ) one 0-simplex and one 1-simplex? Is there a triangulation of the 2-sphere 𝑆
by ) four 0-simplexes, six 1-simplexes and four 2-simplexes ) two 0-simplexes, one 1-
simplex and one 2-simplexes? Is there a triangulation of the 2-torus 𝑇 by one 0-simplex,
three 1-simplexes and two 2-simplex?

E 1.8 ( )
Presheaves 𝑋 ∶ 𝛥opp → 𝒮𝑒𝑡 on the whole of the simplicial category are called simplicial sets. Each
simlicial set 𝑋 also produces a topological space |𝑋| called a geometric realization of 𝑋. It is glued
from disjoint regular simplexes 𝛥 , 𝑥 ∈ 𝑋 , by identifying points 𝑠 ∈ 𝛥 ∗( ) and 𝜑∗(𝑠) ∈ 𝛥 ,
where𝜑 ∶ [𝑛] → [𝑚] is a morphism in category 𝛥, 𝜑∗ ≝ 𝑋(𝜑) ∶ 𝑋 → 𝑋 denotes its image under
𝑋, and 𝜑∗ ∶ 𝛥 → 𝛥 denotes affine linear map whose action on the vertexes of 𝛥 is prescribed
by 𝜑. Formally speaking, |𝑋| is a quotient space of a topological direct product⁴ ∏

⩾
𝑋 × 𝛥 by

the minimal equivalence relation that contains identifications 𝑥,𝜑∗𝑠 ≃ 𝜑∗𝑥, 𝑠 for all arrows
𝜑 ∶ [𝑛] → [𝑚] in Mor(𝛥), all 𝑥 ∈ 𝑋 , and all 𝑠 ∈ 𝛥 .

If an arrow 𝜑 = 𝛿𝜎 ∶ [𝑛] → [𝑚] is decomposed into a surjection 𝜎 ∶ [𝑛] ↠ [𝑘] followed by an
injection 𝛿 ∶ [𝑘] ↪ [𝑚], then 𝑛-simplex 𝛥 marked by 𝑧 = 𝜎∗𝑦 = 𝜎∗𝛿∗𝑥 ∈ 𝜑∗(𝑋 ) ⊂ 𝑋 appears
in the space |𝑋| as 𝑘-simplex 𝛥 obtained from 𝛥 by means of linear projection 𝜎∗ ∶ 𝛥 ↠ 𝛥
and this 𝑘-simplex has to be the 𝛿-th face of 𝑚-simplex 𝛥 . In particular, all simplexes 𝑧 ∈ 𝑋

¹i.e. functions 𝑓(𝑥) with 𝑓 (𝑥) = 1∕𝑥
²that is, strictly increasing
³i.e. can one get 𝑆 as the geometric realization of a semisimplicial set 𝑋 whose 𝑋 and 𝑋 consist of 3

elements and all other 𝑋 are empty?
⁴where sets 𝑋 are considered with the discrete topology and topologies on simplexes 𝛥 ⊂ ℝ + are

iduced by the standard topologies on ℝ +
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lying in the image of anymap 𝜎∗ coming from an arrow 𝜎 ∶ [𝑘] → [𝑛] with 𝑘 > 𝑛 are degenerated:
they are visible in the space |𝑋| as simplexes of a smaller dimension.

Usage of degenerated simplexes allows to describe combinatorially more complicated cell
complexes than the triangulations. For example, topological description of 𝑛-spere 𝑆 as a quotint
space 𝑆 = 𝛥 ∕𝜕𝛥 leads to a pseudo-triangulation of 𝑆 by one 0-simplex and one 𝑛-cell, which
is the interior part of the regular 𝑛-simplex 𝛥 . Combinatorially, this is the geometric realization
of simplicial set 𝑋 that consists of sets 𝑋 obtained from the sets Hom ([𝑘], [𝑛]) by gluing all
non-surjective maps to one distiguished element. e map 𝜑∗ ∶ 𝑋 → 𝑋 corresponding to an
arrow 𝜑 ∶ [𝑘] → [𝑚] is induced by the le composition with 𝜑:

Hom ([𝑚], [𝑛]) → Hom ([𝑘], [𝑛]) , 𝜁 ↦ 𝜑𝜁 .

