Помимо моих собственных записок, которые по мере готовности будут появляться ниже, я рекомендую следующие учебники:
- Э.Б.Винберг. Курс алгебры (есть в колхозе)
- А.Л.Городенцев. Алгебра–1 (PDF 3.5Mb, версия от 1.09.2023).
- А.Л.Городенцев. Алгебра–2 (PDF 2.8Mb, версия от 1.09.2023).
- И.Р.Шафаревич. Основные понятия алгебры. ВИНИТИ, Совр. Пробл. Математ. Фундам. Напр., Алгебра-1 (есть в колхозе)
Все имеющиеся на сегодняшний день конспекты лекций одним файлом:
PDF 800 kb обновлён 24.11.2023.
Видеозаписи лекций на YouTube: 1-й семестр
.
- Материал для справок:
Множества, отображения, слои отображений, эквивалентности и классы эквивалентности. Композиции отображений, группы преобразований. Частично упорядоченные множества, вполне упорядоченные множества, лемма Цорна.
PDF 151kb обновлён 1.09.2023.
- Тема 1. Поля, коммутативные кольца, абелевы группы. Кольцо целых чисел: делимость, НОД, НОК и взаимная простота, алгоритм Евклида–Гаусса. Кольца и поля вычетов: делители нуля, нильпотенты, обратимые вычеты, теорема Эйлера, малая теорема Ферма. Свойства гомоморфизмов, примеры: квадраты в поле Fp, простое подполе, характеристика, гомоморфизм Фробениуса. Прямые произведения абелевых групп и колец. Китайская теорема об остатках.
Конспект:
PDF 165kb обновлён 13.09.2023.
Видеозаписи:
лекция 05.09.2023,
лекция 07.09.2023,
лекция 14.09.2023.
- Тема 2. Ряды и многочлены: алгебраические операции и дифференциальное исчисление. Делимость и китайская теорема об остатках в кольце многочленов. Корни и кратные корни многочленов, интерполяция, сепарабельность. Кольца вычетов K[x]/(f) и расширения полей. Поле комплексных чисел. Конечные поля.
Конспект:
PDF 207kb обновлён 2.10.2023.
Видеозаписи:
лекция 21.09.2023,
лекция 28.09.2023,
лекция 05.10.2023.
- Тема 3. Кольца и поля частных, примеры: ряды Лорана, рациональные функции. Разложение рациональной функции на простейшие дроби и в степенной ряд, приложение: решение линейных рекуррентных уравнений. Экспонента, логарифм, бином, пример: числа Каталана. Действие Q[[d/dx]] на Q[x], суммирование степеней и числа Бернулли.
Конспект:
PDF 136kb обновлён 2.10.2023.
Видеозаписи:
лекция 12.10.2023,
лекция 19.10.2023,
лекция 2.11.2023.
- Тема 4. Идеалы и фактор кольца, примеры: простые и максимальные идеалы. Нётеровы кольца, теорема Гильберта о базисе идеала, примеры: системы полиномиальных уравнений и конечно порождённые коммутативные алгебры. Области главных идеалов, примеры: евклидовы кольца, гауссовы числа. Факториальные кольца, простые и неприводимые элементы, факториальность области главных идеалов. Факториальность кольца многочленов над факториальным кольцом, содержание многочлена и лемма Гаусса. Разложение на множители многочленов с целыми коэффициентами. Конспект:
PDF 144 Kb обновлён 11.11.2023.
Видеозаписи:
лекция 3.11.2023,
лекция 9.11.2023,
лекция 16.11.2023.
- Тема 5. Модули над коммутативными кольцами: прямые суммы модулей и подмодулей, гомоморфизмы и модули гомоморфизмов, фактор модули, ранг свободного модуля, образующие и соотношения. Ассоциативные алгебры над коммутативными кольцами, алгебра эндоморфизмов модуля, алгебра матриц, обратимые элементы, пример: обращение унитреугольной матрицы и теорема об элементарных симметрических функциях. Матричный формализм: умножение матриц, матрицы переходов, матрицы гомоморфизмов, модуль гомоморфизмов между модулями, заданными образующими и соотношениями, пример: Hom(Z/(n),Z/(m)).
Конспект:
PDF 183 Kb обновлён 24.11.2023.
Видеозаписи:
лекция 17.11.2023, судя по всему, не записалась;
лекция 23.11.2023.
- Тема 6. Метод Гаусса в области главных идеалов: инвариантные множители и нормальная форма Смита прямоугольной матрицы, отыскание обратных матриц, решение систем линейных уравнений. Теорема о взаимном базисе и инвариантные множители подмодуля в свободном модуле конечного ранга. Теорема об элементарных делителях, классификация конечно порождённых модулей над областью главных идеалов. Конспект:
PDF 139 Kb обновлён 24.11.2022.
Разбираемые на семинарах задачи идут ниже. Все студенты так или иначе должны научиться решать все не помеченные звёздочками задачи семинаров.
- Тема 1. Целые числа и вычеты (обновлено 13.08.2023).
- Тема 2. Многочлены и расширения полей.
- Тема 3. Ряды и дроби.
- Тема 4. Идеалы, фактор кольца и факториальные кольца (обновлено 4.11.2023).
- Тема 5. Модули и матрицы (обновлено 29.11.2023).
- Тема 6. Метод Гаусса.
- Тема 7. Конечно порождённые абелевы группы.
делятся на «обязательные» и «дополнительные», решение которых почётно и улучшает итоговую оценку, но не обязательно для получения максимальной итоговой оценки. Обязательными являются все не помеченные звёздочкой задачи из листков с целыми номерами. Все задачи из листков с дробными номерами, а также помеченные звёздочкой задачи — дополнительные. Задачи можно сдавать в течение всего семестра вплоть до официального начала предновогодней и летней экзаменационных сессий. Решения задач необходимо записывать. Сдавать задачи можно только преподавателю, который ведёт семинары по алгебре в Вашей группе, и его специально авторизованным для приёма задач помощникам, контакты которых он Вам укажет. Порядок сдачи задач также устанавливается преподавателем, ведущим семинары в Вашей группе. Этот порядок должен обеспечить каждому студенту возможность сдать примерно 3-5 задач в неделю. Важное предупреждение: если количество желающих сдавать задачи будет слишком большим, то сдать больше 3-5 задач в неделю может оказаться невозможно в виду физического отсутствия времени у принимающих задачи. Это нормально, и претензии по этому поводу не рассматриваются. Поэтому я рекомендую сдавать 3-5 задач каждую неделю.
В первом семестре планируются 3 контрольные работы: в начале октября, в сессию после первой четверти и в конце декабря.
В первом семестре
на итоговую отметку влияют: оценка S за работу на семинарах, которую по 100-бальной шкале поставит Вам ведущий у Вас семинары преподаватель согласно правилам, которые он Вам сообщит на одном из первых занятий, а также доли L, K, E решённых Вами в течение семестра задач из листков (L), контрольных работ (K) и итогового письменного экзамена (E), вычисленные в процентах от общего числа обязательных задач, заданных в течение семестра в каждом из этих видов, по формуле:
100(суммарное число решённых задач, включая необязательные)/(суммарное число обязательных задач). Обратите внимание, что это число может быть больше 100. Итоговая оценка вычисляется по формуле:
min(300,S+L+K+E)/30
Таким образом, для получения максимальной оценки 10 достаточно набрать по 75 баллов в каждом из четырёх видов программы, или каким-то другим способом набрать в сумме 300 баллов. При наборе меньшей суммы оценка уменьшается линейно и округляется до целого числа по стандартным правилам округления (до ближайшего целого, полуцелые округляются вверх).