E 1.7. Compute cardinalities¹ of all sets 𝑋 and check that maps 𝜑∗ ∶ 𝑋 → 𝑋 are
well defined and produce a functor 𝑋 ∶ 𝛥opp → 𝒮𝑒𝑡.

1.2.2 Hom-functors. Associated with an object 𝑋 ∈ Ob 𝒞 in an arbitrary category 𝒞 are
a (covariant) functor ℎ ∶ 𝒞 → 𝒮𝑒𝑡 that takes 𝑌 ∈ Ob 𝒞 to ℎ (𝑌) ≝ Hom(𝑋,𝑌) and sends an
arrow 𝜑 ∶ 𝑌 → 𝑌 to the map 𝜑∗ ∶ Hom(𝑋,𝑌 ) → Hom(𝑋,𝑌 ) 𝜓 ↦ 𝜑 ∘ 𝜓 , provided by the le
composition with 𝜑 and a presheaf ℎ ∶ 𝒞 → 𝒮𝑒𝑡 that takes 𝑌 ∈ Ob 𝒞 to ℎ (𝑌) ≝ Hom(𝑌,𝑋) and
sends an arrow 𝜑 ∶ 𝑌 → 𝑌 to the map 𝜑∗ ∶ Hom(𝑌 ,𝑋) → Hom(𝑌 ,𝑋) 𝜓 ↦ 𝜓 ∘ 𝜑 provided by
the right composition with 𝜑.

For example, presheaf ℎ[ ] ∶ 𝛥opp → 𝒮𝑒𝑡 produces the standard triangulation of the regular
𝑛-simplex 𝛥 : the sets of 𝑘-simplexes ℎ[ ]([𝑘]) = Hom([𝑘], [𝑚]) of this triangulation are precisely
the sets of 𝑘-dimensional faces of 𝛥 . Presheaf ℎ ∶ 𝒰(𝑋) → 𝒮𝑒𝑡 on a topological space 𝑋 has
exactly one section over all open𝑊 ⊂ 𝑈 and the empty set of sections over all other open𝑊 ⊄ 𝑈.
Presheaf ℎ𝕜 ∶ 𝒱𝑒𝑐opp

𝕜 → 𝒱𝑒𝑐𝕜 takes a vector space 𝑉 to its dual space ℎ𝕜(𝑉) = Hom(𝑉,𝕜) = 𝑉∗

and sends a linear mapping 𝜑 ∶ 𝑉 → 𝑊 to its dual mapping 𝜑∗ ∶ 𝑊∗ → 𝑉∗, which takes a linear
form 𝜉 ∶ 𝑊 → 𝕜 to 𝜉 ∘ 𝜑 ∶ 𝑉 → 𝕜.

1.3 Natural transformations. Given two functors 𝐹,𝐺 ∶ 𝒞 → 𝒟, then a natural² transformation
is a collection of arrows 𝑓 ∶ 𝐹(𝑋) → 𝐺(𝑋), numbered by objects 𝑋 ∈ Ob𝒞, such that for each
morphism 𝜑 ∶ 𝑋 → 𝑌 in 𝒞 a diagram

𝐹(𝑋) ( ) //

��

𝐹(𝑌)

��
𝐺(𝑋) ( )

// 𝐺(𝑌)
(1-8)

is commutative in 𝒟. A natural transformation 𝑓 ∶ 𝐹 → 𝐺 is called an isomorphism of functors, if
all the morphisms 𝑓 ∶ 𝐹(𝑋) → 𝐺(𝑋) are isomorphisms. In this case functors 𝐹 and 𝐺 are called
isomorphic.

On the language of algebras, a homomorphism 𝐹 ∶ 𝐾[𝒞] → 𝐾[𝒟] provides 𝐾[𝒟] with a
structure of a module over 𝐾[𝒞], in which an element 𝑎 ∈ 𝐾[𝒞] acts on an element 𝑏 ∈ 𝐾[𝒟] as
𝑎 ⋅ 𝑏 ≝ 𝐹(𝑎) ⋅ 𝑏. Two functors 𝐹, 𝐺 produce two different 𝐾[𝒞]-module structures on 𝐾[𝒟] and

¹note that 𝑋 ≠ ∅ for all 𝑘 ∈ ℤ⩾
²or functorial
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natural transformation 𝑓 ∶ 𝐾[𝒟] → 𝐾[𝒟] is nothing but a 𝐾[𝒞]-linear homomorphism between
these modules: for each 𝜑 ∈ 𝐾[𝒞] multiplications by 𝐹(𝜑) and by 𝐺(𝜑) in𝐾[𝒟] satisfy the relation
𝑓 ∘ 𝐹(𝜑) = 𝐺(𝜑) ∘ 𝑓.

1.3.1 Categories of functors. If a category 𝒞 is small, then the functors 𝒞 → 𝒟 to an ar-
bitrary category 𝒟 form a category ℱ𝑢𝑛(𝒞,𝒟), whose objects are the functors and morphismfs
are the natural transformations. Contravariant functors 𝒞opp → 𝒟 also form a category called
a category of presheaves¹ and denoted by 𝑝𝒮ℎ(𝒞,𝒟). Omied leer 𝒟 in this notation means on
default that 𝒟 = 𝒮𝑒𝑡, i.e. 𝑝𝒮ℎ(𝒞) ≝ ℱ𝑢𝑛(𝒞opp, 𝒮𝑒𝑡) .

E 1.8. Verify that prescription 𝑋 ↦ ℎ produces a covariant functor 𝒞 → 𝑝𝒮ℎ(𝒞) and
prescription 𝑋 ↦ ℎ produces a contravariant functor 𝒞opp → ℱ𝑢𝑛(𝒞, 𝒮𝑒𝑡).

1.3.2 Эквивалентности категорий. Categories 𝒞 and 𝒟 are called equivalent, if there
exists a pair of functors 𝐹 ∶ 𝒞 → 𝒟 and 𝐺 ∶ 𝒟 → 𝒞 such that compositions 𝐺𝐹 and 𝐹𝐺 are
isomorphic to the identity functors Id𝒞 and Id𝒟 respectively. is does not mean that 𝐹𝐺 = Id𝒟
or 𝐺𝐹 = Id𝒞: objects 𝐺𝐹(𝑋) and 𝑋 may be different as well as objects 𝐹𝐺(𝑌) and 𝑌. But there are
functorial in 𝑋 ∈ Ob 𝒞 and 𝑌 ∈ Ob𝒟 isomorphisms

𝐺𝐹(𝑋) ⥲ 𝑋 and 𝐹𝐺(𝑌) ⥲ 𝑌 . (1-9)

In these case functors 𝐹 and 𝐺 are called quasi-inverse equivalences between categories 𝒞 and 𝒟.

E 1.9 (  )
Write 𝑣𝑒𝑐𝕜 for the category of finite dimensional vector spaces over a field 𝕜 and 𝒞 ⊂ 𝑣𝑒𝑐𝕜 for
its small full subcategory formed by coordinate spaces 𝕜 , 𝑛 ⩾ 0, where we put 𝕜 = {0}. Let us
fix some basis in each vector space 𝑉 ∈ Ob 𝑣𝑒𝑐𝕜 or, equivalently, an isomorphism²

𝑓 ∶ 𝑉 ⥲ 𝕜dim( ) , (1-10)

and for 𝑉 = 𝕜 put 𝑓𝕜 = Id𝕜 . Define a functor 𝐹 ∶ 𝑣𝑒𝑐 → 𝒞 by sending a space 𝑉 to 𝕜dim

and an arrow 𝜑 ∶ 𝑉 → 𝑊 to composition 𝐹(𝜑) = 𝑓 ∘ 𝜑 ∘ 𝑓− , which can be viewed as the
matrix of 𝜑 in the chosen bases of 𝑉 and 𝑊. Let us show that 𝐹 is an equivalence of categories
quasi-inverse to the tautological full inclusion 𝐺 ∶ 𝒞 ↪ 𝑣𝑒𝑐. By the construction of 𝐹 there is
an explicit equality of functors³ 𝐹𝐺 = Id𝒞 . Reverse composition 𝐺𝐹 ∶ 𝑣𝑒𝑐 → 𝑣𝑒𝑐 takes values
in the small subcategory 𝒞 ⊂ 𝑣𝑒𝑐 whose cardinality is non-compatible with cardinality 𝑣𝑒𝑐 at
all. However, the isomorphisms (1-10) give a natural transformation Id𝑣𝑒𝑐 → 𝐺𝐹, because all the
diagrams (1-8)

Id𝑣𝑒𝑐(𝑉) =𝑉 =Id𝑣𝑒𝑐 ( ) //

��

𝑊 = Id𝑣𝑒𝑐(𝑊)

��
𝐺𝐹(𝑉) =𝕜dim ( )= ∘ ∘ −

// 𝕜dim = 𝐺𝐹(𝑊)

are commutative by the construction of 𝐹. us, the identity functor Id𝑣𝑒𝑐 is naturally isomorphic
to 𝐺𝐹.

¹of objects of the category 𝒟 on the category 𝒞
²that sends the fixed basis to the standard basis in 𝕜
³non just a natural isomorphism
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E 1.9. Show that category of finite ordered sets 𝛥big is equivalent to its small simplicial
subcategory 𝛥 ⊂ 𝛥big.

L 1.1
Functor 𝐺 ∶ 𝒞 → 𝒟 is an equivalence of categories iff it is full, faithful, and essentially surjective
(the laer means that for each 𝑌 ∈ Ob𝒟 there is some 𝑋 = 𝑋(𝑌) ∈ Ob 𝒞 such that 𝐺(𝑋) is
isomorphic to 𝑌).

P. For each 𝑌 ∈ Ob𝒟 pick up some 𝑋 = 𝑋(𝑌) ∈ Ob 𝒞 and an isomorphism 𝑓 ∶ 𝑌 ⥲ 𝐺(𝑋).
When 𝑌 = 𝐺(𝑋(𝑌)) put 𝑓 ( ) = Id ( ). Define a functor 𝐹 ∶ 𝒟 → 𝒞 by sending 𝑌 ∈ Ob𝒟 to
𝐹(𝑌) = 𝑋(𝑌) and arrow 𝜑 ∶ 𝑌 → 𝑌 to an arrow𝜓 ∶ 𝑋(𝑌 ) → 𝑋(𝑌 ) such that 𝐺 (𝜓) = 𝑓 ∘𝜑∘𝑓−

(since 𝐺 ∶ Hom(𝑋 ,𝑋 ) ⥲ Hom(𝐺(𝑋 ),𝐺(𝑋 )) is an isomorphism, such arrow 𝜓 exists and is
unique). By construction, 𝐹𝐺 = Id𝒞 and for each morphism 𝜑 ∶ 𝑌 → 𝑌 we have commutative
diagram

Id𝒟(𝑌 ) = 𝑌 //

��

𝑌 = Id𝒟(𝑌 )

��
𝐺𝐹(𝑌 ) =𝑋 ( )= ( ) // 𝑋 = 𝐺𝐹(𝑌 ) .

us, morphisms 𝑓 ∶ 𝑌 ⥲ 𝐺(𝑋) = 𝐺𝐹(𝑌) give a natural isomorphism between Id𝒟 and 𝐺𝐹. �

E 1.10. Show that dualizing functor ℎ𝕜 ∶ 𝑣𝑒𝑐𝕜 → 𝑣𝑒𝑐𝕜 , 𝑉 ↦ 𝑉∗, is quasi-inverse to
itself and produces autoantiequivalence of the category of finite dimensional vector spaces.

1.4 Representable functors. A presheaf 𝐹 ∶ 𝒞opp → 𝒮𝑒𝑡 is called representable, if it is naturally
isomorphic to presheaf ℎ for some 𝑋 ∈ Ob 𝒞. In this case we say that object 𝑋 a represents
presheaf 𝐹. Dually, a covariant functor 𝐹 ∶ 𝒞 → 𝒮𝑒𝑡 is called corepresentable, if it is naturally
isomorphic to covariant functor ℎ for some 𝑋 ∈ Ob 𝒞. In this case we say that object 𝑋 a
corepresents functor 𝐹.

L 1.2 ( Y )
For any presheaf of sets 𝐹 ∶ 𝒞opp → 𝒮𝑒𝑡 on an arbitrary category 𝒞 there is functorial in 𝐹 ∈
𝑝𝒮ℎ(𝒞) and in 𝐴 ∈ 𝒞 bijection 𝐹(𝐴) ⥲ Hom𝑝𝒮ℎ(𝒞)(ℎ ,𝐹). It takes an element 𝑎 ∈ 𝐹(𝐴) to a natural
transformation

𝑓 ∶ Hom(𝑋,𝐴) → 𝐹(𝑋) , (1-11)

that sends an arrow 𝜑 ∶ 𝑋 → 𝐴 to the image of element 𝑎 under map 𝐹(𝜑) ∶ 𝐹(𝐴) → 𝐹(𝑋). e
inverse bijection takes a natural transformation (1-11) to the image of the identity Id ∈ ℎ (𝐴)
under the map 𝑓 ∶ ℎ (𝐴) → 𝐹(𝐴).

P. For any natural transformation (1-11), for any object 𝑋 ∈ Ob 𝒞, and for any arrow
𝜑 ∶ 𝑋 → 𝐴 commutative diagram (1-8)

ℎ (𝐴) = Hom(𝐴,𝐴) ( ) //

��

Hom(𝑋,𝐴) = ℎ (𝑋)

��
𝐹(𝐴) ( ) // 𝐹(𝑋) ,

(1-12)



1.4. Representable functors 11

forces the equality 𝑓 (𝜑) = 𝐹(𝜑) 𝑓 (Id ) , because the upper arrow in (1-12) sends Id to 𝜑.
us the whole of transformation 𝑓 ∶ ℎ → 𝐹 is uniquely recovered as soon the element 𝑎 =
𝑓 (Id ) ∈ 𝐹(𝐴) is given. Choosing some 𝑎 ∈ 𝐹(𝐴) we obtain transformation (1-11) that sends
𝜑 ∈ Hom(𝑋,𝐴) to 𝑓 (𝜑) = 𝐹(𝜑)(𝑎) ∈ 𝐹(𝑋). It is natural, because for any arrow 𝜓 ∶ 𝑌 → 𝑋
and any 𝜑 ∈ ℎ (𝑋) we have 𝑓 ℎ (𝜓)𝜑 = 𝑓 (𝜑𝜓) = 𝐹(𝜑𝜓)𝑎 = 𝐹(𝜓)𝐹(𝜑)𝑎 = 𝐹(𝜓) 𝑓 (𝜑) , i.e.
𝑓 ∘ ℎ (𝜓) = 𝐹(𝜓) ∘ 𝑓 are the same maps ℎ (𝑋) → 𝐹(𝑌). �

E 1.11 ( Y ). For any covariant functor 𝐹 ∶ 𝒞 → 𝒮𝑒𝑡 construct
functorial in 𝐹 and in 𝐴 ∈ Ob 𝒞 bijection 𝐹(𝐴) ⥲ Homℱ𝑢𝑛(𝒞,𝒮𝑒𝑡)(ℎ ,𝐹).

C 1.1
Covariant functor 𝑋 ↦ ℎ and contravariant functor 𝑋 ↦ ℎ are full and faithful. In other
words, there are functorial in 𝐴,𝐵 ∈ Ob 𝒞 isomorphisms Hom𝑝𝒮ℎ(𝒞)(ℎ , ℎ ) = Hom𝒞(𝐴,𝐵) and
Homℱ𝑢𝑛(𝒞)(ℎ , ℎ ) = Hom𝒞(𝐵,𝐴).

P. Apply Yoneda lemmas to 𝐹 = ℎ and 𝐹 = ℎ . �

C 1.2
If a functor 𝐹 ∶ 𝒞 → 𝒮𝑒𝑡 is (co)representable, then its (co)representing object is unique up to
natural isomorphism.

P. If 𝐹 ≃ ℎ ≃ ℎ (or 𝐹 ≃ ℎ ≃ ℎ ), then the natural isomorphism between functors ℎ and
ℎ (resp. between ℎ and ℎ ) produces by cor. 1.1 an isomorphism between 𝐴 and 𝐵 in 𝒞. �

1.4.1 Definitions via «universal properties».eYoneda lemmas provide us with two dual
ways for transferring set-theoretical constructions from category 𝒮𝑒𝑡 to an arbitrary category
𝒞. Namely, to define some set-theoretical operation on objects 𝑋 ∈ Ob 𝒞, consider a presheaf
𝒞opp → 𝒮𝑒𝑡 that takes an object 𝑌 ∈ Ob 𝒞 to the set obtained from the sets Hom(𝑌,𝑋 ) by the
operation in question. If this presheaf is representable, we declare its representing object to be
the result of our operation applied to the objects 𝑋 . e dual way uses covariant in 𝑌 functors
Hom(𝑋 ,𝑌) and corerepresentig object. Although both definitions are implicit, defined objects (if
exist) come with some universal properties and are unique up to unique isomorphism respecting
these properties.

E 1.10 (  𝐴 × 𝐵)
A product 𝐴 × 𝐵 of objects 𝐴,𝐵 ∈ Ob 𝒞 in an arbitrary category 𝒞 is defined as representing
object for presheaf of sets 𝑌 ↦ Hom(𝑌,𝐴) × Hom(𝑌,𝐵). If 𝐴 × 𝐵 exists, then for all 𝑌 in 𝒞 there
is functorial in 𝑌 isomorphism 𝛽 ∶ Hom(𝑌,𝐴 × 𝐵) ⥲ Hom(𝑌,𝐴) × Hom(𝑌,𝐵). For 𝑌 = 𝐴 × 𝐵
it produces a pair of arrows 𝐴 𝐴 × 𝐵oo //𝐵 — the image of the identity 𝛽 × (Id × ) ∈
Hom(𝐴 × 𝐵,𝐴) × Hom(𝐴 × 𝐵,𝐵). is pair is universal in the following sense: for any pair of
arrows 𝐴 𝑌oo //𝐵 there exists a unique arrow 𝜑×𝜓 ∶ 𝑌 → 𝐴×𝐵 such that 𝜑 = 𝜋 ∘ (𝜑×𝜓)
and 𝜓 = 𝜋 ∘ (𝜑 × 𝜓).

E 1.12. Show that ) for each diagram 𝐴 𝐶oo //𝐵 that possess the same universal
property there exists a unique isomorphism 𝛾 ∶ 𝐶 ⥲ 𝐴 × 𝐵 such that 𝜋 ∘ 𝛾 = 𝜋 and
𝜋 ∘ 𝛾 = 𝜋 ) for any pair of arrows 𝛼 ∶ 𝐴 → 𝐴 , 𝛽 ∶ 𝐵 → 𝐵 there is a unique arrow
𝛼 × 𝛽 ∶ 𝐴 × 𝐵 → 𝐴 × 𝐵 such that 𝛼 ∘ 𝜋 = (𝛼 × 𝛽) ∘ 𝛼 and 𝛽 ∘ 𝜋 = (𝛼 × 𝛽) ∘ 𝛽.



12 §1General Nonsense

E 1.13. Show that the product in 𝒯𝑜𝑝 exists and coincides with the set theoretical
product 𝐴 × 𝐵 = {(𝑎, 𝑏) | 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵} equipped with the weakest topology in which both
maps 𝜋 , 𝜋 are continuous. Being equipped with componentwise operations, the set 𝐴×𝐵
turns to direct product in the categories of groups, rings and modules over a ring.

E 1.11 (  𝐴 ⊗ 𝐵)
Dually, a coproduct 𝐴 ⊗ 𝐵 in an arbitrary category 𝒞 is defined as corepresenting object for
covariant functor 𝒞 → 𝒮𝑒𝑡 , 𝑌 ↦ Hom(𝐴,𝑌) × Hom(𝐵,𝑌) . It is uniquely characterized by the
universal diagram 𝐴 //𝐴 ⊗ 𝐵 𝐵oo such that for any pair of arrows 𝐴 //𝑌 𝐵oo there
exists a unique arrow 𝜑 ⊗ 𝜓 ∶ 𝐴 ⊗ 𝐵 → 𝑌 such that 𝜑 = (𝜑 ⊗ 𝜓) ∘ 𝜄 and 𝜓 = (𝜑 ⊗ 𝜓) ∘ 𝜄 .

E 1.14. Let universal diagram 𝐴 //𝐴 ⊗ 𝐵 𝐵oo exist. Show that ) it is unique
up to unique isomorphism commuting with 𝜄 and 𝜄 ) each pair of arrows 𝛼 ∶ 𝐴 → 𝐴 ,
𝛽 ∶ 𝐵 → 𝐵 produces a unique arrow 𝛼⊗𝛽 ∶ 𝐴 ⊗𝐵 → 𝐴 ⊗𝐵 such that 𝜄 ∘𝛼 = (𝛼⊗𝛽)∘𝛼.

In 𝒮𝑒𝑡 and𝒯𝑜𝑝 the coproduct 𝐴⊗𝐵 = 𝐴⊔𝐵 is the disjoint union. In 𝒢𝑟𝑝 the coproduct 𝐴⊗𝐵 = 𝐴∗𝐵
is the free product¹. In category of modules over a ring² 𝐴 ⊗ 𝐵 = 𝐴 × 𝐵 = 𝐴 ⊕ 𝐵 is the direct
sum of modules. In the category of commutative rings with unity 𝐴⊗ 𝐵 is the tensor product of
rings³.

¹i.e. the quotient of free group generated by (𝐴 ⧵ 𝑒) ⊔ (𝐵 ⧵ 𝑒) through the minimal normal subgroup of
relations that allow to replace any pair of consequent elements of the same group by their product in that
group; for example, ℤ ∗ ℤ ≃ 𝔽 is free (non-commutative) group on two generators

²in particular, in 𝒜𝑏
³It coincides with the tensor product of underlying abelian groups in the category of ℤ-modules. e

multiplication is defined as (𝑎 ⊗ 𝑏 ) ⋅ (𝑎 ⊗ 𝑏 ) ≝ (𝑎 ⋅ 𝑎 ) ⊗ (𝑏 ⋅ 𝑏 )



Comments to some exercises

E. 1.3. Typical answer «ln |𝑥| + 𝐶, where 𝐶 is an arbitrary constant» is incorrect. Actually, 𝐶 is
a section of the constant sheaf ℝ∼ over ℝ ∖ {0}.

E. 1.11. Each natural transformation 𝑓∗ picks up an element in 𝐹(𝐴) — the image of the identity
Id ∈ ℎ (𝐴) under the map 𝑓 ∶ ℎ (𝐴) → 𝐹(𝐴). Vice versa, an element 𝑎 ∈ 𝐹(𝐴) produces
a transformation 𝑓 ∶ Hom(𝐴,𝑋) → 𝐹(𝑋) that sends an arrow 𝜑 ∶ 𝐴 → 𝑋 to the image of 𝑎
under the map 𝐹(𝜑) ∶ 𝐹(𝐴) → 𝐹(𝑋). To verify that it is natural and takes Id ∈ ℎ (𝐴) to 𝑎 via
𝑓 ∶ ℎ (𝐴) → 𝐹(𝐴), use commutative diagram

ℎ (𝐴) = Hom(𝐴,𝐴) ( ) //

��

Hom(𝐴,𝑋) = ℎ (𝑋)

��
𝐹(𝐴) ( ) // 𝐹(𝑋) ,

(1-13)

whose upper arrow sends Id to 𝜑 and forces 𝑓 (𝜑) = 𝐹(𝜑) 𝑓 (Id ) .

13
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